rxnn 0.2.47__py3-none-any.whl → 0.2.48__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rxnn/memory/norm.py
CHANGED
@@ -163,7 +163,7 @@ def init_memory_norm(
|
|
163
163
|
init_scale: float = 1.0,
|
164
164
|
per_dim_scale: bool = False,
|
165
165
|
) -> nn.Module:
|
166
|
-
assert norm_type in ['layer', 'rms', 'adaptive', 'positional']
|
166
|
+
assert norm_type in ['layer', 'rms', 'adaptive', 'positional', 'classic-rms']
|
167
167
|
if norm_type == 'layer':
|
168
168
|
return MemoryLayerNorm(dim, use_gate, init_scale, init_gate)
|
169
169
|
elif norm_type == 'rms':
|
@@ -172,4 +172,6 @@ def init_memory_norm(
|
|
172
172
|
return AdaptiveRMSMemoryNorm(dim, use_gate, decay, init_scale, init_gate)
|
173
173
|
elif norm_type == 'positional':
|
174
174
|
return AdaptivePositionalMemoryNorm(num_slots, dim, decay, use_scale, use_gate, init_gate, per_dim_scale)
|
175
|
+
elif norm_type == 'classic-rms':
|
176
|
+
return nn.RMSNorm(dim)
|
175
177
|
return MemoryLayerNorm(dim, use_gate, init_scale, init_gate)
|
rxnn/training/mrl.py
CHANGED
@@ -35,6 +35,7 @@ class MrlConfig(TypedDict):
|
|
35
35
|
moe_aux_loss_scale: Optional[float]
|
36
36
|
freeze_embeddings: Optional[bool]
|
37
37
|
embedding_lr: Optional[float]
|
38
|
+
use_memory_warmup: Optional[bool]
|
38
39
|
|
39
40
|
|
40
41
|
class MrlStrategy(Enum):
|
@@ -136,6 +137,7 @@ class MRLTrainer:
|
|
136
137
|
self.moe_aux_loss_scale = config.get('moe_aux_loss_scale', 0.01)
|
137
138
|
self.shared_freeze_embeddings = config.get('freeze_embeddings', False)
|
138
139
|
self.freeze_embeddings = self.shared_freeze_embeddings
|
140
|
+
self.use_memory_warmup = config.get('use_memory_warmup', False)
|
139
141
|
# Internal update epochs config
|
140
142
|
self.shared_update_epochs = config.get('update_epochs', 10)
|
141
143
|
self.update_epochs = self.shared_update_epochs
|
@@ -381,6 +383,11 @@ class MRLTrainer:
|
|
381
383
|
self.writer.add_scalar(f'Collect/episode reward (steps: {self.curriculum_steps})', avg_reward,
|
382
384
|
self.stage_step['collect'])
|
383
385
|
|
386
|
+
def memory_warmup(self, query: TokenizedDict, answer: TokenizedDict):
|
387
|
+
if self.use_memory_warmup:
|
388
|
+
with torch.no_grad():
|
389
|
+
self.encode_and_update_stm(query, answer)
|
390
|
+
|
384
391
|
def collect_trajectories(self, dataloader: DataLoader, epoch: int, batch_size: int) -> list[MrlTrajectoryEpisode]:
|
385
392
|
"""Collect trajectories for PPO for current curriculum step."""
|
386
393
|
# 1. Init trajectories list
|
@@ -402,8 +409,13 @@ class MRLTrainer:
|
|
402
409
|
first_query, first_answer, interactions = batch['query'], batch['answer'], batch['interactions']
|
403
410
|
interactions = interactions[:self.curriculum_steps]
|
404
411
|
interactions_len = len(interactions)
|
412
|
+
|
413
|
+
first_interaction = self._move_multiple_batches(first_query, first_answer)
|
414
|
+
|
415
|
+
if reset_done:
|
416
|
+
self.memory_warmup(*first_interaction)
|
405
417
|
# 6. Encode and update STM with data to save from first interaction
|
406
|
-
self.encode_and_update_stm(*
|
418
|
+
self.encode_and_update_stm(*first_interaction)
|
407
419
|
|
408
420
|
# 7. Save first interaction as data to save (for trajectory state)
|
409
421
|
query, answer = first_query, first_answer
|
@@ -649,6 +661,9 @@ class MRLTrainer:
|
|
649
661
|
|
650
662
|
self.actor.clone_reset_memory()
|
651
663
|
|
664
|
+
if should_reset_stm and step_idx == 0:
|
665
|
+
self.memory_warmup(query, answer)
|
666
|
+
|
652
667
|
# 7. In memory aware critic version, encode and update STM before critic update, to include its gradients in critic loss too
|
653
668
|
if self.memory_aware_critic:
|
654
669
|
self.encode_and_update_stm(query, answer)
|
@@ -798,13 +813,16 @@ class MRLTrainer:
|
|
798
813
|
if batch['query']['input_ids'].size(0) == batch_size:
|
799
814
|
self._increment_steps('eval')
|
800
815
|
# 3. Reset STM with random resets ratio and reward model running mean
|
801
|
-
self.reset_stm()
|
816
|
+
reset_stm = self.reset_stm()
|
802
817
|
self.reward.reset_running_mean()
|
803
818
|
|
804
819
|
# 4. Get batches for first queries, answers and all follow-up interactions
|
805
820
|
first_query, first_answer, interactions = batch['query'], batch['answer'], batch['interactions']
|
806
821
|
# 5. Encode and update STM with initial interactions (batch)
|
807
|
-
self.
