sae-lens 6.12.1__py3-none-any.whl → 6.21.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- sae_lens/__init__.py +15 -1
- sae_lens/cache_activations_runner.py +1 -1
- sae_lens/config.py +39 -2
- sae_lens/constants.py +1 -0
- sae_lens/evals.py +20 -14
- sae_lens/llm_sae_training_runner.py +17 -18
- sae_lens/loading/pretrained_sae_loaders.py +194 -0
- sae_lens/loading/pretrained_saes_directory.py +5 -3
- sae_lens/pretokenize_runner.py +2 -1
- sae_lens/pretrained_saes.yaml +75 -1
- sae_lens/saes/__init__.py +9 -0
- sae_lens/saes/batchtopk_sae.py +32 -1
- sae_lens/saes/matryoshka_batchtopk_sae.py +137 -0
- sae_lens/saes/sae.py +22 -24
- sae_lens/saes/temporal_sae.py +372 -0
- sae_lens/saes/topk_sae.py +287 -17
- sae_lens/tokenization_and_batching.py +21 -6
- sae_lens/training/activation_scaler.py +7 -0
- sae_lens/training/activations_store.py +52 -31
- sae_lens/training/optim.py +11 -0
- sae_lens/training/sae_trainer.py +57 -16
- sae_lens/training/types.py +1 -1
- sae_lens/util.py +27 -0
- {sae_lens-6.12.1.dist-info → sae_lens-6.21.0.dist-info}/METADATA +19 -17
- sae_lens-6.21.0.dist-info/RECORD +41 -0
- {sae_lens-6.12.1.dist-info → sae_lens-6.21.0.dist-info}/WHEEL +1 -1
- sae_lens-6.12.1.dist-info/RECORD +0 -39
- {sae_lens-6.12.1.dist-info → sae_lens-6.21.0.dist-info/licenses}/LICENSE +0 -0
|
@@ -0,0 +1,372 @@
|
|
|
1
|
+
"""TemporalSAE: A Sparse Autoencoder with temporal attention mechanism.
|
|
2
|
+
|
|
3
|
+
TemporalSAE decomposes activations into:
|
|
4
|
+
1. Predicted codes (from attention over context)
|
|
5
|
+
2. Novel codes (sparse features of the residual)
|
|
6
|
+
|
|
7
|
+
See: https://arxiv.org/abs/2410.04185
|
|
8
|
+
"""
|
|
9
|
+
|
|
10
|
+
import math
|
|
11
|
+
from dataclasses import dataclass
|
|
12
|
+
from typing import Literal
|
|
13
|
+
|
|
14
|
+
import torch
|
|
15
|
+
import torch.nn.functional as F
|
|
16
|
+
from jaxtyping import Float
|
|
17
|
+
from torch import nn
|
|
18
|
+
from typing_extensions import override
|
|
19
|
+
|
|
20
|
+
from sae_lens import logger
|
|
21
|
+
from sae_lens.saes.sae import SAE, SAEConfig
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
def get_attention(query: torch.Tensor, key: torch.Tensor) -> torch.Tensor:
|
|
25
|
+
"""Compute causal attention weights."""
|
|
26
|
+
L, S = query.size(-2), key.size(-2)
|
|
27
|
+
scale_factor = 1 / math.sqrt(query.size(-1))
|
|
28
|
+
attn_bias = torch.zeros(L, S, dtype=query.dtype, device=query.device)
|
|
29
|
+
temp_mask = torch.ones(L, S, dtype=torch.bool, device=query.device).tril(diagonal=0)
|
|
30
|
+
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
|
31
|
+
attn_bias.to(query.dtype)
|
|
32
|
+
|
|
33
|
+
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
|
34
|
+
attn_weight += attn_bias
|
|
35
|
+
return torch.softmax(attn_weight, dim=-1)
|
|
36
|
+
|
|
37
|
+
|
|
38
|
+
class ManualAttention(nn.Module):
|
|
39
|
+
"""Manual attention implementation for TemporalSAE."""
