rxnn 0.2.46__py3-none-any.whl → 0.2.47__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rxnn/memory/attention.py CHANGED
@@ -33,9 +33,16 @@ class StmMemoryAttention(nn.Module):
33
33
  if self.attention_layers[i].rope is not None:
34
34
  self.attention_layers[i].rope.update_max_len(max_seq_len)
35
35
 
36
- def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
37
- mask = attention_mask.unsqueeze(1).unsqueeze(1).bool() if attention_mask is not None else None
36
+ def _residual_gate(self, gate: torch.Tensor, layer_stm: torch.Tensor, new_layer_stm: torch.Tensor) -> torch.Tensor:
37
+ if self.use_dynamic_gate:
38
+ mean_dim = -1 if self.per_slot_gate else [1, 2]
39
+ gate_input = gate * (new_layer_stm + layer_stm).mean(dim=mean_dim, keepdim=True)
40
+ layer_gate = torch.sigmoid(gate_input)
41
+ else:
42
+ layer_gate = torch.sigmoid(gate)
43
+ return layer_gate * new_layer_stm + (1 - layer_gate) * layer_stm
38
44
 
45
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
39
46
  new_stm = torch.zeros_like(self.stm.memory)
40
47
  for i in range(self.num_layers):
41
48
  layer_stm = self.stm(i)
@@ -44,14 +51,10 @@ class StmMemoryAttention(nn.Module):
44
51
  layer_stm = layer_stm.expand(x.size(0), -1, -1)
45
52
  encoded_layer_data = x[i]
46
53
  normalized_layer_stm = self.memory_norm_layers[i](layer_stm)
47
- new_layer_stm = self.attention_layers[i](normalized_layer_stm, encoded_layer_data, encoded_layer_data, mask=mask)
54
+ new_layer_stm = self.attention_layers[i](normalized_layer_stm, encoded_layer_data, encoded_layer_data)
48
55
  if self.use_gated_residual:
49
- # gated residual
50
- gate_input = self.gate[i] * (new_layer_stm + layer_stm) if self.use_dynamic_gate else self.gate[i]
51
- layer_gate = torch.sigmoid(gate_input)
52
- new_stm[i] = layer_gate * new_layer_stm + (1 - layer_gate) * layer_stm
56
+ new_stm[i] = self._residual_gate(self.gate[i], layer_stm, new_layer_stm) # gated residual
53
57
  else:
54
58
  new_stm[i] = new_layer_stm + layer_stm # residual
55
59
  self.stm.update_all(new_stm)
56
60
  return self.stm.memory
57
-
rxnn/rxt/models.py CHANGED
@@ -306,8 +306,8 @@ class RxTAlphaMemoryAttention(nn.Module, PyTorchModelHubMixin, license="apache-2
306
306
  def clone_reset_memory(self):
307
307
  self.model.stm.clone_detach_reset()
308
308
 
309
- def forward(self, x: torch.Tensor, attention_mask: torch.Tensor = None) -> torch.Tensor:
310
- return self.model(x, attention_mask=attention_mask)
309
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
310
+ return self.model(x)
311
311
 
312
312
  class RxTAlphaCriticEncoder(RxTAlphaComponentBase, pipeline_tag="text-classification", license="apache-2.0"):
313
313
  """RxT-Alpha (Reactive Transformer) encoder model"""
@@ -560,6 +560,12 @@ class MrlTrainerCallback:
560
560
 
561
561
 
562
562
  class MrlPrintCallback(MrlTrainerCallback):
563
+ def __init__(self, update_steps_interval: int = 10) -> None:
564
+ super(MrlPrintCallback, self).__init__()
565
+ self.update_steps_interval = update_steps_interval
566
+ self.policy_losses = []
567
+ self.critic_losses = []
568
+
563
569
  def on_epoch_start(self, actor: nn.Module, epoch: int, stage_epochs: int, curriculum_config: dict,
564
570
  global_epoch: int, global_epochs: int) -> None:
565
571
  print(
@@ -582,11 +588,21 @@ class MrlPrintCallback(MrlTrainerCallback):
582
588
  print(f'Epoch {global_epoch} | Starting update epoch {update_epoch}')
583
589
 
