sae-lens 6.15.0__py3-none-any.whl → 6.22.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sae_lens/__init__.py +6 -1
- sae_lens/analysis/hooked_sae_transformer.py +4 -13
- sae_lens/cache_activations_runner.py +3 -4
- sae_lens/config.py +39 -2
- sae_lens/constants.py +1 -0
- sae_lens/llm_sae_training_runner.py +9 -4
- sae_lens/loading/pretrained_sae_loaders.py +188 -0
- sae_lens/loading/pretrained_saes_directory.py +5 -3
- sae_lens/pretrained_saes.yaml +77 -1
- sae_lens/saes/__init__.py +3 -0
- sae_lens/saes/batchtopk_sae.py +3 -1
- sae_lens/saes/gated_sae.py +4 -9
- sae_lens/saes/jumprelu_sae.py +4 -9
- sae_lens/saes/matryoshka_batchtopk_sae.py +8 -15
- sae_lens/saes/sae.py +19 -31
- sae_lens/saes/standard_sae.py +4 -9
- sae_lens/saes/temporal_sae.py +365 -0
- sae_lens/saes/topk_sae.py +7 -10
- sae_lens/training/activation_scaler.py +7 -0
- sae_lens/training/activations_store.py +49 -7
- sae_lens/training/optim.py +11 -0
- sae_lens/training/sae_trainer.py +50 -11
- {sae_lens-6.15.0.dist-info → sae_lens-6.22.1.dist-info}/METADATA +16 -16
- sae_lens-6.22.1.dist-info/RECORD +41 -0
- sae_lens-6.15.0.dist-info/RECORD +0 -40
- {sae_lens-6.15.0.dist-info → sae_lens-6.22.1.dist-info}/WHEEL +0 -0
- {sae_lens-6.15.0.dist-info → sae_lens-6.22.1.dist-info}/licenses/LICENSE +0 -0
sae_lens/__init__.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
# ruff: noqa: E402
|
|
2
|
-
__version__ = "6.
|
|
2
|
+
__version__ = "6.22.1"
|
|
3
3
|
|
|
4
4
|
import logging
|
|
5
5
|
|
|
@@ -28,6 +28,8 @@ from sae_lens.saes import (
|
|
|
28
28
|
StandardSAEConfig,
|
|
29
29
|
StandardTrainingSAE,
|
|
30
30
|
StandardTrainingSAEConfig,
|
|
31
|
+
TemporalSAE,
|
|
32
|
+
TemporalSAEConfig,
|
|
31
33
|
TopKSAE,
|
|
32
34
|
TopKSAEConfig,
|
|
33
35
|
TopKTrainingSAE,
|
|
@@ -105,6 +107,8 @@ __all__ = [
|
|
|
105
107
|
"JumpReLUTranscoderConfig",
|
|
106
108
|
"MatryoshkaBatchTopKTrainingSAE",
|
|
107
109
|
"MatryoshkaBatchTopKTrainingSAEConfig",
|
|
110
|
+
"TemporalSAE",
|
|
111
|
+
"TemporalSAEConfig",
|
|
108
112
|
]
|
|
109
113
|
|
|
110
114
|
|
|
@@ -127,3 +131,4 @@ register_sae_training_class(
|
|
|
127
131
|
register_sae_class("transcoder", Transcoder, TranscoderConfig)
|
|
128
132
|
register_sae_class("skip_transcoder", SkipTranscoder, SkipTranscoderConfig)
|
|
129
133
|
register_sae_class("jumprelu_transcoder", JumpReLUTranscoder, JumpReLUTranscoderConfig)
|
|
134
|
+
register_sae_class("temporal", TemporalSAE, TemporalSAEConfig)
|
|
@@ -3,7 +3,6 @@ from contextlib import contextmanager
|
|
|
3
3
|
from typing import Any, Callable
|
|
4
4
|
|
|
5
5
|
import torch
|
|
6
|
-
from jaxtyping import Float
|
|
7
6
|
from transformer_lens.ActivationCache import ActivationCache
|
|
8
7
|
from transformer_lens.components.mlps.can_be_used_as_mlp import CanBeUsedAsMLP
|
|
9
8
|
from transformer_lens.hook_points import HookPoint # Hooking utilities
|
|
@@ -11,8 +10,8 @@ from transformer_lens.HookedTransformer import HookedTransformer
|
|
|
11
10
|
|
|
12
11
|
from sae_lens.saes.sae import SAE
|
|
13
12
|
|
|
14
|
-
SingleLoss =
|
|
15
|
-
LossPerToken =
|
|
13
|
+
SingleLoss = torch.Tensor # Type alias for a single element tensor
|
|
14
|
+
LossPerToken = torch.Tensor
|
|
16
15
|
Loss = SingleLoss | LossPerToken
|
|
17
16
|
|
|
18
17
|
|
|
@@ -171,12 +170,7 @@ class HookedSAETransformer(HookedTransformer):
|
|
|
171
170
|
reset_saes_end: bool = True,
|
|
172
171
|
use_error_term: bool | None = None,
|
|
173
172
|
**model_kwargs: Any,
|
|
174
|
-
) ->
|
|
175
|
-
None
|
|
176
|
-
| Float[torch.Tensor, "batch pos d_vocab"]
|
|
177
|
-
| Loss
|
|
178
|
-
| tuple[Float[torch.Tensor, "batch pos d_vocab"], Loss]
|
|
179
|
-
):
|
|
173
|
+
) -> None | torch.Tensor | Loss | tuple[torch.Tensor, Loss]:
|
|
180
174
|
"""Wrapper around HookedTransformer forward pass.
