rwkv-ops 0.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rwkv_ops/__init__.py +45 -0
- rwkv_ops/mhc_kernel/__init__.py +50 -0
- rwkv_ops/mhc_kernel/common_kernel/include/mhc_types.h +66 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/mhc_post_op.cuh +197 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/mhc_pre_op.cuh +212 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/rmsnorm.cuh +152 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/sinkhorn_knopp.cuh +158 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/stream_aggregate.cuh +141 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/stream_distribute.cuh +111 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/stream_mix.cuh +164 -0
- rwkv_ops/mhc_kernel/common_kernel/kernels/type_conversions.cuh +52 -0
- rwkv_ops/mhc_kernel/jax_kernel/CMakeLists.txt +47 -0
- rwkv_ops/mhc_kernel/jax_kernel/mhu_ffi.cu +652 -0
- rwkv_ops/mhc_kernel/jax_kernel/mhu_jax.py +939 -0
- rwkv_ops/mhc_kernel/native_keras_op.py +193 -0
- rwkv_ops/mhc_kernel/torch_kernel/mhc_cuda.cu +207 -0
- rwkv_ops/mhc_kernel/torch_kernel/mhc_op.cpp +296 -0
- rwkv_ops/mhc_kernel/torch_kernel/mhc_torch.py +306 -0
- rwkv_ops/rwkv6_kernel/__init__.py +120 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_cuda/gpu_ops.cpp +44 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_cuda/kernel_helpers.h +64 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_cuda/kernels.h +56 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_cuda/pybind11_kernel_helpers.h +41 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_cuda/rwkv_kernels.cu +512 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_hip/gpu_ops.cpp +44 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_hip/kernel_helpers.h +64 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_hip/kernels.h +56 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_hip/pybind11_kernel_helpers.h +41 -0
- rwkv_ops/rwkv6_kernel/jax_kernel_hip/rwkv_kernels.hip +514 -0
- rwkv_ops/rwkv6_kernel/jax_rwkv_kernel.py +722 -0
- rwkv_ops/rwkv6_kernel/ops_rwkv_kernel.py +90 -0
- rwkv_ops/rwkv6_kernel/torch_kernel/wkv6_cuda.cu +397 -0
- rwkv_ops/rwkv6_kernel/torch_kernel/wkv6_op.cpp +93 -0
- rwkv_ops/rwkv6_kernel/torch_rwkv_kernel.py +305 -0
- rwkv_ops/rwkv7_kernel/__init__.py +113 -0
- rwkv_ops/rwkv7_kernel/get_jax_devices_info.py +220 -0
- rwkv_ops/rwkv7_kernel/get_torch_devices_info.py +250 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel/CMakeLists.txt +42 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel/wkv7_ffi.cu +399 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel/wkv7_jax.py +311 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel_single/CMakeLists.txt +42 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel_single/wkv7_single_step_ffi.cu +172 -0