|
|
40
|
+
|
|
41
|
+
def __init__(
|
|
42
|
+
self,
|
|
43
|
+
dimin: int,
|
|
44
|
+
n_heads: int = 4,
|
|
45
|
+
bottleneck_factor: int = 64,
|
|
46
|
+
bias_k: bool = True,
|
|
47
|
+
bias_q: bool = True,
|
|
48
|
+
bias_v: bool = True,
|
|
49
|
+
bias_o: bool = True,
|
|
50
|
+
):
|
|
51
|
+
super().__init__()
|
|
52
|
+
assert dimin % (bottleneck_factor * n_heads) == 0
|
|
53
|
+
|
|
54
|
+
self.n_heads = n_heads
|
|
55
|
+
self.n_embds = dimin // bottleneck_factor
|
|
56
|
+
self.dimin = dimin
|
|
57
|
+
|
|
58
|
+
# Key, query, value projections
|
|
59
|
+
self.k_ctx = nn.Linear(dimin, self.n_embds, bias=bias_k)
|
|
60
|
+
self.q_target = nn.Linear(dimin, self.n_embds, bias=bias_q)
|
|
61
|
+
self.v_ctx = nn.Linear(dimin, dimin, bias=bias_v)
|
|
62
|
+
self.c_proj = nn.Linear(dimin, dimin, bias=bias_o)
|
|
63
|
+
|
|
64
|
+
# Normalize to match scale with representations
|
|
65
|
+
with torch.no_grad():
|
|
66
|
+
scaling = 1 / math.sqrt(self.n_embds // self.n_heads)
|
|
67
|
+
self.k_ctx.weight.copy_(
|
|
68
|
+
scaling
|
|
69
|
+
* self.k_ctx.weight
|
|
70
|
+
/ (1e-6 + torch.linalg.norm(self.k_ctx.weight, dim=1, keepdim=True))
|
|
71
|
+
)
|
|
72
|
+
self.q_target.weight.copy_(
|
|
73
|
+
scaling
|
|
74
|
+
* self.q_target.weight
|
|
75
|
+
/ (1e-6 + torch.linalg.norm(self.q_target.weight, dim=1, keepdim=True))
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
scaling = 1 / math.sqrt(self.dimin // self.n_heads)
|
|
79
|
+
self.v_ctx.weight.copy_(
|
|
80
|
+
scaling
|
|
81
|
+
* self.v_ctx.weight
|
|
82
|
+
/ (1e-6 + torch.linalg.norm(self.v_ctx.weight, dim=1, keepdim=True))
|
|
83
|
+
)
|
|
84
|
+
|
|
85
|
+
scaling = 1 / math.sqrt(self.dimin)
|
|
86
|
+
self.c_proj.weight.copy_(
|
|
87
|
+
scaling
|
|
88
|
+
* self.c_proj.weight
|
|
89
|
+
/ (1e-6 + torch.linalg.norm(self.c_proj.weight, dim=1, keepdim=True))
|
|
90
|
+
)
|
|
91
|
+
|
|
92
|
+
def forward(
|
|
93
|
+
self, x_ctx: torch.Tensor, x_target: torch.Tensor, get_attn_map: bool = False
|
|
94
|
+
) -> tuple[torch.Tensor, torch.Tensor | None]:
|
|
95
|
+
"""Compute projective attention output."""