|
|
181
175
|
|
|
182
176
|
Runs the model with the given SAEs attached for one forward pass, then removes them. By default, will reset all SAEs to original state after.
|
|
@@ -203,10 +197,7 @@ class HookedSAETransformer(HookedTransformer):
|
|
|
203
197
|
remove_batch_dim: bool = False,
|
|
204
198
|
**kwargs: Any,
|
|
205
199
|
) -> tuple[
|
|
206
|
-
None
|
|
207
|
-
| Float[torch.Tensor, "batch pos d_vocab"]
|
|
208
|
-
| Loss
|
|
209
|
-
| tuple[Float[torch.Tensor, "batch pos d_vocab"], Loss],
|
|
200
|
+
None | torch.Tensor | Loss | tuple[torch.Tensor, Loss],
|
|
210
201
|
ActivationCache | dict[str, torch.Tensor],
|
|
211
202
|
]:
|
|
212
203
|
"""Wrapper around 'run_with_cache' in HookedTransformer.
|
|
@@ -9,8 +9,7 @@ import torch
|
|
|
9
9
|
from datasets import Array2D, Dataset, Features, Sequence, Value
|
|
10
10
|
from datasets.fingerprint import generate_fingerprint
|
|
11
11
|
from huggingface_hub import HfApi
|
|
12
|
-
from
|
|
13
|
-
from tqdm import tqdm
|
|
12
|
+
from tqdm.auto import tqdm
|
|
14
13
|
from transformer_lens.HookedTransformer import HookedRootModule
|
|
15
14
|
|
|
16
15
|
from sae_lens import logger
|
|
@@ -318,8 +317,8 @@ class CacheActivationsRunner:
|
|
|
318
317
|
def _create_shard(
|
|
319
318
|
self,
|
|
320
319
|
buffer: tuple[
|
|
321
|
-
|
|
322
|
-
|
|
320
|
+
torch.Tensor, # shape: (bs context_size) d_in
|
|
321
|
+
torch.Tensor | None, # shape: (bs context_size) or None
|
|
323
322
|
],
|
|
324
323
|
) -> Dataset:
|
|
325
324
|
hook_names = [self.cfg.hook_name]
|
sae_lens/config.py
CHANGED
|
@@ -18,6 +18,7 @@ from datasets import (
|
|
|
18
18
|
|
|
19
19
|
from sae_lens import __version__, logger
|
|
20
20
|
from sae_lens.constants import DTYPE_MAP
|
|
21
|
+
from sae_lens.registry import get_sae_training_class
|
|
21
22
|
from sae_lens.saes.sae import TrainingSAEConfig
|
|
22
23
|
|
|
23
24
|
if TYPE_CHECKING:
|
|
@@ -171,6 +172,7 @@ class LanguageModelSAERunnerConfig(Generic[T_TRAINING_SAE_CONFIG]):
|
|
|
171
172
|
n_checkpoints (int): The number of checkpoints to save during training. 0 means no checkpoints.
|
|
172
173
|
checkpoint_path (str | None): The path to save checkpoints. A unique ID will be appended to this path. Set to None to disable checkpoint saving. (default is "checkpoints")
|
|
173
174
|
save_final_checkpoint (bool): Whether to include an additional final checkpoint when training is finished. (default is False).
|
|
175
|
+
resume_from_checkpoint (str | None): The path to the checkpoint to resume training from. (default is None).
|
|
174
176
|
output_path (str | None): The path to save outputs. Set to None to disable output saving. (default is "output")
|
|
175
177
|
verbose (bool): Whether to print verbose output. (default is True)
|
|
176
178
|
model_kwargs (dict[str, Any]): Keyword arguments for `model.run_with_cache`
|
|
@@ -261,6 +263,7 @@ class LanguageModelSAERunnerConfig(Generic[T_TRAINING_SAE_CONFIG]):
|
|
|
261
263
|
checkpoint_path: str | None = "checkpoints"
|
|
262
264
|
save_final_checkpoint: bool = False
|
|
263
265
|
output_path: str | None = "output"
|
|
266
|
+
resume_from_checkpoint: str | None = None
|
|
264
267
|
|
|
265
268
|
# Misc
|
|
266
269
|
verbose: bool = True
|
|
@@ -385,8 +388,11 @@ class LanguageModelSAERunnerConfig(Generic[T_TRAINING_SAE_CONFIG]):
|
|
|
385
388
|
return self.sae.to_dict()
|
|
386
389
|
|
|
387
390
|
def to_dict(self) -> dict[str, Any]:
|
|
388
|
-
|
|
389
|
-
|
|
391
|
+
"""
|
|
392
|
+
Convert the config to a dictionary.
|
|
393
|
+
"""
|
|
394
|
+
|
|
395
|
+
d = asdict(self)
|
|
390
396
|
|
|
391
397
|
d["logger"] = asdict(self.logger)
|
|
392
398
|
d["sae"] = self.sae.to_dict()
|
|
@@ -396,6 +402,37 @@ class LanguageModelSAERunnerConfig(Generic[T_TRAINING_SAE_CONFIG]):
|
|
|
396
402
|
d["act_store_device"] = str(self.act_store_device)
|
|
397
403
|
return d
|
|
398
404
|
|
|
405
|
+
@classmethod
|
|
406
|
+
def from_dict(cls, cfg_dict: dict[str, Any]) -> "LanguageModelSAERunnerConfig[Any]":
|
|
407
|
+
"""
|
|
408
|
+
Load a LanguageModelSAERunnerConfig from a dictionary given by `to_dict`.
|
|
409
|
+
|
|
410
|
+
Args:
|
|
411
|
+
cfg_dict (dict[str, Any]): The dictionary to load the config from.