- rwkv_ops/rwkv7_kernel/jax_cuda_kernel_single/wkv7_single_step_jax.py +190 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/__init__.py +9 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_bwd.py +95 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_fwd.py +60 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_bwd.py +78 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_fwd.py +80 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_bwd.py +150 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_fwd.py +45 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/cumsum.py +34 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/wy_fast_bwd.py +61 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/wy_fast_fwd.py +86 -0
- rwkv_ops/rwkv7_kernel/jax_op.py +382 -0
- rwkv_ops/rwkv7_kernel/mlx_op.py +118 -0
- rwkv_ops/rwkv7_kernel/native_keras_op.py +108 -0
- rwkv_ops/rwkv7_kernel/tf_eager_kernel.py +155 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel/wkv7_cuda.cu +235 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel/wkv7_op.cpp +63 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel/wkv7_torch.py +233 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel_single/wkv7_single_step_cuda.cu +101 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel_single/wkv7_single_step_op.cpp +56 -0
- rwkv_ops/rwkv7_kernel/torch_cuda_kernel_single/wkv7_single_step_torch.py +112 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/__init__.py +13 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_bwd.py +96 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_fwd.py +64 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_bwd.py +74 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_fwd.py +75 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_bwd.py +148 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_fwd.py +44 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/cumsum.py +31 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/wy_fast_bwd.py +63 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/wy_fast_fwd.py +79 -0
- rwkv_ops/rwkv7_kernel/torch_op.py +504 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/__init__.py +34 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_A_bwd.py +328 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_A_fwd.py +186 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_h_bwd.py +157 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_h_fwd.py +160 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_o_bwd.py +382 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_o_fwd.py +137 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/cumsum.py +86 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/utils.py +20 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_bwd.py +193 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_fwd.py +326 -0
- rwkv_ops-0.6.1.dist-info/METADATA +495 -0
- rwkv_ops-0.6.1.dist-info/RECORD +89 -0
- rwkv_ops-0.6.1.dist-info/WHEEL +4 -0
- rwkv_ops-0.6.1.dist-info/licenses/LICENSE.txt +201 -0
|
@@ -0,0 +1,652 @@
|
|
|
1
|
+
#include <cuda_runtime.h>
|
|
2
|
+
#include <cuda_bf16.h>
|
|
3
|
+
#include <xla/ffi/api/ffi.h>
|
|
4
|
+
#include <vector>
|
|
5
|
+
#include <cstdint>
|
|
6
|
+
|
|
7
|
+
// 公共头文件路径
|
|
8
|
+
#include "../common_kernel/include/mhc_types.h"
|
|
9
|
+
#include "../common_kernel/kernels/sinkhorn_knopp.cuh"
|
|
10
|
+
#include "../common_kernel/kernels/rmsnorm.cuh"
|
