rxnn 0.1.79__py3-none-any.whl → 0.1.80__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rxnn/transformers/positional.py
CHANGED
@@ -12,14 +12,17 @@ class RotaryPositionalEmbedding(nn.Module):
|
|
12
12
|
self.max_seq_len = max_seq_len
|
13
13
|
self.base = base
|
14
14
|
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
|
15
|
-
self.register_buffer('inv_freq', inv_freq)
|
16
|
-
|
15
|
+
self.register_buffer('inv_freq', inv_freq) # must stay for models compatibility
|
16
|
+
# Pre-cache freqs for max_len
|
17
|
+
t = torch.arange(max_seq_len).type_as(self.inv_freq)
|
18
|
+
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
19
|
+
self.register_buffer('cache', freqs)
|
20
|
+
|
17
21
|
|
18
22
|
def forward(self, q: torch.Tensor, k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
19
|
-
device = q.device
|
20
23
|
seq_len = q.size(-2)
|
21
24
|
# Prepare RoPE Frequencies
|
22
|
-
freqs = self._prepare_freqs(seq_len
|
25
|
+
freqs = self._prepare_freqs(seq_len)
|
23
26
|
|
24
27
|
# Apply the rotation to the queries
|
25
28
|
q_embed = self._rotate(q, freqs)
|
@@ -29,27 +32,17 @@ class RotaryPositionalEmbedding(nn.Module):
|
|
29
32
|
return q_embed, k_embed
|
30
33
|
|
31
34
|
def forward_one(self, q: torch.Tensor) -> torch.Tensor:
|
32
|
-
device = q.device
|
33
35
|
seq_len = q.size(-2)
|
34
36
|
# Prepare RoPE Frequencies
|
35
|
-
freqs = self._prepare_freqs(seq_len
|
37
|
+
freqs = self._prepare_freqs(seq_len)
|
36
38
|
|
37
39
|
# Apply the rotation to the queries
|
38
40
|
q_embed = self._rotate(q, freqs)
|
39
41
|
|
40
42
|
return q_embed
|
41
43
|
|
42
|
-
def _prepare_freqs(self, seq_len: int
|
43
|
-
|
44
|
-
if cache_len < seq_len:
|
45
|
-
t = torch.arange(seq_len, device=device).type_as(self.inv_freq)
|
46
|
-
freqs = torch.einsum('i,j->ij', t, self.inv_freq)
|
47
|
-
self.cache = freqs
|
48
|
-
return freqs[None, None, :, :]
|
49
|
-
elif cache_len == seq_len:
|
50
|
-
return self.cache[None, None, :, :]
|
51
|
-
else:
|
52
|
-
return self.cache[:seq_len][None, None, :, :]
|
44
|
+
def _prepare_freqs(self, seq_len: int) -> torch.Tensor:
|
45
|
+
return self.cache[:seq_len][None, None, :, :]
|
53
46
|
|
54
47
|
def _rotate(self, x: torch.Tensor, freqs: torch.Tensor) -> torch.Tensor:
|
55
48
|
x1 = x[..., 0::2]
|
@@ -22,10 +22,10 @@ rxnn/transformers/layers.py,sha256=OX8CsFY9A7uqH1SLwyexR_5BNlwheYrJHCGXjF8Q7HU,7
|
|
22
22
|
rxnn/transformers/mask.py,sha256=J0cfLVLt3SzS2ra3KcY4khrkhI975Dw4CjpUi3Sn25s,419
|
23
23
|
rxnn/transformers/models.py,sha256=xbnn3FTNZFhaqq9A0XEM12ie_WL_58pPeq0qFXIgve0,7656
|
24
24
|
rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
|
25
|
-
rxnn/transformers/positional.py,sha256=
|
25
|
+
rxnn/transformers/positional.py,sha256=ge-kaS6WnWnPGnWVp25ZK5bVkmhBUNCaELaN2rN_fSY,4097
|
26
26
|
rxnn/transformers/sampler.py,sha256=poWBpxg1iuK5gEJtxHkk5VVfS9V48hs2Olqdhy_Gw8c,6548
|
27
27
|
rxnn/utils.py,sha256=d5U8i5ukovgDyqiycc2AoxObTz_eF_bgo2MKvdtJ98s,467
|
28
|
-
rxnn-0.1.
|
29
|
-
rxnn-0.1.
|
30
|
-
rxnn-0.1.
|
31
|
-
rxnn-0.1.
|
28
|
+
rxnn-0.1.80.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
|
29
|
+
rxnn-0.1.80.dist-info/METADATA,sha256=Voy_a7EI9nC1kEqzxHcLCYpZRJntWnoKaFpF7XyiKCE,16589
|
30
|
+
rxnn-0.1.80.dist-info/WHEEL,sha256=fGIA9gx4Qxk2KDKeNJCbOEwSrmLtjWCwzBz351GyrPQ,88
|
31
|
+
rxnn-0.1.80.dist-info/RECORD,,
|
File without changes
|
File without changes
|