|
|
412
|
+
|
|
413
|
+
Returns:
|
|
414
|
+
LanguageModelSAERunnerConfig: The loaded config.
|
|
415
|
+
"""
|
|
416
|
+
if "sae" not in cfg_dict:
|
|
417
|
+
raise ValueError("sae field is required in the config dictionary")
|
|
418
|
+
if "architecture" not in cfg_dict["sae"]:
|
|
419
|
+
raise ValueError("architecture field is required in the sae dictionary")
|
|
420
|
+
if "logger" not in cfg_dict:
|
|
421
|
+
raise ValueError("logger field is required in the config dictionary")
|
|
422
|
+
sae_config_class = get_sae_training_class(cfg_dict["sae"]["architecture"])[1]
|
|
423
|
+
sae_cfg = sae_config_class.from_dict(cfg_dict["sae"])
|
|
424
|
+
logger_cfg = LoggingConfig(**cfg_dict["logger"])
|
|
425
|
+
updated_cfg_dict: dict[str, Any] = {
|
|
426
|
+
**cfg_dict,
|
|
427
|
+
"sae": sae_cfg,
|
|
428
|
+
"logger": logger_cfg,
|
|
429
|
+
}
|
|
430
|
+
output = cls(**updated_cfg_dict)
|
|
431
|
+
# the post_init always appends to checkpoint path, so we need to set it explicitly here.
|
|
432
|
+
if "checkpoint_path" in cfg_dict:
|
|
433
|
+
output.checkpoint_path = cfg_dict["checkpoint_path"]
|
|
434
|
+
return output
|
|
435
|
+
|
|
399
436
|
def to_sae_trainer_config(self) -> "SAETrainerConfig":
|
|
400
437
|
return SAETrainerConfig(
|
|
401
438
|
n_checkpoints=self.n_checkpoints,
|
sae_lens/constants.py
CHANGED
|
@@ -17,5 +17,6 @@ SAE_WEIGHTS_FILENAME = "sae_weights.safetensors"
|
|
|
17
17
|
SAE_CFG_FILENAME = "cfg.json"
|
|
18
18
|
RUNNER_CFG_FILENAME = "runner_cfg.json"
|
|
19
19
|
SPARSIFY_WEIGHTS_FILENAME = "sae.safetensors"
|
|
20
|
+
TRAINER_STATE_FILENAME = "trainer_state.pt"
|
|
20
21
|
ACTIVATIONS_STORE_STATE_FILENAME = "activations_store_state.safetensors"
|
|
21
22
|
ACTIVATION_SCALER_CFG_FILENAME = "activation_scaler.json"
|
|
@@ -16,7 +16,6 @@ from typing_extensions import deprecated
|
|
|
16
16
|
from sae_lens import logger
|
|
17
17
|
from sae_lens.config import HfDataset, LanguageModelSAERunnerConfig
|
|
18
18
|
from sae_lens.constants import (
|
|
19
|
-
ACTIVATIONS_STORE_STATE_FILENAME,
|
|
20
19
|
RUNNER_CFG_FILENAME,
|
|
21
20
|
SPARSITY_FILENAME,
|
|
22
21
|
)
|
|
@@ -112,6 +111,7 @@ class LanguageModelSAETrainingRunner:
|
|
|
112
111
|
override_dataset: HfDataset | None = None,
|
|
113
112
|
override_model: HookedRootModule | None = None,
|
|
114
113
|
override_sae: TrainingSAE[Any] | None = None,
|
|
114
|
+
resume_from_checkpoint: Path | str | None = None,
|
|
115
115
|
):
|
|
116
116
|
if override_dataset is not None:
|
|
117
117
|
logger.warning(
|
|
@@ -153,6 +153,7 @@ class LanguageModelSAETrainingRunner:
|
|
|
153
153
|
)
|
|
154
154
|
else:
|
|
155
155
|
self.sae = override_sae
|
|
156
|
+
|
|
156
157
|
self.sae.to(self.cfg.device)
|
|
157
158
|
|
|
158
159
|
def run(self):
|
|
@@ -185,6 +186,12 @@ class LanguageModelSAETrainingRunner:
|
|
|
185
186
|
cfg=self.cfg.to_sae_trainer_config(),
|
|
186
187
|
)
|
|
187
188
|
|
|
189
|
+
if self.cfg.resume_from_checkpoint is not None:
|
|
190
|
+
logger.info(f"Resuming from checkpoint: {self.cfg.resume_from_checkpoint}")
|
|
191
|
+
trainer.load_trainer_state(self.cfg.resume_from_checkpoint)
|
|
192
|
+
self.sae.load_weights_from_checkpoint(self.cfg.resume_from_checkpoint)
|
|
193
|
+
self.activations_store.load_from_checkpoint(self.cfg.resume_from_checkpoint)
|
|
194
|
+
|
|
188
195
|
self._compile_if_needed()
|
|
189
196
|
sae = self.run_trainer_with_interruption_handling(trainer)
|
|
190
197
|
|
|
@@ -304,9 +311,7 @@ class LanguageModelSAETrainingRunner:
|
|
|
304
311
|
if checkpoint_path is None:
|
|
305
312
|
return
|
|
306
313
|
|
|
307
|
-
self.activations_store.