|
|
96
|
+
k = self.k_ctx(x_ctx)
|
|
97
|
+
v = self.v_ctx(x_ctx)
|
|
98
|
+
q = self.q_target(x_target)
|
|
99
|
+
|
|
100
|
+
# Split into heads
|
|
101
|
+
B, T, _ = x_ctx.size()
|
|
102
|
+
k = k.view(B, T, self.n_heads, self.n_embds // self.n_heads).transpose(1, 2)
|
|
103
|
+
q = q.view(B, T, self.n_heads, self.n_embds // self.n_heads).transpose(1, 2)
|
|
104
|
+
v = v.view(B, T, self.n_heads, self.dimin // self.n_heads).transpose(1, 2)
|
|
105
|
+
|
|
106
|
+
# Attention map (optional)
|
|
107
|
+
attn_map = None
|
|
108
|
+
if get_attn_map:
|
|
109
|
+
attn_map = get_attention(query=q, key=k)
|
|
110
|
+
|
|
111
|
+
# Scaled dot-product attention
|
|
112
|
+
attn_output = torch.nn.functional.scaled_dot_product_attention(
|
|
113
|
+
q, k, v, attn_mask=None, dropout_p=0, is_causal=True
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Reshape and project
|
|
117
|
+
d_target = self.c_proj(
|
|
118
|
+
attn_output.transpose(1, 2).contiguous().view(B, T, self.dimin)
|
|
119
|
+
)
|
|
120
|
+
|
|
121
|
+
return d_target, attn_map
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
@dataclass
|
|
125
|
+
class TemporalSAEConfig(SAEConfig):
|
|
126
|
+
"""Configuration for TemporalSAE inference.
|
|
127
|
+
|
|
128
|
+
Args:
|
|
129
|
+
d_in: Input dimension (dimensionality of the activations being encoded)
|
|
130
|
+
d_sae: SAE latent dimension (number of features)
|
|
131
|
+
n_heads: Number of attention heads in temporal attention
|
|
132
|
+
n_attn_layers: Number of attention layers
|
|
133
|
+
bottleneck_factor: Bottleneck factor for attention dimension
|
|
134
|
+
sae_diff_type: Type of SAE for novel codes ('relu' or 'topk')
|
|
135
|
+
kval_topk: K value for top-k sparsity (if sae_diff_type='topk')
|
|
136
|
+
tied_weights: Whether to tie encoder and decoder weights
|
|
137
|
+
activation_normalization_factor: Scalar factor for rescaling activations (used with normalize_activations='constant_scalar_rescale')
|
|
138
|
+
"""
|
|
139
|
+
|
|
140
|
+
n_heads: int = 8
|
|
141
|
+
n_attn_layers: int = 1
|
|
142
|
+
bottleneck_factor: int = 64
|
|
143
|
+
sae_diff_type: Literal["relu", "topk"] = "topk"
|
|
144
|
+
kval_topk: int | None = None
|
|
145
|
+
tied_weights: bool = True
|
|
146
|
+
activation_normalization_factor: float = 1.0
|
|
147
|
+
|
|
148
|
+
def __post_init__(self):
|
|
149
|
+
# Call parent's __post_init__ first, but allow constant_scalar_rescale
|
|
150
|
+
if self.normalize_activations not in [
|
|
151
|
+
"none",
|
|
152
|
+
"expected_average_only_in",
|
|
153
|
+
"constant_norm_rescale",
|
|
154
|
+
"constant_scalar_rescale", # Temporal SAEs support this
|
|
155
|
+
"layer_norm",
|
|
156
|
+
]:
|
|
157
|
+
raise ValueError(
|
|
158
|
+
f"normalize_activations must be none, expected_average_only_in, layer_norm, constant_norm_rescale, or constant_scalar_rescale. Got {self.normalize_activations}"
|
|
159
|
+
)
|
|
160
|
+
|
|
161
|
+
@override
|
|
162
|
+
@classmethod
|
|
163
|
+
def architecture(cls) -> str:
|
|
164
|
+
return "temporal"
|
|
165
|
+
|
|
166
|
+
|
|
167
|
+
class TemporalSAE(SAE[TemporalSAEConfig]):
|
|
168
|
+
"""TemporalSAE: Sparse Autoencoder with temporal attention.