584
590
  def on_batch_updated(self, actor: nn.Module, epoch: int, step: int, policy_loss: float) -> None:
585
- print(f'Epoch {epoch} | Step {step} - updated policy loss {policy_loss}')
591
+ if step != 0 and step % self.update_steps_interval == 0:
592
+ loss = sum(self.policy_losses) / len(self.policy_losses)
593
+ self.policy_losses = []
594
+ print(f'Epoch {epoch} | Steps {step - self.update_steps_interval} - {step} - mean policy loss {loss} | current policy loss {policy_loss}')
595
+ else:
596
+ self.policy_losses.append(policy_loss)
586
597
 
587
598
  def on_critic_updated(self, actor: nn.Module, critic: nn.Module, epoch: int, step: int,
588
599
  critic_loss: float) -> None:
589
- print(f'Epoch {epoch} | Step {step} - updated critic loss {critic_loss}')
600
+ if step != 0 and step % self.update_steps_interval == 0:
601
+ loss = sum(self.critic_losses) / len(self.critic_losses)
602
+ self.critic_losses = []
603
+ print(f'Epoch {epoch} | Steps {step - self.update_steps_interval} - {step} - mean critic loss {loss} | current critic loss {critic_loss}')
604
+ else:
605
+ self.critic_losses.append(critic_loss)
590
606
 
591
607
  def on_update_epoch_end(self, actor: nn.Module, critic: nn.Module, global_epoch: int, update_epoch: int, policy_loss: float, critic_loss: float) -> None:
592
608
  print(f'Epoch {global_epoch} | Update epoch {update_epoch} - mean policy loss {policy_loss} | mean critic loss {critic_loss}')
rxnn/training/models.py CHANGED
@@ -204,7 +204,7 @@ class MrlActorModel(nn.Module):
204
204
  return self.decoder(x, attention_mask=attention_mask)
205
205
  else:
206
206
  _, ed = self.encoder(x, attention_mask=attention_mask)
207
- return self.memory_attention(ed, attention_mask=attention_mask)
207
+ return self.memory_attention(ed)
208
208
 