|
|
308
|
-
str(checkpoint_path / ACTIVATIONS_STORE_STATE_FILENAME)
|
|
309
|
-
)
|
|
314
|
+
self.activations_store.save_to_checkpoint(checkpoint_path)
|
|
310
315
|
|
|
311
316
|
runner_config = self.cfg.to_dict()
|
|
312
317
|
with open(checkpoint_path / RUNNER_CFG_FILENAME, "w") as f:
|
|
@@ -523,6 +523,82 @@ def gemma_2_sae_huggingface_loader(
|
|
|
523
523
|
return cfg_dict, state_dict, log_sparsity
|
|
524
524
|
|
|
525
525
|
|
|
526
|
+
def get_goodfire_config_from_hf(
|
|
527
|
+
repo_id: str,
|
|
528
|
+
folder_name: str, # noqa: ARG001
|
|
529
|
+
device: str,
|
|
530
|
+
force_download: bool = False, # noqa: ARG001
|
|
531
|
+
cfg_overrides: dict[str, Any] | None = None,
|
|
532
|
+
) -> dict[str, Any]:
|
|
533
|
+
cfg_dict = None
|
|
534
|
+
if repo_id == "Goodfire/Llama-3.3-70B-Instruct-SAE-l50":
|
|
535
|
+
if folder_name != "Llama-3.3-70B-Instruct-SAE-l50.pt":
|
|
536
|
+
raise ValueError(f"Unsupported Goodfire SAE: {repo_id}/{folder_name}")
|
|
537
|
+
cfg_dict = {
|
|
538
|
+
"architecture": "standard",
|
|
539
|
+
"d_in": 8192,
|
|
540
|
+
"d_sae": 65536,
|
|
541
|
+
"model_name": "meta-llama/Llama-3.3-70B-Instruct",
|
|
542
|
+
"hook_name": "blocks.50.hook_resid_post",
|
|
543
|
+
"hook_head_index": None,
|
|
544
|
+
"dataset_path": "lmsys/lmsys-chat-1m",
|
|
545
|
+
"apply_b_dec_to_input": False,
|
|
546
|
+
}
|
|
547
|
+
elif repo_id == "Goodfire/Llama-3.1-8B-Instruct-SAE-l19":
|
|
548
|
+
if folder_name != "Llama-3.1-8B-Instruct-SAE-l19.pth":
|
|
549
|
+
raise ValueError(f"Unsupported Goodfire SAE: {repo_id}/{folder_name}")
|
|
550
|
+
cfg_dict = {
|
|
551
|
+
"architecture": "standard",
|
|
552
|
+
"d_in": 4096,
|
|
553
|
+
"d_sae": 65536,
|
|
554
|
+
"model_name": "meta-llama/Llama-3.1-8B-Instruct",
|
|
555
|
+
"hook_name": "blocks.19.hook_resid_post",
|
|
556
|
+
"hook_head_index": None,
|
|
557
|
+
"dataset_path": "lmsys/lmsys-chat-1m",
|
|
558
|
+
"apply_b_dec_to_input": False,
|
|
559
|
+
}
|
|
560
|
+
if cfg_dict is None:
|
|
561
|
+
raise ValueError(f"Unsupported Goodfire SAE: {repo_id}/{folder_name}")
|
|
562
|
+
if device is not None:
|
|
563
|
+
cfg_dict["device"] = device
|
|
564
|
+
if cfg_overrides is not None:
|
|
565
|
+
cfg_dict.update(cfg_overrides)
|
|
566
|
+
return cfg_dict
|
|
567
|
+
|
|
568
|
+
|
|
569
|
+
def get_goodfire_huggingface_loader(
|
|
570
|
+
repo_id: str,
|
|
571
|
+
folder_name: str,
|
|
572
|
+
device: str = "cpu",
|
|
573
|
+
force_download: bool = False,
|
|
574
|
+
cfg_overrides: dict[str, Any] | None = None,
|
|
575
|
+
) -> tuple[dict[str, Any], dict[str, torch.Tensor], torch.Tensor | None]:
|
|
576
|
+
cfg_dict = get_goodfire_config_from_hf(
|
|
577
|
+
repo_id,
|
|
578
|
+
folder_name,
|
|
579
|
+
device,
|
|
580
|
+
force_download,
|
|
581
|
+
cfg_overrides,
|
|
582
|
+
)
|
|
583
|
+
|
|
584
|
+
# Download the SAE weights
|
|
585
|
+
sae_path = hf_hub_download(
|
|
586
|
+
repo_id=repo_id,
|
|
587
|
+
filename=folder_name,
|
|
588
|
+
force_download=force_download,
|
|
589
|
+
)
|
|
590
|
+
raw_state_dict = torch.load(sae_path, map_location=device)
|
|
591
|
+
|
|
592
|
+
state_dict = {
|
|
593
|
+
"W_enc": raw_state_dict["encoder_linear.weight"].T,
|
|
594
|
+
"W_dec": raw_state_dict["decoder_linear.weight"].T,
|
|
595
|
+
"b_enc": raw_state_dict["encoder_linear.bias"],
|
|
596
|
+
"b_dec": raw_state_dict["decoder_linear.bias"],
|
|
597
|
+
}
|
|
598
|
+
|
|
599
|
+
return cfg_dict, state_dict, None
|
|
600
|
+
|
|
601
|
+
|
|
526
602
|
def get_llama_scope_config_from_hf(
|
|
527
603
|
repo_id: str,
|
|
528
604
|
folder_name: str,
|
|
@@ -1475,6 +1551,114 @@ def get_mntss_clt_layer_config_from_hf(
|
|
|
1475
1551
|
}
|
|
1476
1552
|
|
|
1477
1553
|
|
|
1554
|
+
def get_temporal_sae_config_from_hf(
|
|
1555
|
+
repo_id: str,
|
|
1556
|
+
folder_name: str,
|
|
1557
|
+
device: str,
|
|
1558
|
+
force_download: bool = False,
|
|
1559
|
+
cfg_overrides: dict[str, Any] | None = None,
|
|
1560
|
+
) -> dict[str, Any]:
|
|
1561
|
+
"""Get TemporalSAE config without loading weights."""