|
11
|
+
#include "../common_kernel/kernels/stream_mix.cuh"
|
|
12
|
+
#include "../common_kernel/kernels/stream_aggregate.cuh"
|
|
13
|
+
#include "../common_kernel/kernels/stream_distribute.cuh"
|
|
14
|
+
#include "../common_kernel/kernels/mhc_post_op.cuh"
|
|
15
|
+
#include "../common_kernel/kernels/mhc_pre_op.cuh"
|
|
16
|
+
namespace ffi = xla::ffi;
|
|
17
|
+
|
|
18
|
+
/* -------------------- Sinkhorn Knopp FFI -------------------- */
|
|
19
|
+
|
|
20
|
+
// 前向FFI处理器
|
|
21
|
+
static ffi::Error SinkhornFwdHost(
|
|
22
|
+
cudaStream_t stream,
|
|
23
|
+
ffi::Buffer<ffi::F32> inp, // 输入: [B, T, N, N]
|
|
24
|
+
ffi::ResultBuffer<ffi::F32> out, // 输出: [B, T, N, N]
|
|
25
|
+
std::int32_t num_iters, // 显式使用 std::int32_t
|
|
26
|
+
float eps // float 本身就是32位
|
|
27
|
+
) {
|
|
28
|
+
// 获取张量维度
|
|
29
|
+
auto dims = inp.dimensions();
|
|
30
|
+
int64_t B = dims[0];
|
|
31
|
+
int64_t T = dims[1];
|
|
32
|
+
int64_t N = dims[2];
|
|
33
|
+
|
|
34
|
+
const float* inp_ptr = inp.typed_data();
|
|
35
|
+
float* out_ptr = out->typed_data();
|
|
36
|
+
|
|
37
|
+
// 批量调用sinkhorn前向
|
|
38
|
+
for (int64_t b = 0; b < B * T; ++b) {
|
|
39
|
+
mhc::sinkhorn_knopp_forward(
|
|
40
|
+
out_ptr + b * N * N,
|
|
41
|
+
inp_ptr + b * N * N,
|
|
42
|
+
static_cast<int>(N),
|
|
43
|
+
static_cast<int>(N),
|
|
44
|
+
num_iters, // 已经是int32
|
|
45
|
+
eps,
|
|
46
|
+
stream
|
|
47
|
+
);
|
|
48
|
+
}
|
|
49
|
+
|
|
50
|
+
return ffi::Error::Success();
|
|
51
|
+
}
|
|
52
|
+
|
|
53
|
+
// 反向FFI处理器
|
|
54
|
+
static ffi::Error SinkhornBwdHost(
|
|
55
|
+
cudaStream_t stream,
|
|
56
|
+
ffi::Buffer<ffi::F32> grad, // 梯度: [B, T, N, N]
|
|
57
|
+
ffi::Buffer<ffi::F32> out_fwd, // 前向输出: [B, T, N, N]
|
|
58
|
+
ffi::Buffer<ffi::F32> inp, // 原始输入: [B, T, N, N]
|
|
59
|
+
ffi::ResultBuffer<ffi::F32> d_inp, // 输入梯度: [B, T, N, N]
|
|
60
|
+
std::int32_t num_iters, // 显式使用 std::int32_t
|
|
61
|
+
float eps
|
|
62
|
+
) {
|
|
63
|
+
// 获取张量维度
|
|
64
|
+
auto dims = grad.dimensions();
|
|
65
|
+
int64_t B = dims[0];
|
|
66
|
+
int64_t T = dims[1];
|
|
67
|
+
int64_t N = dims[2];
|
|
68
|
+
|
|
69
|
+
const float* grad_ptr = grad.typed_data();
|
|
70
|
+
const float* out_fwd_ptr = out_fwd.typed_data();
|
|
71
|
+
const float* inp_ptr = inp.typed_data();
|
|
72
|
+
float* d_inp_ptr = d_inp->typed_data();
|
|
73
|
+
|
|
74
|
+
// 批量调用sinkhorn反向
|
|
75
|
+
for (int64_t b = 0; b < B * T; ++b) {
|
|
76
|
+
mhc::sinkhorn_knopp_backward(
|
|
77
|
+
d_inp_ptr + b * N * N,
|
|
78
|
+
grad_ptr + b * N * N,
|
|
79
|
+
out_fwd_ptr + b * N * N,
|
|
80
|
+
inp_ptr + b * N * N,
|
|
81
|
+
static_cast<int>(N),
|
|
82
|
+
num_iters, // 已经是int32
|
|
83
|
+
eps,
|
|
84
|
+
stream
|
|
85
|
+
);
|
|
86
|
+
}
|
|
87
|
+
|
|
88
|
+
return ffi::Error::Success();
|
|
89
|
+
}
|
|
90
|
+
|
|
91
|
+
/* -------------------- FFI 符号注册 -------------------- */
|
|
92
|
+
|
|
93
|
+
// 前向符号注册
|
|
94
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
95
|
+
SinkhornFwd, SinkhornFwdHost,
|
|
96
|
+
ffi::Ffi::Bind()
|
|
97
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
98
|
+
.Arg<ffi::Buffer<ffi::F32>>() // inp
|
|
99
|
+
