rxnn 0.2.21__py3-none-any.whl → 0.2.22__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rxnn/training/rl.py
CHANGED
@@ -24,8 +24,6 @@ class RlAlgorithm(ABC):
|
|
24
24
|
return self.critic_loss(rewards, values)
|
25
25
|
|
26
26
|
class PPOConfig(TypedDict):
|
27
|
-
gae_gamma: float
|
28
|
-
gae_lambda: float
|
29
27
|
clip_eps: float
|
30
28
|
|
31
29
|
class PPOAlgorithm(RlAlgorithm):
|
@@ -33,8 +31,6 @@ class PPOAlgorithm(RlAlgorithm):
|
|
33
31
|
super(PPOAlgorithm, self).__init__()
|
34
32
|
|
35
33
|
# PPO Config
|
36
|
-
self.gae_gamma = config.get('gae_gamma', 0.99)
|
37
|
-
self.gae_lambda = config.get('gae_lambda', 0.95)
|
38
34
|
self.clip_eps = config.get('clip_eps', 0.2)
|
39
35
|
|
40
36
|
def policy_loss(self, query: TokenizedDict, answer: TokenizedDict, logits: torch.Tensor,
|
@@ -86,15 +82,6 @@ class PPOAlgorithm(RlAlgorithm):
|
|
86
82
|
|
87
83
|
return policy_loss
|
88
84
|
|
89
|
-
# def _compute_gae(self, rewards: torch.Tensor, values: torch.Tensor, next_value: torch.Tensor) -> torch.Tensor:
|
90
|
-
# advantages = torch.zeros_like(rewards, device=values.device)
|
91
|
-
# last_advantage = 0
|
92
|
-
# for t in reversed(range(rewards.size(0))):
|
93
|
-
# delta = rewards[t] + self.gae_gamma * next_value - values[t]
|
94
|
-
# advantages[t] = delta + self.gae_gamma * self.gae_lambda * last_advantage
|
95
|
-
# last_advantage = advantages[t]
|
96
|
-
# return advantages
|
97
|
-
|
98
85
|
def calculate_advantages(self, rewards: torch.Tensor, values: torch.Tensor) -> torch.Tensor:
|
99
86
|
advantages = rewards - values
|
100
87
|
normalized_advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)
|
@@ -18,7 +18,7 @@ rxnn/training/dataset.py,sha256=7hTilFWPpqUEc6zNcMqBPjxFKxCfvTKKF3E8tVlwccQ,5125
|
|
18
18
|
rxnn/training/models.py,sha256=wf98gYKKm9-ZY3zwdX9NIeJ-lvh7Ro1SoAijmQxYM28,5599
|
19
19
|
rxnn/training/mrl.py,sha256=zk4m1JFuX0y82J0tG2XkY0Pz6Uy2did9cngOXqR9lMk,43326
|
20
20
|
rxnn/training/reward.py,sha256=7MTVdNm5HnWmt6zFDi3TAYmnVSL_-24riOoY2F7z4x8,11290
|
21
|
-
rxnn/training/rl.py,sha256=
|
21
|
+
rxnn/training/rl.py,sha256=j-KNLoZjhaEKasYNOc8DxHtwvknAgAJFwvXKot6otFA,3272
|
22
22
|
rxnn/training/scheduler.py,sha256=LcjU35mEwz2U5x3U6tLfeeYlBqMxbFSxYzJYuXkWbSY,1408
|
23
23
|
rxnn/training/tokenizer.py,sha256=umaLByMBx_NMrQElA45HLm9gkuzyKWDTFaKVd-CjXl0,8344
|
24
24
|
rxnn/training/utils.py,sha256=Bw8nZLKIt7NQpUVCYkb_79kWKChVFOYgYXwODo4SvNc,5718
|
@@ -32,7 +32,7 @@ rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
|
|
32
32
|
rxnn/transformers/positional.py,sha256=1PjcJybUzeQlIKJI4tahAGZcYgCRCL0otxs7mpsNuzM,4410
|
33
33
|
rxnn/transformers/sampler.py,sha256=t6iiQTdLQ0TakUWnnhKkb5DKF2F_9-thXHBydDF3fxg,17389
|
34
34
|
rxnn/utils.py,sha256=ihb6OTyDtPiocB_lOvnq7eOkjjpCkgs8wxvXUBNQ7mM,996
|
35
|
-
rxnn-0.2.
|
36
|
-
rxnn-0.2.
|
37
|
-
rxnn-0.2.
|
38
|
-
rxnn-0.2.
|
35
|
+
rxnn-0.2.22.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
|
36
|
+
rxnn-0.2.22.dist-info/METADATA,sha256=KYQSidSUXwKxzuQj77h-jT0DUimKZVW_XTl-7PcQG3o,25960
|
37
|
+
rxnn-0.2.22.dist-info/WHEEL,sha256=b4K_helf-jlQoXBBETfwnf4B04YC67LOev0jo4fX5m8,88
|
38
|
+
rxnn-0.2.22.dist-info/RECORD,,
|
File without changes
|
File without changes
|