|
|
1562
|
+
# Download config file
|
|
1563
|
+
conf_path = hf_hub_download(
|
|
1564
|
+
repo_id=repo_id,
|
|
1565
|
+
filename=f"{folder_name}/conf.yaml",
|
|
1566
|
+
force_download=force_download,
|
|
1567
|
+
)
|
|
1568
|
+
|
|
1569
|
+
# Load and parse config
|
|
1570
|
+
with open(conf_path) as f:
|
|
1571
|
+
yaml_config = yaml.safe_load(f)
|
|
1572
|
+
|
|
1573
|
+
# Extract parameters
|
|
1574
|
+
d_in = yaml_config["llm"]["dimin"]
|
|
1575
|
+
exp_factor = yaml_config["sae"]["exp_factor"]
|
|
1576
|
+
d_sae = int(d_in * exp_factor)
|
|
1577
|
+
|
|
1578
|
+
# extract layer from folder_name eg : "layer_12/temporal"
|
|
1579
|
+
layer = re.search(r"layer_(\d+)", folder_name)
|
|
1580
|
+
if layer is None:
|
|
1581
|
+
raise ValueError(f"Could not find layer in folder_name: {folder_name}")
|
|
1582
|
+
layer = int(layer.group(1))
|
|
1583
|
+
|
|
1584
|
+
# Build config dict
|
|
1585
|
+
cfg_dict = {
|
|
1586
|
+
"architecture": "temporal",
|
|
1587
|
+
"hook_name": f"blocks.{layer}.hook_resid_post",
|
|
1588
|
+
"d_in": d_in,
|
|
1589
|
+
"d_sae": d_sae,
|
|
1590
|
+
"n_heads": yaml_config["sae"]["n_heads"],
|
|
1591
|
+
"n_attn_layers": yaml_config["sae"]["n_attn_layers"],
|
|
1592
|
+
"bottleneck_factor": yaml_config["sae"]["bottleneck_factor"],
|
|
1593
|
+
"sae_diff_type": yaml_config["sae"]["sae_diff_type"],
|
|
1594
|
+
"kval_topk": yaml_config["sae"]["kval_topk"],
|
|
1595
|
+
"tied_weights": yaml_config["sae"]["tied_weights"],
|
|
1596
|
+
"dtype": yaml_config["data"]["dtype"],
|
|
1597
|
+
"device": device,
|
|
1598
|
+
"normalize_activations": "constant_scalar_rescale",
|
|
1599
|
+
"activation_normalization_factor": yaml_config["sae"]["scaling_factor"],
|
|
1600
|
+
"apply_b_dec_to_input": True,
|
|
1601
|
+
}
|
|
1602
|
+
|
|
1603
|
+
if cfg_overrides:
|
|
1604
|
+
cfg_dict.update(cfg_overrides)
|
|
1605
|
+
|
|
1606
|
+
return cfg_dict
|
|
1607
|
+
|
|
1608
|
+
|
|
1609
|
+
def temporal_sae_huggingface_loader(
|
|
1610
|
+
repo_id: str,
|
|
1611
|
+
folder_name: str,
|
|
1612
|
+
device: str = "cpu",
|
|
1613
|
+
force_download: bool = False,
|
|
1614
|
+
cfg_overrides: dict[str, Any] | None = None,
|
|
1615
|
+
) -> tuple[dict[str, Any], dict[str, torch.Tensor], torch.Tensor | None]:
|
|
1616
|
+
"""
|
|
1617
|
+
Load TemporalSAE from canrager/temporalSAEs format (safetensors version).
|
|
1618
|
+
|
|
1619
|
+
Expects folder_name to contain:
|
|
1620
|
+
- conf.yaml (configuration)
|
|
1621
|
+
- latest_ckpt.safetensors (model weights)
|
|
1622
|
+
"""
|
|
1623
|
+
|
|
1624
|
+
cfg_dict = get_temporal_sae_config_from_hf(
|
|
1625
|
+
repo_id=repo_id,
|
|
1626
|
+
folder_name=folder_name,
|
|
1627
|
+
device=device,
|
|
1628
|
+
force_download=force_download,
|
|
1629
|
+
cfg_overrides=cfg_overrides,
|
|
1630
|
+
)
|
|
1631
|
+
|
|
1632
|
+
# Download checkpoint (safetensors format)
|
|
1633
|
+
ckpt_path = hf_hub_download(
|
|
1634
|
+
repo_id=repo_id,
|
|
1635
|
+
filename=f"{folder_name}/latest_ckpt.safetensors",
|
|
1636
|
+
force_download=force_download,
|
|
1637
|
+
)
|
|
1638
|
+
|
|
1639
|
+
# Load checkpoint from safetensors
|
|
1640
|
+
state_dict_raw = load_file(ckpt_path, device=device)
|
|
1641
|
+
|
|
1642
|
+
# Convert to SAELens naming convention
|
|
1643
|
+
# TemporalSAE uses: D (decoder), E (encoder), b (bias), attn_layers.*
|
|
1644
|
+
state_dict = {}
|
|
1645
|
+
|
|
1646
|
+
# Copy attention layers as-is
|
|
1647
|
+
for key, value in state_dict_raw.items():
|
|
1648
|
+
if key.startswith("attn_layers."):
|
|
1649
|
+
state_dict[key] = value.to(device)
|
|
1650
|
+
|
|
1651
|
+
# Main parameters
|
|
1652
|
+
state_dict["W_dec"] = state_dict_raw["D"].to(device)
|
|
1653
|
+
state_dict["b_dec"] = state_dict_raw["b"].to(device)
|
|
1654
|
+
|
|
1655
|
+
# Handle tied/untied weights
|
|
1656
|
+
if "E" in state_dict_raw:
|
|
1657
|
+
state_dict["W_enc"] = state_dict_raw["E"].to(device)
|
|
1658
|
+
|
|
1659
|
+
return cfg_dict, state_dict, None
|
|
1660
|
+
|
|
1661
|
+
|
|
1478
1662
|