|
|
169
|
+
|
|
170
|
+
This SAE decomposes each activation x_t into:
|
|
171
|
+
- x_pred: Information aggregated from context {x_0, ..., x_{t-1}}
|
|
172
|
+
- x_novel: Novel information at position t (encoded sparsely)
|
|
173
|
+
|
|
174
|
+
The forward pass:
|
|
175
|
+
1. Uses attention layers to predict x_t from context
|
|
176
|
+
2. Encodes the residual (novel part) with a sparse SAE
|
|
177
|
+
3. Combines both for reconstruction
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
# Custom parameters (in addition to W_enc, W_dec, b_dec from base)
|
|
181
|
+
attn_layers: nn.ModuleList # Attention layers
|
|
182
|
+
eps: float
|
|
183
|
+
lam: float
|
|
184
|
+
|
|
185
|
+
def __init__(self, cfg: TemporalSAEConfig, use_error_term: bool = False):
|
|
186
|
+
# Call parent init first
|
|
187
|
+
super().__init__(cfg, use_error_term)
|
|
188
|
+
|
|
189
|
+
# Initialize attention layers after parent init and move to correct device
|
|
190
|
+
self.attn_layers = nn.ModuleList(
|
|
191
|
+
[
|
|
192
|
+
ManualAttention(
|
|
193
|
+
dimin=cfg.d_sae,
|
|
194
|
+
n_heads=cfg.n_heads,
|
|
195
|
+
bottleneck_factor=cfg.bottleneck_factor,
|
|
196
|
+
bias_k=True,
|
|
197
|
+
bias_q=True,
|
|
198
|
+
bias_v=True,
|
|
199
|
+
bias_o=True,
|
|
200
|
+
).to(device=self.device, dtype=self.dtype)
|
|
201
|
+
for _ in range(cfg.n_attn_layers)
|
|
202
|
+
]
|
|
203
|
+
)
|
|
204
|
+
|
|
205
|
+
self.eps = 1e-6
|
|
206
|
+
self.lam = 1 / (4 * self.cfg.d_in)
|
|
207
|
+
|
|
208
|
+
@override
|
|
209
|
+
def _setup_activation_normalization(self):
|
|
210
|
+
"""Set up activation normalization functions for TemporalSAE.
|
|
211
|
+
|
|
212
|
+
Overrides the base implementation to handle constant_scalar_rescale
|
|
213
|
+
using the temporal-specific activation_normalization_factor.
|
|
214
|
+
"""
|
|
215
|
+
if self.cfg.normalize_activations == "constant_scalar_rescale":
|
|
216
|
+
# Handle constant scalar rescaling for temporal SAEs
|
|
217
|
+
def run_time_activation_norm_fn_in(x: torch.Tensor) -> torch.Tensor:
|
|
218
|
+
return x * self.cfg.activation_normalization_factor
|
|
219
|
+
|
|
220
|
+
def run_time_activation_norm_fn_out(x: torch.Tensor) -> torch.Tensor:
|
|
221
|
+
return x / self.cfg.activation_normalization_factor
|
|
222
|
+
|
|
223
|
+
self.run_time_activation_norm_fn_in = run_time_activation_norm_fn_in
|
|
224
|
+
self.run_time_activation_norm_fn_out = run_time_activation_norm_fn_out
|
|
225
|
+
else:
|
|
226
|
+
# Delegate to parent for all other normalization types
|
|
227
|
+
super()._setup_activation_normalization()
|
|
228
|
+
|
|
229
|
+
@override
|
|
230
|
+
def initialize_weights(self) -> None:
|
|
231
|
+
"""Initialize TemporalSAE weights."""
