rxnn 0.1.58__py3-none-any.whl → 0.1.60__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rxnn/experimental/models.py +9 -5
- rxnn/transformers/attention.py +3 -0
- rxnn/transformers/layers.py +3 -0
- {rxnn-0.1.58.dist-info → rxnn-0.1.60.dist-info}/METADATA +1 -1
- {rxnn-0.1.58.dist-info → rxnn-0.1.60.dist-info}/RECORD +7 -7
- {rxnn-0.1.58.dist-info → rxnn-0.1.60.dist-info}/LICENSE +0 -0
- {rxnn-0.1.58.dist-info → rxnn-0.1.60.dist-info}/WHEEL +0 -0
rxnn/experimental/models.py
CHANGED
@@ -11,7 +11,7 @@ from ..utils import get_model_size
|
|
11
11
|
from .attention import init_experimental_attention
|
12
12
|
|
13
13
|
|
14
|
-
class
|
14
|
+
class ExperimentalAttentionTransformerConfig(TypedDict):
|
15
15
|
num_layers: int
|
16
16
|
vocab_size: int
|
17
17
|
embed_dim: int
|
@@ -34,8 +34,12 @@ class MoeAttentionTransformerConfig(TypedDict):
|
|
34
34
|
att_num_query_groups: int
|
35
35
|
|
36
36
|
|
37
|
-
class
|
38
|
-
"""
|
37
|
+
class ExperimentalAttentionTransformer(nn.Module, PyTorchModelHubMixin, pipeline_tag="text-generation", license="apache-2.0"):
|
38
|
+
"""
|
39
|
+
Research model for experiments with new attention layers.
|
40
|
+
|
41
|
+
Currently, accepts SparseQueryAttention, GroupedMoeAttention, DeepMoeAttention and standard variants (MHA/GQA/MQA) for reference models
|
42
|
+
"""
|
39
43
|
|
40
44
|
def __init__(
|
41
45
|
self,
|
@@ -61,7 +65,7 @@ class MoeAttentionTransformer(nn.Module, PyTorchModelHubMixin, pipeline_tag="tex
|
|
61
65
|
att_num_query_groups: int = None,
|
62
66
|
**kwargs
|
63
67
|
):
|
64
|
-
super(
|
68
|
+
super(ExperimentalAttentionTransformer, self).__init__(**kwargs)
|
65
69
|
assert ff_activation in ['relu', 'gelu',
|
66
70
|
'swish', 'silu', 'linear',
|
67
71
|
'sigmoid'], 'Feed-forward activation could be "relu", "gelu", "swish", "silu", "linear", "sigmoid".'
|
@@ -83,7 +87,7 @@ class MoeAttentionTransformer(nn.Module, PyTorchModelHubMixin, pipeline_tag="tex
|
|
83
87
|
num_query_experts=att_num_query_experts,
|
84
88
|
num_query_groups=att_num_query_groups)
|
85
89
|
|
86
|
-
use_moe_att = att_type in ['gma', 'dma'
|
90
|
+
use_moe_att = att_type in ['gma', 'dma']
|
87
91
|
|
88
92
|
self.model = ClassicTransformerDecoder(
|
89
93
|
embed_dim,
|
rxnn/transformers/attention.py
CHANGED
@@ -137,6 +137,9 @@ class MultiHeadAttention(nn.Module):
|
|
137
137
|
b, t, d = query.size()
|
138
138
|
q, k, v = self._forward_qkv(query, key, value, b, t, d)
|
139
139
|
if not self.rel_embed:
|
140
|
+
print('q', q.size())
|
141
|
+
print('k', k.size())
|
142
|
+
print('v', v.size())
|
140
143
|
q, k = self._apply_rope(q, k)
|
141
144
|
attn_output = self._calculate_attention(q, k, v, b, t, d, mask=mask)
|
142
145
|
else:
|
rxnn/transformers/layers.py
CHANGED
@@ -86,6 +86,7 @@ class ReactiveTransformerLayer(nn.Module):
|
|
86
86
|
residual = x
|
87
87
|
if not self.use_post_norm:
|