NAMED_PRETRAINED_SAE_LOADERS: dict[str, PretrainedSaeHuggingfaceLoader] = {
|
|
1479
1663
|
"sae_lens": sae_lens_huggingface_loader,
|
|
1480
1664
|
"connor_rob_hook_z": connor_rob_hook_z_huggingface_loader,
|
|
@@ -1487,6 +1671,8 @@ NAMED_PRETRAINED_SAE_LOADERS: dict[str, PretrainedSaeHuggingfaceLoader] = {
|
|
|
1487
1671
|
"gemma_2_transcoder": gemma_2_transcoder_huggingface_loader,
|
|
1488
1672
|
"mwhanna_transcoder": mwhanna_transcoder_huggingface_loader,
|
|
1489
1673
|
"mntss_clt_layer_transcoder": mntss_clt_layer_huggingface_loader,
|
|
1674
|
+
"temporal": temporal_sae_huggingface_loader,
|
|
1675
|
+
"goodfire": get_goodfire_huggingface_loader,
|
|
1490
1676
|
}
|
|
1491
1677
|
|
|
1492
1678
|
|
|
@@ -1502,4 +1688,6 @@ NAMED_PRETRAINED_SAE_CONFIG_GETTERS: dict[str, PretrainedSaeConfigHuggingfaceLoa
|
|
|
1502
1688
|
"gemma_2_transcoder": get_gemma_2_transcoder_config_from_hf,
|
|
1503
1689
|
"mwhanna_transcoder": get_mwhanna_transcoder_config_from_hf,
|
|
1504
1690
|
"mntss_clt_layer_transcoder": get_mntss_clt_layer_config_from_hf,
|
|
1691
|
+
"temporal": get_temporal_sae_config_from_hf,
|
|
1692
|
+
"goodfire": get_goodfire_config_from_hf,
|
|
1505
1693
|
}
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
from dataclasses import dataclass
|
|
2
2
|
from functools import cache
|
|
3
|
-
from importlib import
|
|
3
|
+
from importlib.resources import files
|
|
4
4
|
from typing import Any
|
|
5
5
|
|
|
6
6
|
import yaml
|
|
@@ -24,7 +24,8 @@ def get_pretrained_saes_directory() -> dict[str, PretrainedSAELookup]:
|
|
|
24
24
|
package = "sae_lens"
|
|
25
25
|
# Access the file within the package using importlib.resources
|
|
26
26
|
directory: dict[str, PretrainedSAELookup] = {}
|
|
27
|
-
|
|
27
|
+
yaml_file = files(package).joinpath("pretrained_saes.yaml")
|
|
28
|
+
with yaml_file.open("r") as file:
|
|
28
29
|
# Load the YAML file content
|
|
29
30
|
data = yaml.safe_load(file)
|
|
30
31
|
for release, value in data.items():
|
|
@@ -68,7 +69,8 @@ def get_norm_scaling_factor(release: str, sae_id: str) -> float | None:
|
|
|
68
69
|
float | None: The norm_scaling_factor if it exists, None otherwise.
|
|
69
70
|
"""
|
|
70
71
|
package = "sae_lens"
|
|
71
|
-
|
|
72
|
+
yaml_file = files(package).joinpath("pretrained_saes.yaml")
|
|
73
|
+
with yaml_file.open("r") as file:
|
|
72
74
|
data = yaml.safe_load(file)
|
|
73
75
|
if release in data:
|
|
74
76
|
for sae_info in data[release]["saes"]:
|
sae_lens/pretrained_saes.yaml
CHANGED
|
@@ -1,3 +1,35 @@
|
|
|
1
|
+
temporal-sae-gemma-2-2b:
|
|
2
|
+
conversion_func: temporal
|
|
3
|
+
model: gemma-2-2b
|
|
4
|
+
repo_id: canrager/temporalSAEs
|
|
5
|
+
config_overrides:
|
|
6
|
+
model_name: gemma-2-2b
|
|
7
|
+
hook_name: blocks.12.hook_resid_post
|
|
8
|
+
dataset_path: monology/pile-uncopyrighted
|
|
9
|
+
saes:
|
|
10
|
+
- id: blocks.12.hook_resid_post
|
|
11
|
+
l0: 192
|
|
12
|
+
norm_scaling_factor: 0.00666666667
|
|
13
|
+
path: gemma-2-2B/layer_12/temporal
|
|
14
|
+
neuronpedia: gemma-2-2b/12-temporal-res
|
|
15
|
+
temporal-sae-llama-3.1-8b:
|
|
16
|
+
conversion_func: temporal
|
|
17
|
+
model: meta-llama/Llama-3.1-8B
|
|
18
|
+
repo_id: canrager/temporalSAEs
|
|
19
|
+
config_overrides:
|
|
20
|
+
model_name: meta-llama/Llama-3.1-8B
|
|
21
|
+
dataset_path: monology/pile-uncopyrighted
|
|
22
|
+
saes:
|
|
23
|
+
- id: blocks.15.hook_resid_post
|
|
24
|
+
l0: 256
|
|
25
|
+
norm_scaling_factor: 0.029
|
|
26
|
+
path: llama-3.1-8B/layer_15/temporal
|
|
27
|
+
neuronpedia: llama3.1-8b/15-temporal-res
|
|
28
|
+
- id: blocks.26.hook_resid_post
|
|
29
|
+
l0: 256
|
|
30
|
+
norm_scaling_factor: 0.029
|
|
31
|
+
path: llama-3.1-8B/layer_26/temporal
|
|
32
|
+
neuronpedia: llama3.1-8b/26-temporal-res
|
|
1
33
|
deepseek-r1-distill-llama-8b-qresearch:
|
|
2
34
|
conversion_func: deepseek_r1
|
|
3
35
|
model: deepseek-ai/DeepSeek-R1-Distill-Llama-8B
|
|
@@ -14882,4 +14914,48 @@ qwen2.5-7b-instruct-andyrdt:
|
|
|
14882
14914
|
neuronpedia: qwen2.5-7b-it/23-resid-post-aa
|
|
14883
14915
|
- id: resid_post_layer_27_trainer_1