|
|
232
|
+
# Initialize D (decoder) and b (bias)
|
|
233
|
+
self.W_dec = nn.Parameter(
|
|
234
|
+
torch.randn(
|
|
235
|
+
(self.cfg.d_sae, self.cfg.d_in), dtype=self.dtype, device=self.device
|
|
236
|
+
)
|
|
237
|
+
)
|
|
238
|
+
self.b_dec = nn.Parameter(
|
|
239
|
+
torch.zeros((self.cfg.d_in), dtype=self.dtype, device=self.device)
|
|
240
|
+
)
|
|
241
|
+
|
|
242
|
+
# Initialize E (encoder) if not tied
|
|
243
|
+
if not self.cfg.tied_weights:
|
|
244
|
+
self.W_enc = nn.Parameter(
|
|
245
|
+
torch.randn(
|
|
246
|
+
(self.cfg.d_in, self.cfg.d_sae),
|
|
247
|
+
dtype=self.dtype,
|
|
248
|
+
device=self.device,
|
|
249
|
+
)
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
def encode_with_predictions(
|
|
253
|
+
self, x: Float[torch.Tensor, "... d_in"]
|
|
254
|
+
) -> tuple[Float[torch.Tensor, "... d_sae"], Float[torch.Tensor, "... d_sae"]]:
|
|
255
|
+
"""Encode input to novel codes only.
|
|
256
|
+
|
|
257
|
+
Returns only the sparse novel codes (not predicted codes).
|
|
258
|
+
This is the main feature representation for TemporalSAE.
|
|
259
|
+
"""
|
|
260
|
+
# Process input through SAELens preprocessing
|
|
261
|
+
x = self.process_sae_in(x)
|
|
262
|
+
|
|
263
|
+
B, L, _ = x.shape
|
|
264
|
+
|
|
265
|
+
if self.cfg.tied_weights: # noqa: SIM108
|
|
266
|
+
W_enc = self.W_dec.T
|
|
267
|
+
else:
|
|
268
|
+
W_enc = self.W_enc
|
|
269
|
+
|
|
270
|
+
# Compute predicted codes using attention
|
|
271
|
+
x_residual = x
|
|
272
|
+
z_pred = torch.zeros((B, L, self.cfg.d_sae), device=x.device, dtype=x.dtype)
|
|
273
|
+
|
|
274
|
+
for attn_layer in self.attn_layers:
|
|
275
|
+
# Encode input to latent space
|
|
276
|
+
z_input = F.relu(torch.matmul(x_residual * self.lam, W_enc))
|
|
277
|
+
|
|
278
|
+
# Shift context (causal masking)
|
|
279
|
+
z_ctx = torch.cat(
|
|
280
|
+
(torch.zeros_like(z_input[:, :1, :]), z_input[:, :-1, :].clone()), dim=1
|
|
281
|
+
)
|
|
282
|
+
|
|
283
|
+
# Apply attention to get predicted codes
|
|
284
|
+
z_pred_, _ = attn_layer(z_ctx, z_input, get_attn_map=False)
|
|
285
|
+
z_pred_ = F.relu(z_pred_)
|
|
286
|
+
|
|
287
|
+
# Project predicted codes back to input space
|
|
288
|
+
Dz_pred_ = torch.matmul(z_pred_, self.W_dec)
|
|
289
|
+
Dz_norm_ = Dz_pred_.norm(dim=-1, keepdim=True) + self.eps
|
|
290
|
+
|
|
291
|
+
# Compute projection scale
|
|
292
|
+
proj_scale = (Dz_pred_ * x_residual).sum(
|
|
293
|
+
dim=-1, keepdim=True
|
|
294
|
+
) / Dz_norm_.pow(2)
|
|
295
|
+
|
|
296
|
+
# Accumulate predicted codes
|
|
297
|
+
z_pred = z_pred + (z_pred_ * proj_scale)
|
|
298
|
+
|
|
299
|
+
# Remove prediction from residual
|
|
300
|
+
x_residual = x_residual - proj_scale * Dz_pred_
|
|
301
|
+
|
|
302
|
+
# Encode residual (novel part) with sparse SAE
|
|
303
|
+
z_novel = F.relu(torch.matmul(x_residual * self.lam, W_enc))
|
|
304
|
+
if self.cfg.sae_diff_type == "topk":
|
|
305
|
+
kval = self.cfg.kval_topk
|
|
306
|
+
if kval is not None:
|
|
307
|
+
_, topk_indices = torch.topk(z_novel, kval, dim=-1)
|
|
308
|
+
mask = torch.zeros_like(z_novel)
|
|
309
|
+
mask.scatter_(-1, topk_indices, 1)
|
|
310
|
+
z_novel = z_novel * mask
|
|
311
|
+
|
|
312
|
+
# Return only novel codes (these are the interpretable features)
|
|
313
|
+
return z_novel, z_pred
|
|
314
|
+
|
|
315
|
+
def encode(
|
|
316
|
+
self, x: Float[torch.Tensor, "... d_in"]
|
|
317
|
+
) -> Float[torch.Tensor, "... d_sae"]:
|
|
318
|
+
return self.encode_with_predictions(x)[0]
|
|
319
|
+
|
|
320
|
+
def decode(
|
|
321
|
+
self, feature_acts: Float[torch.Tensor, "... d_sae"]
|
|
322
|
+
) -> Float[torch.Tensor, "... d_in"]:
|
|
323
|
+
"""Decode novel codes to reconstruction.