.Ret<ffi::Buffer<ffi::F32>>() // out
|
|
100
|
+
.Attr<std::int32_t>("num_iters") // 显式指定32位整数
|
|
101
|
+
.Attr<float>("eps") // float 默认是32位
|
|
102
|
+
);
|
|
103
|
+
|
|
104
|
+
// 反向符号注册
|
|
105
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
106
|
+
SinkhornBwd, SinkhornBwdHost,
|
|
107
|
+
ffi::Ffi::Bind()
|
|
108
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
109
|
+
.Arg<ffi::Buffer<ffi::F32>>() // grad
|
|
110
|
+
.Arg<ffi::Buffer<ffi::F32>>() // out_fwd
|
|
111
|
+
.Arg<ffi::Buffer<ffi::F32>>() // inp
|
|
112
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_inp
|
|
113
|
+
.Attr<std::int32_t>("num_iters") // 显式指定32位整数
|
|
114
|
+
.Attr<float>("eps") // float 默认是32位
|
|
115
|
+
);
|
|
116
|
+
|
|
117
|
+
static ffi::Error RMSNormFwdHost(
|
|
118
|
+
cudaStream_t stream,
|
|
119
|
+
ffi::Buffer<ffi::BF16> inp, // 输入: [N, C]
|
|
120
|
+
ffi::ResultBuffer<ffi::BF16> out, // 输出: [N, C]
|
|
121
|
+
float eps
|
|
122
|
+
) {
|
|
123
|
+
auto dims = inp.dimensions();
|
|
124
|
+
int64_t N = dims[0];
|
|
125
|
+
int64_t C = dims[1];
|
|
126
|
+
|
|
127
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
128
|
+
nv_bfloat16* out_ptr = reinterpret_cast<nv_bfloat16*>(out->typed_data());
|
|
129
|
+
|
|
130
|
+
// 调用包装函数
|
|
131
|
+
mhc::rmsnorm_forward(out_ptr, inp_ptr, N, C, eps, stream);
|
|
132
|
+
|
|
133
|
+
return ffi::Error::Success();
|
|
134
|
+
}
|
|
135
|
+
|
|
136
|
+
// 反向FFI处理器
|
|
137
|
+
static ffi::Error RMSNormBwdHost(
|
|
138
|
+
cudaStream_t stream,
|
|
139
|
+
ffi::Buffer<ffi::BF16> grad, // 梯度: [N, C]
|
|
140
|
+
ffi::Buffer<ffi::BF16> inp, // 原始输入: [N, C]
|
|
141
|
+
ffi::ResultBuffer<ffi::BF16> dx, // 输入梯度: [N, C]
|
|
142
|
+
float eps
|
|
143
|
+
) {
|
|
144
|
+
auto dims = grad.dimensions();
|
|
145
|
+
int64_t N = dims[0];
|
|
146
|
+
int64_t C = dims[1];
|
|
147
|
+
|
|
148
|
+
const nv_bfloat16* grad_ptr = reinterpret_cast<const nv_bfloat16*>(grad.typed_data());
|
|
149
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
150
|
+
nv_bfloat16* dx_ptr = reinterpret_cast<nv_bfloat16*>(dx->typed_data());
|
|
151
|
+
|
|
152
|
+
// 调用包装函数
|
|
153
|
+
mhc::rmsnorm_backward(dx_ptr, grad_ptr, inp_ptr, N, C, eps, stream);
|
|
154
|
+
|
|
155
|
+
return ffi::Error::Success();
|
|
156
|
+
}
|
|
157
|
+
|
|
158
|
+
/* -------------------- 注册 FFI 符号 -------------------- */
|
|
159
|
+
|
|
160
|
+
// 在文件末尾追加注册
|
|
161
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
162
|
+
RMSNormFwd, RMSNormFwdHost,
|
|
163
|
+
ffi::Ffi::Bind()
|
|
164
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
165
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
166
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // out
|
|
167
|
+
.Attr<float>("eps") // eps
|
|
168
|
+
);
|
|
169
|
+
|
|
170
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
171
|
+
RMSNormBwd, RMSNormBwdHost,
|
|
172
|
+
ffi::Ffi::Bind()
|
|
173
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
174
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // grad
|
|
175
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
176
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // dx
|
|
177
|
+