|
|
14884
14916
|
path: resid_post_layer_27/trainer_1
|
|
14885
|
-
neuronpedia: qwen2.5-7b-it/27-resid-post-aa
|
|
14917
|
+
neuronpedia: qwen2.5-7b-it/27-resid-post-aa
|
|
14918
|
+
|
|
14919
|
+
gpt-oss-20b-andyrdt:
|
|
14920
|
+
conversion_func: dictionary_learning_1
|
|
14921
|
+
model: openai/gpt-oss-20b
|
|
14922
|
+
repo_id: andyrdt/saes-gpt-oss-20b
|
|
14923
|
+
saes:
|
|
14924
|
+
- id: resid_post_layer_3_trainer_0
|
|
14925
|
+
path: resid_post_layer_3/trainer_0
|
|
14926
|
+
neuronpedia: gpt-oss-20b/3-resid-post-aa
|
|
14927
|
+
- id: resid_post_layer_7_trainer_0
|
|
14928
|
+
path: resid_post_layer_7/trainer_0
|
|
14929
|
+
neuronpedia: gpt-oss-20b/7-resid-post-aa
|
|
14930
|
+
- id: resid_post_layer_11_trainer_0
|
|
14931
|
+
path: resid_post_layer_11/trainer_0
|
|
14932
|
+
neuronpedia: gpt-oss-20b/11-resid-post-aa
|
|
14933
|
+
- id: resid_post_layer_15_trainer_0
|
|
14934
|
+
path: resid_post_layer_15/trainer_0
|
|
14935
|
+
neuronpedia: gpt-oss-20b/15-resid-post-aa
|
|
14936
|
+
- id: resid_post_layer_19_trainer_0
|
|
14937
|
+
path: resid_post_layer_19/trainer_0
|
|
14938
|
+
neuronpedia: gpt-oss-20b/19-resid-post-aa
|
|
14939
|
+
- id: resid_post_layer_23_trainer_0
|
|
14940
|
+
path: resid_post_layer_23/trainer_0
|
|
14941
|
+
neuronpedia: gpt-oss-20b/23-resid-post-aa
|
|
14942
|
+
|
|
14943
|
+
goodfire-llama-3.3-70b-instruct:
|
|
14944
|
+
conversion_func: goodfire
|
|
14945
|
+
model: meta-llama/Llama-3.3-70B-Instruct
|
|
14946
|
+
repo_id: Goodfire/Llama-3.3-70B-Instruct-SAE-l50
|
|
14947
|
+
saes:
|
|
14948
|
+
- id: layer_50
|
|
14949
|
+
path: Llama-3.3-70B-Instruct-SAE-l50.pt
|
|
14950
|
+
l0: 121
|
|
14951
|
+
neuronpedia: llama3.3-70b-it/50-resid-post-gf
|
|
14952
|
+
|
|
14953
|
+
goodfire-llama-3.1-8b-instruct:
|
|
14954
|
+
conversion_func: goodfire
|
|
14955
|
+
model: meta-llama/Llama-3.1-8B-Instruct
|
|
14956
|
+
repo_id: Goodfire/Llama-3.1-8B-Instruct-SAE-l19
|
|
14957
|
+
saes:
|
|
14958
|
+
- id: layer_19
|
|
14959
|
+
path: Llama-3.1-8B-Instruct-SAE-l19.pth
|
|
14960
|
+
l0: 91
|
|
14961
|
+
neuronpedia: llama3.1-8b-it/19-resid-post-gf
|
sae_lens/saes/__init__.py
CHANGED
|
@@ -25,6 +25,7 @@ from .standard_sae import (
|
|
|
25
25
|
StandardTrainingSAE,
|
|
26
26
|
StandardTrainingSAEConfig,
|
|
27
27
|
)
|
|
28
|
+
from .temporal_sae import TemporalSAE, TemporalSAEConfig
|
|
28
29
|
from .topk_sae import (
|
|
29
30
|
TopKSAE,
|
|
30
31
|
TopKSAEConfig,
|
|
@@ -71,4 +72,6 @@ __all__ = [
|
|
|
71
72
|
"JumpReLUTranscoderConfig",
|
|
72
73
|
"MatryoshkaBatchTopKTrainingSAE",
|
|
73
74
|
"MatryoshkaBatchTopKTrainingSAEConfig",
|
|
75
|
+
"TemporalSAE",
|
|
76
|
+
"TemporalSAEConfig",
|
|
74
77
|
]
|
sae_lens/saes/batchtopk_sae.py
CHANGED
|
@@ -23,7 +23,9 @@ class BatchTopK(nn.Module):
|
|
|
23
23
|
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
24
24
|
acts = x.relu()
|
|
25
25
|
flat_acts = acts.flatten()
|
|
26
|
-
|
|
26
|
+
# Calculate total number of samples across all non-feature dimensions
|
|
27
|
+
num_samples = acts.shape[:-1].numel()
|
|
28
|
+
acts_topk_flat = torch.topk(flat_acts, int(self.k * num_samples), dim=-1)
|
|
27
29
|
return (
|
|
28
30
|
torch.zeros_like(flat_acts)
|
|
29
31
|
.scatter(-1, acts_topk_flat.indices, acts_topk_flat.values)
|
sae_lens/saes/gated_sae.py
CHANGED
|
@@ -2,7 +2,6 @@ from dataclasses import dataclass
|
|
|
2
2
|
from typing import Any
|
|
3
3
|
|
|
4
4
|
import torch
|
|
5
|
-
from jaxtyping import Float
|
|
6
5
|
from numpy.typing import NDArray
|
|
7
6
|
from torch import nn
|
|
8
7
|
from typing_extensions import override
|
|
@@ -49,9 +48,7 @@ class GatedSAE(SAE[GatedSAEConfig]):
|
|
|
49
48
|
super().initialize_weights()
|
|
50
49
|
_init_weights_gated(self)
|
|
51
50
|
|
|
52
|
-
def encode(
|
|
53
|
-
self, x: Float[torch.Tensor, "... d_in"]
|
|
54
|
-
) -> Float[torch.Tensor, "... d_sae"]:
|
|
51
|
+
def encode(self, x: torch.Tensor) -> torch.Tensor:
|
|
55
52
|
"""
|
|
56
53
|
Encode the input tensor into the feature space using a gated encoder.