209
209
 
210
210
  class MrlCriticModel(nn.Module, PyTorchModelHubMixin, license="apache-2.0", pipeline_tag="text-classification"):
rxnn/training/mrl.py CHANGED
@@ -941,7 +941,7 @@ class MRLTrainer:
941
941
  ]
942
942
  elif mode == 'fetch':
943
943
  params = [
944
- {'params': self.actor.embedding_parameters(), 'lr': unfreeze_lr},
944
+ {'params': self.actor.embedding_parameters(), 'lr': embedding_lr},
945
945
  {'params': self.actor.encoder.not_memory_parameters(), 'lr': unfreeze_lr},
946
946
  {'params': self.actor.encoder.memory_parameters(), 'lr': unfreeze_lr},
947
947
  {'params': self.actor.memory_attention_parameters(), 'lr': unfreeze_lr},
@@ -950,7 +950,7 @@ class MRLTrainer:
950
950
  ]
951
951
  elif mode == 'joint':
952
952
  params = [
953
- {'params': self.actor.embedding_parameters(), 'lr': unfreeze_lr},
953
+ {'params': self.actor.embedding_parameters(), 'lr': embedding_lr},
954
954
  {'params': self.actor.encoder.not_memory_parameters(), 'lr': unfreeze_lr},
955
955
  {'params': self.actor.encoder.memory_parameters(), 'lr': memory_lr},
956
956
  {'params': self.actor.memory_attention_parameters(), 'lr': memory_lr},
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.3
2
2
  Name: rxnn
3
- Version: 0.2.46
3
+ Version: 0.2.47
4
4
  Summary: RxNN: Reactive Neural Networks Platform
5
5
  License: Apache-2.0
6
6
  Keywords: deep-learning,ai,machine-learning
@@ -5,19 +5,19 @@ rxnn/experimental/attention.py,sha256=46qwZLJuZMpIBrZ-r9DaQEPPmmZkO464C3Tkm_Mq-c
5
5
  rxnn/experimental/models.py,sha256=foBo0n0ufvBnfIdJomiEg3CuSOiWSt-q5ako7vzYxx4,4888
6
6
  rxnn/experimental/moe.py,sha256=jHZ1QhpWiVQOswVpFmuH7b2IUOPf0Uuf-I2Ddwsd7Us,6140
7
7
  rxnn/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- rxnn/memory/attention.py,sha256=sXh6f_iOpEYCaqyG-QVp_C_A9IF0QcXTi3hW5G8FCwA,2630
8
+ rxnn/memory/attention.py,sha256=kan6UNPTjLfO7zKNp92hGooldgWPi3li_2-_L5xiErs,2784
9
9
  rxnn/memory/norm.py,sha256=E98jOQEuIOFFhlkvS8s4fFN-D4tLO6vaOqnObv1oVmA,6592
10
10
  rxnn/memory/stm.py,sha256=jv57gsH9XW19sLbxpRDqsp1yfsii_4Ef4Ncr_ztk-i4,3937
11
11
  rxnn/rxt/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
12
- rxnn/rxt/models.py,sha256=4MbCL4xGY3ceewZQmopjmwAyLQS92L6KLOPqaW7-Fho,14673
12
+ rxnn/rxt/models.py,sha256=new_YXLe9vfIBPX-pmFRoV523d7yCjEgfTY06EaH3Ms,14605
13
13
  rxnn/training/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
14
  rxnn/training/base.py,sha256=CqaArEZYOdH64nmKfx28U3GI46TzO4oNkjf_hrF23Cw,11835
15
15
  rxnn/training/bml.py,sha256=hw6gLpLkGvqLzxIvBg4MvCc5r8cHpEm2RDyh7nH6CtE,16914
16
- rxnn/training/callbacks.py,sha256=RPW3Lisi31VJvoYyZeAF3dQzttrceDQDsZ6G5Xl09HM,35933
16
+ rxnn/training/callbacks.py,sha256=rS8leuVFPVVfE5Zc8DMkUZhRIPN-vpPbUjowXE5TSBw,36779
17
17
  rxnn/training/dataset.py,sha256=7hTilFWPpqUEc6zNcMqBPjxFKxCfvTKKF3E8tVlwccQ,51250
18
18
  rxnn/training/ddp.py,sha256=VsNBjn3cY-uUj8hbsW7oKvb0_ZKnXnJ2KgObm-Mr9i4,836
19
- rxnn/training/models.py,sha256=tqABOt_xEcWbZNEW2I2Jt-3eyaGICK011zILwuTk6Zc,9082
20
- rxnn/training/mrl.py,sha256=L4G7xSPlxsymvNhvsSloCpaqYjOXxEm7GmKilM_Ojvc,59809
19
+ rxnn/training/models.py,sha256=L2emJM06u7B9f9T1dFsGXzXX-rsV77ND7L1pAM9Z_Ow,9051
20
+ rxnn/training/mrl.py,sha256=VXwRJ4wQtE0OoRsrsjYlWa2toTvHjoBJ_kril3EiK_A,59811
21
21
  rxnn/training/reward.py,sha256=B7nerPk9eNAv2i7umtNF88tVQVwijNNrchIrEITGHKk,11623
22
22
  rxnn/training/rl.py,sha256=q4NzIZAmXRHVToT13IHrPTtEikWQUvT0NO0IjApjAO8,6171
23
23
  rxnn/training/scheduler.py,sha256=LcjU35mEwz2U5x3U6tLfeeYlBqMxbFSxYzJYuXkWbSY,1408
@@ -33,7 +33,7 @@ rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
33
33
  rxnn/transformers/positional.py,sha256=1PjcJybUzeQlIKJI4tahAGZcYgCRCL0otxs7mpsNuzM,4410
34
34
  rxnn/transformers/sampler.py,sha256=t6iiQTdLQ0TakUWnnhKkb5DKF2F_9-thXHBydDF3fxg,17389
35
35
  rxnn/utils.py,sha256=ihb6OTyDtPiocB_lOvnq7eOkjjpCkgs8wxvXUBNQ7mM,996
36
- rxnn-0.2.46.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
37
- rxnn-0.2.46.dist-info/METADATA,sha256=hpTQT4p75cKrAaGOz_56gCBm1rT_y-Nr1TI9Mhv6wv0,25960
38
- rxnn-0.2.46.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
39
- rxnn-0.2.46.dist-info/RECORD,,
36
+ rxnn-0.2.47.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
37
+ rxnn-0.2.47.dist-info/METADATA,sha256=OqRYFY68bnqQXdXfBNboYLAmXRmojMmR1YFUVQa4Jgo,25960
38
+ rxnn-0.2.47.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
39
+ rxnn-0.2.47.dist-info/RECORD,,
File without changes
File without changes