|
|
324
|
+
|
|
325
|
+
Note: This only decodes the novel codes. For full reconstruction,
|
|
326
|
+
use forward() which includes predicted codes.
|
|
327
|
+
"""
|
|
328
|
+
# Decode novel codes
|
|
329
|
+
sae_out = torch.matmul(feature_acts, self.W_dec)
|
|
330
|
+
sae_out = sae_out + self.b_dec
|
|
331
|
+
|
|
332
|
+
# Apply hook
|
|
333
|
+
sae_out = self.hook_sae_recons(sae_out)
|
|
334
|
+
|
|
335
|
+
# Apply output activation normalization (reverses input normalization)
|
|
336
|
+
sae_out = self.run_time_activation_norm_fn_out(sae_out)
|
|
337
|
+
|
|
338
|
+
# Add bias (already removed in process_sae_in)
|
|
339
|
+
logger.warning(
|
|
340
|
+
"NOTE this only decodes x_novel. The x_pred is missing, so we're not reconstructing the full x."
|
|
341
|
+
)
|
|
342
|
+
return sae_out
|
|
343
|
+
|
|
344
|
+
@override
|
|
345
|
+
def forward(
|
|
346
|
+
self, x: Float[torch.Tensor, "... d_in"]
|
|
347
|
+
) -> Float[torch.Tensor, "... d_in"]:
|
|
348
|
+
"""Full forward pass through TemporalSAE.
|
|
349
|
+
|
|
350
|
+
Returns complete reconstruction (predicted + novel).
|
|
351
|
+
"""
|
|
352
|
+
# Encode
|
|
353
|
+
z_novel, z_pred = self.encode_with_predictions(x)
|
|
354
|
+
|
|
355
|
+
# Decode the sum of predicted and novel codes.
|
|
356
|
+
x_recons = torch.matmul(z_novel + z_pred, self.W_dec) + self.b_dec
|
|
357
|
+
|
|
358
|
+
# Apply output activation normalization (reverses input normalization)
|
|
359
|
+
x_recons = self.run_time_activation_norm_fn_out(x_recons)
|
|
360
|
+
|
|
361
|
+
return self.hook_sae_output(x_recons)
|
|
362
|
+
|
|
363
|
+
@override
|
|
364
|
+
def fold_W_dec_norm(self) -> None:
|
|
365
|
+
raise NotImplementedError("Folding W_dec_norm is not supported for TemporalSAE")
|
|
366
|
+
|
|
367
|
+
@override
|
|
368
|
+
@torch.no_grad()
|
|
369
|
+
def fold_activation_norm_scaling_factor(self, scaling_factor: float) -> None:
|
|
370
|
+
raise NotImplementedError(
|
|
371
|
+
"Folding activation norm scaling factor is not supported for TemporalSAE"
|
|
372
|
+
)
|