|
|
57
54
|
This must match the original encode_gated implementation from SAE class.
|
|
@@ -72,9 +69,7 @@ class GatedSAE(SAE[GatedSAEConfig]):
|
|
|
72
69
|
# Combine gating and magnitudes
|
|
73
70
|
return self.hook_sae_acts_post(active_features * feature_magnitudes)
|
|
74
71
|
|
|
75
|
-
def decode(
|
|
76
|
-
self, feature_acts: Float[torch.Tensor, "... d_sae"]
|
|
77
|
-
) -> Float[torch.Tensor, "... d_in"]:
|
|
72
|
+
def decode(self, feature_acts: torch.Tensor) -> torch.Tensor:
|
|
78
73
|
"""
|
|
79
74
|
Decode the feature activations back into the input space:
|
|
80
75
|
1) Apply optional finetuning scaling.
|
|
@@ -147,8 +142,8 @@ class GatedTrainingSAE(TrainingSAE[GatedTrainingSAEConfig]):
|
|
|
147
142
|
_init_weights_gated(self)
|
|
148
143
|
|
|
149
144
|
def encode_with_hidden_pre(
|
|
150
|
-
self, x:
|
|
151
|
-
) -> tuple[
|
|
145
|
+
self, x: torch.Tensor
|
|
146
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
152
147
|
"""
|
|
153
148
|
Gated forward pass with pre-activation (for training).
|
|
154
149
|
"""
|
sae_lens/saes/jumprelu_sae.py
CHANGED
|
@@ -3,7 +3,6 @@ from typing import Any, Literal
|
|
|
3
3
|
|
|
4
4
|
import numpy as np
|
|
5
5
|
import torch
|
|
6
|
-
from jaxtyping import Float
|
|
7
6
|
from torch import nn
|
|
8
7
|
from typing_extensions import override
|
|
9
8
|
|
|
@@ -130,9 +129,7 @@ class JumpReLUSAE(SAE[JumpReLUSAEConfig]):
|
|
|
130
129
|
torch.zeros(self.cfg.d_sae, dtype=self.dtype, device=self.device)
|
|
131
130
|
)
|
|
132
131
|
|
|
133
|
-
def encode(
|
|
134
|
-
self, x: Float[torch.Tensor, "... d_in"]
|
|
135
|
-
) -> Float[torch.Tensor, "... d_sae"]:
|
|
132
|
+
def encode(self, x: torch.Tensor) -> torch.Tensor:
|
|
136
133
|
"""
|
|
137
134
|
Encode the input tensor into the feature space using JumpReLU.
|
|
138
135
|
The threshold parameter determines which units remain active.
|
|
@@ -150,9 +147,7 @@ class JumpReLUSAE(SAE[JumpReLUSAEConfig]):
|
|
|
150
147
|
# 3) Multiply the normally activated units by that mask.
|
|
151
148
|
return self.hook_sae_acts_post(base_acts * jump_relu_mask)
|
|
152
149
|
|
|
153
|
-
def decode(
|
|
154
|
-
self, feature_acts: Float[torch.Tensor, "... d_sae"]
|
|
155
|
-
) -> Float[torch.Tensor, "... d_in"]:
|
|
150
|
+
def decode(self, feature_acts: torch.Tensor) -> torch.Tensor:
|
|
156
151
|
"""
|
|
157
152
|
Decode the feature activations back to the input space.
|
|
158
153
|
Follows the same steps as StandardSAE: apply scaling, transform, hook, and optionally reshape.
|
|
@@ -265,8 +260,8 @@ class JumpReLUTrainingSAE(TrainingSAE[JumpReLUTrainingSAEConfig]):
|
|
|
265
260
|
return torch.exp(self.log_threshold)
|
|
266
261
|
|
|
267
262
|
def encode_with_hidden_pre(
|
|
268
|
-
self, x:
|
|
269
|
-
) -> tuple[
|
|
263
|
+
self, x: torch.Tensor
|
|
264
|
+
) -> tuple[torch.Tensor, torch.Tensor]:
|
|
270
265
|
sae_in = self.process_sae_in(x)
|
|
271
266
|
|
|
272
267
|
hidden_pre = sae_in @ self.W_enc + self.b_enc
|