|
822
|
+
first_interaction = self._move_multiple_batches(first_query, first_answer)
|
823
|
+
if reset_stm:
|
824
|
+
self.memory_warmup(*first_interaction)
|
825
|
+
self.encode_and_update_stm(*first_interaction)
|
808
826
|
|
809
827
|
# 6. Save follow-up interactions len and first query and answer as previous one for iteration
|
810
828
|
interactions_len = len(interactions)
|
@@ -6,7 +6,7 @@ rxnn/experimental/models.py,sha256=foBo0n0ufvBnfIdJomiEg3CuSOiWSt-q5ako7vzYxx4,4
|
|
6
6
|
rxnn/experimental/moe.py,sha256=jHZ1QhpWiVQOswVpFmuH7b2IUOPf0Uuf-I2Ddwsd7Us,6140
|
7
7
|
rxnn/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
8
8
|
rxnn/memory/attention.py,sha256=kan6UNPTjLfO7zKNp92hGooldgWPi3li_2-_L5xiErs,2784
|
9
|
-
rxnn/memory/norm.py,sha256=
|
9
|
+
rxnn/memory/norm.py,sha256=cVjjhCLqR5K6-321SP_ObG17y-ddlcTJeCTXvW4vpk0,6675
|
10
10
|
rxnn/memory/stm.py,sha256=jv57gsH9XW19sLbxpRDqsp1yfsii_4Ef4Ncr_ztk-i4,3937
|
11
11
|
rxnn/rxt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
12
12
|
rxnn/rxt/models.py,sha256=new_YXLe9vfIBPX-pmFRoV523d7yCjEgfTY06EaH3Ms,14605
|
@@ -17,7 +17,7 @@ rxnn/training/callbacks.py,sha256=rS8leuVFPVVfE5Zc8DMkUZhRIPN-vpPbUjowXE5TSBw,36
|
|
17
17
|
rxnn/training/dataset.py,sha256=7hTilFWPpqUEc6zNcMqBPjxFKxCfvTKKF3E8tVlwccQ,51250
|
18
18
|
rxnn/training/ddp.py,sha256=VsNBjn3cY-uUj8hbsW7oKvb0_ZKnXnJ2KgObm-Mr9i4,836
|
19
19
|
rxnn/training/models.py,sha256=L2emJM06u7B9f9T1dFsGXzXX-rsV77ND7L1pAM9Z_Ow,9051
|
20
|
-
rxnn/training/mrl.py,sha256=
|
20
|
+
rxnn/training/mrl.py,sha256=cTVdNmyohiz4BB6NsmT1CWzFCbSgO7DCD7tfffoYEpc,60558
|
21
21
|
rxnn/training/reward.py,sha256=B7nerPk9eNAv2i7umtNF88tVQVwijNNrchIrEITGHKk,11623
|
22
22
|
rxnn/training/rl.py,sha256=q4NzIZAmXRHVToT13IHrPTtEikWQUvT0NO0IjApjAO8,6171
|
23
23
|
rxnn/training/scheduler.py,sha256=LcjU35mEwz2U5x3U6tLfeeYlBqMxbFSxYzJYuXkWbSY,1408
|
@@ -33,7 +33,7 @@ rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
|
|
33
33
|
rxnn/transformers/positional.py,sha256=1PjcJybUzeQlIKJI4tahAGZcYgCRCL0otxs7mpsNuzM,4410
|
34
34
|
rxnn/transformers/sampler.py,sha256=t6iiQTdLQ0TakUWnnhKkb5DKF2F_9-thXHBydDF3fxg,17389
|
35
35
|
rxnn/utils.py,sha256=ihb6OTyDtPiocB_lOvnq7eOkjjpCkgs8wxvXUBNQ7mM,996
|
36
|
-
rxnn-0.2.
|
37
|
-
rxnn-0.2.
|
38
|
-
rxnn-0.2.
|
39
|
-
rxnn-0.2.
|
36
|
+
rxnn-0.2.48.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
|
37
|
+
rxnn-0.2.48.dist-info/METADATA,sha256=IJUCcjg8vteeX8WkLEzwbciH814TOzdXPKikdb5xDgw,25960
|
38
|
+
rxnn-0.2.48.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
39
|
+
rxnn-0.2.48.dist-info/RECORD,,
|
File without changes
|
File without changes
|