.Attr<float>("eps") // eps
|
|
178
|
+
);
|
|
179
|
+
|
|
180
|
+
/* -------------------- Stream Mix FFI -------------------- */
|
|
181
|
+
|
|
182
|
+
// 前向FFI处理器
|
|
183
|
+
static ffi::Error StreamMixFwdHost(
|
|
184
|
+
cudaStream_t stream,
|
|
185
|
+
ffi::Buffer<ffi::BF16> inp, // 输入: [B, T, n, C]
|
|
186
|
+
ffi::Buffer<ffi::F32> M, // 权重: [B, T, n, n]
|
|
187
|
+
ffi::ResultBuffer<ffi::BF16> out // 输出: [B, T, n, C]
|
|
188
|
+
) {
|
|
189
|
+
auto dims = inp.dimensions();
|
|
190
|
+
int64_t B = dims[0];
|
|
191
|
+
int64_t T = dims[1];
|
|
192
|
+
int64_t n = dims[2];
|
|
193
|
+
int64_t C = dims[3];
|
|
194
|
+
|
|
195
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
196
|
+
const float* M_ptr = M.typed_data();
|
|
197
|
+
nv_bfloat16* out_ptr = reinterpret_cast<nv_bfloat16*>(out->typed_data());
|
|
198
|
+
|
|
199
|
+
// 调用包装函数
|
|
200
|
+
mhc::stream_mix_forward(out_ptr, inp_ptr, M_ptr, B, T, static_cast<int>(n), C, stream);
|
|
201
|
+
|
|
202
|
+
return ffi::Error::Success();
|
|
203
|
+
}
|
|
204
|
+
|
|
205
|
+
// 反向FFI处理器
|
|
206
|
+
// 修改1: 函数签名
|
|
207
|
+
static ffi::Error StreamMixBwdHost(
|
|
208
|
+
cudaStream_t stream,
|
|
209
|
+
ffi::Buffer<ffi::F32> grad, // 从 BF16 改为 F32
|
|
210
|
+
ffi::Buffer<ffi::BF16> inp,
|
|
211
|
+
ffi::Buffer<ffi::F32> M,
|
|
212
|
+
ffi::ResultBuffer<ffi::BF16> d_inp,
|
|
213
|
+
ffi::ResultBuffer<ffi::F32> d_M
|
|
214
|
+
) {
|
|
215
|
+
auto dims = grad.dimensions(); // 现在用 grad 获取维度
|
|
216
|
+
int64_t B = dims[0];
|
|
217
|
+
int64_t T = dims[1];
|
|
218
|
+
int64_t n = dims[2];
|
|
219
|
+
int64_t C = dims[3];
|
|
220
|
+
|
|
221
|
+
const float* grad_ptr = grad.typed_data(); // 直接获取 float*
|
|
222
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
223
|
+
const float* M_ptr = M.typed_data();
|
|
224
|
+
nv_bfloat16* d_inp_ptr = reinterpret_cast<nv_bfloat16*>(d_inp->typed_data());
|
|
225
|
+
float* d_M_ptr = d_M->typed_data();
|
|
226
|
+
|
|
227
|
+
mhc::stream_mix_backward(d_inp_ptr, d_M_ptr, grad_ptr, inp_ptr, M_ptr,
|
|
228
|
+
B, T, static_cast<int>(n), C, stream);
|
|
229
|
+
|
|
230
|
+
return ffi::Error::Success();
|
|
231
|
+
}
|
|
232
|
+
|
|
233
|
+
|
|
234
|
+
|
|
235
|
+
/* -------------------- 注册 FFI 符号 -------------------- */
|
|
236
|
+
|
|
237
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
238
|
+
StreamMixFwd, StreamMixFwdHost,
|
|
239
|
+
ffi::Ffi::Bind()
|
|
240
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
241
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
242
|
+
.Arg<ffi::Buffer<ffi::F32>>() // M
|
|
243
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // out
|
|
244
|
+
);
|
|
245
|
+
|
|
246
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
247
|
+
StreamMixBwd, StreamMixBwdHost,
|
|
248
|
+
ffi::Ffi::Bind()
|
|
249
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
250
|
+
.Arg<ffi::Buffer<ffi::F32>>() // grad: F32
|
|
251
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp: BF16
|
|
252
|
+
.Arg<ffi::Buffer<ffi::F32>>() // M: F32
|
|
253
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_inp: BF16
|
|
254
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_M: F32