88
88
|
x = self.norm1(x)
|
89
|
+
print('self x', x.size())
|
89
90
|
x = self.attention(x, x, x, mask=mask)
|
90
91
|
x = residual + x
|
91
92
|
if self.use_post_norm:
|
@@ -94,6 +95,8 @@ class ReactiveTransformerLayer(nn.Module):
|
|
94
95
|
residual = x
|
95
96
|
if not self.use_post_norm:
|
96
97
|
x = self.norm2(x)
|
98
|
+
print('x', x.size())
|
99
|
+
print('STM', stm.size())
|
97
100
|
x = self.memory_cross_attention(x, stm, stm)
|
98
101
|
x = residual + x
|
99
102
|
if self.use_post_norm:
|
@@ -1,7 +1,7 @@
|
|
1
1
|
rxnn/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
2
2
|
rxnn/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
3
3
|
rxnn/experimental/attention.py,sha256=bpZQiRXdQ8gJPwYRp3LBr2oELmrysB6-SWiD2F7UQrk,23127
|
4
|
-
rxnn/experimental/models.py,sha256=
|
4
|
+
rxnn/experimental/models.py,sha256=foBo0n0ufvBnfIdJomiEg3CuSOiWSt-q5ako7vzYxx4,4888
|
5
5
|
rxnn/experimental/moe.py,sha256=jHZ1QhpWiVQOswVpFmuH7b2IUOPf0Uuf-I2Ddwsd7Us,6140
|
6
6
|
rxnn/memory/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
7
7
|
rxnn/memory/norm.py,sha256=Ofl8Q5NYEF9GQeO0bhM43tkTW91J0y6TSvTAOYMgloM,6278
|
@@ -16,16 +16,16 @@ rxnn/training/dataset.py,sha256=JQuWSUdT5AnsrG6M_EsewoU6uroVHhg4K715nbtDx8A,9643
|
|
16
16
|
rxnn/training/scheduler.py,sha256=ow6oALzWjWQmHSpcJEjv6tg4g4CDMvr73TypxfcefMc,712
|
17
17
|
rxnn/training/tokenizer.py,sha256=umaLByMBx_NMrQElA45HLm9gkuzyKWDTFaKVd-CjXl0,8344
|
18
18
|
rxnn/transformers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
19
|
-
rxnn/transformers/attention.py,sha256=
|
19
|
+
rxnn/transformers/attention.py,sha256=2pJoAqRB6AKHtA2lj158NzbHzXr0dCaKj1RKjMfHsOI,15794
|
20
20
|
rxnn/transformers/ff.py,sha256=jJnuBDsnnX5uYC_WZH8cXAYrMnz0P-iX7MwcPivjRtI,2533
|
21
|
-
rxnn/transformers/layers.py,sha256=
|
21
|
+
rxnn/transformers/layers.py,sha256=tSOwr_IwJcAjPLmyRJI-93wRjgHH6OPJj4QrdkEFYdc,7282
|
22
22
|
rxnn/transformers/mask.py,sha256=J0cfLVLt3SzS2ra3KcY4khrkhI975Dw4CjpUi3Sn25s,419
|
23
23
|
rxnn/transformers/models.py,sha256=QFzBrOR7tDp9d_T0HoIukBMfEbLxsCictV5p3e2ilxg,7552
|
24
24
|
rxnn/transformers/moe.py,sha256=j6jEx6Ip0zttlUZKKn82azxo95lkLZs-H2GLSMD88hY,5859
|
25
25
|
rxnn/transformers/positional.py,sha256=2l38RS0Dini3f6Z3LUHr3XwWzg1UK7fO2C6wazWDAYU,4292
|
26
26
|
rxnn/transformers/sampler.py,sha256=poWBpxg1iuK5gEJtxHkk5VVfS9V48hs2Olqdhy_Gw8c,6548
|
27
27
|
rxnn/utils.py,sha256=d5U8i5ukovgDyqiycc2AoxObTz_eF_bgo2MKvdtJ98s,467
|
28
|
-
rxnn-0.1.
|
29
|
-
rxnn-0.1.
|
30
|
-
rxnn-0.1.
|
31
|
-
rxnn-0.1.
|
28
|
+
rxnn-0.1.60.dist-info/LICENSE,sha256=C8coDFIUYuOcke4JLPwTqahQUCyXyGq6WOaigOkx8tY,11275
|
29
|
+
rxnn-0.1.60.dist-info/METADATA,sha256=eTT7LMBzM_AiWqreCwois6pTV50-zb8tyMlgrz4Mq-g,16627
|
30
|
+
rxnn-0.1.60.dist-info/WHEEL,sha256=fGIA9gx4Qxk2KDKeNJCbOEwSrmLtjWCwzBz351GyrPQ,88
|
31
|
+
rxnn-0.1.60.dist-info/RECORD,,
|
File without changes
|
File without changes
|