|
|
255
|
+
);
|
|
256
|
+
/* -------------------- Stream Aggregate FFI -------------------- */
|
|
257
|
+
|
|
258
|
+
// 前向FFI处理器
|
|
259
|
+
static ffi::Error StreamAggregateFwdHost(
|
|
260
|
+
cudaStream_t stream,
|
|
261
|
+
ffi::Buffer<ffi::BF16> inp, // 输入: [B, T, n, C]
|
|
262
|
+
ffi::Buffer<ffi::F32> H_pre, // 权重: [B, T, n] 或 [n]
|
|
263
|
+
ffi::ResultBuffer<ffi::BF16> out, // 输出: [B, T, C]
|
|
264
|
+
bool per_token // 是否为per-token权重模式
|
|
265
|
+
) {
|
|
266
|
+
auto dims = inp.dimensions();
|
|
267
|
+
int64_t B = dims[0];
|
|
268
|
+
int64_t T = dims[1];
|
|
269
|
+
int64_t n = dims[2];
|
|
270
|
+
int64_t C = dims[3];
|
|
271
|
+
|
|
272
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
273
|
+
const float* H_pre_ptr = H_pre.typed_data();
|
|
274
|
+
nv_bfloat16* out_ptr = reinterpret_cast<nv_bfloat16*>(out->typed_data());
|
|
275
|
+
|
|
276
|
+
// 调用包装函数(注意:内部会自动处理per_token逻辑)
|
|
277
|
+
mhc::stream_aggregate_forward(
|
|
278
|
+
out_ptr, inp_ptr, H_pre_ptr,
|
|
279
|
+
B * T, static_cast<int>(n), C, per_token, stream
|
|
280
|
+
);
|
|
281
|
+
|
|
282
|
+
return ffi::Error::Success();
|
|
283
|
+
}
|
|
284
|
+
|
|
285
|
+
// 反向FFI处理器
|
|
286
|
+
static ffi::Error StreamAggregateBwdHost(
|
|
287
|
+
cudaStream_t stream,
|
|
288
|
+
ffi::Buffer<ffi::F32> grad, // 梯度: [B, T, C] (float32)
|
|
289
|
+
ffi::Buffer<ffi::BF16> inp, // 原始输入: [B, T, n, C]
|
|
290
|
+
ffi::Buffer<ffi::F32> H_pre, // 权重: [B, T, n] 或 [n]
|
|
291
|
+
ffi::ResultBuffer<ffi::BF16> d_inp, // 输入梯度: [B, T, n, C]
|
|
292
|
+
ffi::ResultBuffer<ffi::F32> d_H_pre, // 权重梯度: [B, T, n] 或 [n]
|
|
293
|
+
bool per_token // 是否为per-token权重模式
|
|
294
|
+
) {
|
|
295
|
+
auto dims = inp.dimensions();
|
|
296
|
+
int64_t B = dims[0];
|
|
297
|
+
int64_t T = dims[1];
|
|
298
|
+
int64_t n = dims[2];
|
|
299
|
+
int64_t C = dims[3];
|
|
300
|
+
|
|
301
|
+
const float* grad_ptr = grad.typed_data();
|
|
302
|
+
const nv_bfloat16* inp_ptr = reinterpret_cast<const nv_bfloat16*>(inp.typed_data());
|
|
303
|
+
const float* H_pre_ptr = H_pre.typed_data();
|
|
304
|
+
nv_bfloat16* d_inp_ptr = reinterpret_cast<nv_bfloat16*>(d_inp->typed_data());
|
|
305
|
+
float* d_H_pre_ptr = d_H_pre->typed_data();
|
|
306
|
+
|
|
307
|
+
// 调用包装函数(内部会处理per_token逻辑和梯度累加)
|
|
308
|
+
mhc::stream_aggregate_backward(
|
|
309
|
+
d_inp_ptr, d_H_pre_ptr, grad_ptr, inp_ptr, H_pre_ptr,
|
|
310
|
+
B * T, static_cast<int>(n), C, per_token, stream
|
|
311
|
+
);
|
|
312
|
+
|
|
313
|
+
return ffi::Error::Success();
|
|
314
|
+
}
|
|
315
|
+
|
|
316
|
+
/* -------------------- 注册 FFI 符号 -------------------- */
|
|
317
|
+
|
|
318
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
319
|
+
StreamAggregateFwd, StreamAggregateFwdHost,
|
|
320
|
+
ffi::Ffi::Bind()
|
|
321
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
322
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
323
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_pre
|
|
324
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // out
|
|
325
|
+
.Attr<bool>("per_token") // 权重模式
|
|
326
|
+
);
|
|
327
|
+
|
|
328
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
329
|
+
StreamAggregateBwd, StreamAggregateBwdHost,
|
|
330
|
+
ffi::Ffi::Bind()
|
|
331
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
332
|
+
.Arg<ffi::Buffer<ffi::F32>>() // grad
|
|
333
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
334
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_pre
|
|
335
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_inp
|
|
336
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_H_pre
|
|
337
|
+
.Attr<bool>("per_token") // 权重模式
|
|
338
|
+
);
|
|
339
|
+
|
|
340
|
+
/* -------------------- Stream Distribute FFI -------------------- */
|
|
341
|
+
|
|
342
|
+
// 前向:[B, T, C] (BF16), [B, T, n] (F32) -> [B, T, n, C] (BF16)
|
|
343
|
+
static ffi::Error StreamDistributeFwdHost(
|
|
344
|
+
cudaStream_t stream,
|
|
345
|
+
ffi::Buffer<ffi::BF16> inp, // [B, T, C]
|
|
346
|
+
ffi::Buffer<ffi::F32> H_post, // [B, T, n]
|
|
347
|
+
ffi::ResultBuffer<ffi::BF16> out // [B, T, n, C]
|
|
348
|
+
) {
|
|
349
|
+
auto dims_inp = inp.dimensions();
|
|
350
|
+
auto dims_h = H_post.dimensions();
|
|
351
|
+
|
|
352
|
+
int64_t B = dims_inp[0];
|
|
353
|
+
int64_t T = dims_inp[1];
|
|
354
|
+
int64_t C = dims_inp[2];
|
|
355
|
+
int64_t n = dims_h[2];
|
|
356
|
+
|
|
357
|
+
// blockIdx.x 覆盖 B*T*C,blockIdx.y 覆盖 n
|
|
358
|
+
dim3 threads(256);
|
|
359
|
+
dim3 blocks((B * T * C + 255) / 256, n);
|
|
360
|
+
|
|
361
|
+
mhc::stream_distribute_fwd_kernel<<<blocks, threads, 0, stream>>>(
|
|
362
|
+
reinterpret_cast<mhc::floatX*>(out->typed_data()),
|
|
363
|
+
reinterpret_cast<const mhc::floatX*>(inp.typed_data()),
|
|
364
|
+
H_post.typed_data(),
|
|
365
|
+
B, T, static_cast<int>(n), C
|
|
366
|
+
);
|
|
367
|
+
|
|
368
|
+
return ffi::Error::Success();
|
|
369
|
+
}
|
|
370
|
+
|
|
371
|
+
// 反向
|
|
372
|
+
static ffi::Error StreamDistributeBwdHost(
|
|
373
|
+
cudaStream_t stream,
|
|
374
|
+
ffi::Buffer<ffi::BF16> grad, // [B, T, n, C]
|
|
375
|
+
ffi::Buffer<ffi::BF16> inp, // [B, T, C]
|
|
376
|
+
ffi::Buffer<ffi::F32> H_post, // [B, T, n]
|
|
377
|
+
ffi::ResultBuffer<ffi::BF16> d_inp, // [B, T, C]
|
|
378
|
+
ffi::ResultBuffer<ffi::F32> d_H_post // [B, T, n]
|
|
379
|
+
) {
|
|
380
|
+
auto dims = grad.dimensions();
|
|
381
|
+
int64_t B = dims[0];
|
|
382
|
+
int64_t T = dims[1];
|
|
383
|
+
int64_t n = dims[2];
|
|
384
|
+
int64_t C = dims[3];
|
|
385
|
+
|
|
386
|
+
// 1. 计算 dx: [B, T, C]
|
|
387
|
+
dim3 threads(256);
|
|
388
|
+
dim3 blocks_dx((B * T * C + 255) / 256);
|
|
389
|
+
mhc::stream_distribute_bwd_dx_kernel<<<blocks_dx, threads, 0, stream>>>(
|
|
390
|
+
reinterpret_cast<mhc::floatX*>(d_inp->typed_data()),
|
|
391
|
+
reinterpret_cast<const mhc::floatX*>(grad.typed_data()),
|
|
392
|
+
H_post.typed_data(),
|
|
393
|
+
B, T, static_cast<int>(n), C
|
|
394
|
+
);
|
|
395
|
+
|
|
396
|
+
// 2. 计算 dH: [B, T, n]
|
|
397
|
+
dim3 blocks_dh(B * T, n);
|
|
398
|
+
mhc::stream_distribute_bwd_dh_kernel<256><<<blocks_dh, threads, 0, stream>>>(
|
|
399
|
+
d_H_post->typed_data(),
|
|
400
|
+
reinterpret_cast<const mhc::floatX*>(grad.typed_data()),
|
|
401
|
+
reinterpret_cast<const mhc::floatX*>(inp.typed_data()),
|
|
402
|
+
B, T, static_cast<int>(n), C
|
|
403
|
+
);
|
|
404
|
+
|
|
405
|
+
return ffi::Error::Success();
|
|
406
|
+
}
|
|
407
|
+
|
|
408
|
+
// 注册 FFI 符号 (追加到文件末尾的 XLA_FFI_DEFINE_HANDLER_SYMBOL 序列中)
|
|
409
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
410
|
+
StreamDistributeFwd, StreamDistributeFwdHost,
|
|
411
|
+
ffi::Ffi::Bind()
|
|
412
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
413
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
414
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_post
|
|
415
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // out
|
|
416
|
+
);
|
|
417
|
+
|
|
418
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
419
|
+
StreamDistributeBwd, StreamDistributeBwdHost,
|
|
420
|
+
ffi::Ffi::Bind()
|
|
421
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
422
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // grad
|
|
423
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // inp
|
|
424
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_post
|
|
425
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_inp
|
|
426
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_H_post
|
|
427
|
+
);
|
|
428
|
+
/* -------------------- MHC Post-Op FFI -------------------- */
|
|
429
|
+
|
|
430
|
+
// 前向处理器
|
|
431
|
+
static ffi::Error MhcPostOpFwdHost(
|
|
432
|
+
cudaStream_t stream,
|
|
433
|
+
ffi::Buffer<ffi::BF16> layer_out, // [B, T, C]
|
|
434
|
+
ffi::Buffer<ffi::BF16> x_expanded, // [B, T, n, C]
|
|
435
|
+
ffi::Buffer<ffi::F32> H_post, // [B, T, n]
|
|
436
|
+
ffi::Buffer<ffi::F32> H_res, // [B, T, n, n]
|
|
437
|
+
ffi::ResultBuffer<ffi::BF16> out // [B, T, n, C]
|
|
438
|
+
) {
|
|
439
|
+
auto dims = x_expanded.dimensions();
|
|
440
|
+
int64_t B = dims[0], T = dims[1], n = dims[2], C = dims[3];
|
|
441
|
+
|
|
442
|
+
mhc::mhc_post_op_forward(
|
|
443
|
+
reinterpret_cast<mhc::floatX*>(out->typed_data()),
|
|
444
|
+
reinterpret_cast<const mhc::floatX*>(layer_out.typed_data()),
|
|
445
|
+
reinterpret_cast<const mhc::floatX*>(x_expanded.typed_data()),
|
|
446
|
+
H_post.typed_data(),
|
|
447
|
+
H_res.typed_data(),
|
|
448
|
+
B, T, static_cast<int>(n), C, stream
|
|
449
|
+
);
|
|
450
|
+
return ffi::Error::Success();
|
|
451
|
+
}
|
|
452
|
+
// 反向处理器
|
|
453
|
+
static ffi::Error MhcPostOpBwdHost(
|
|
454
|
+
cudaStream_t stream,
|
|
455
|
+
ffi::Buffer<ffi::BF16> grad, // [B, T, n, C]
|
|
456
|
+
ffi::Buffer<ffi::BF16> layer_out,
|
|
457
|
+
ffi::Buffer<ffi::BF16> x_expanded,
|
|
458
|
+
ffi::Buffer<ffi::F32> H_post,
|
|
459
|
+
ffi::Buffer<ffi::F32> H_res,
|
|
460
|
+
ffi::ResultBuffer<ffi::BF16> d_layer_out,
|
|
461
|
+
ffi::ResultBuffer<ffi::BF16> d_x_expanded,
|
|
462
|
+
ffi::ResultBuffer<ffi::F32> d_H_post, // <--- 需要清零
|
|
463
|
+
ffi::ResultBuffer<ffi::F32> d_H_res // <--- 需要清零
|
|
464
|
+
) {
|
|
465
|
+
auto dims = x_expanded.dimensions();
|
|
466
|
+
int64_t B = dims[0], T = dims[1], n = dims[2], C = dims[3];
|
|
467
|
+
|
|
468
|
+
// -----------------------------------------------------------------
|
|
469
|
+
// 【关键修复】: 显式清零 Accumulation Buffer
|
|
470
|
+
// 因为 Kernel 内部使用 atomicAdd,而 JAX 分配的显存包含垃圾数据
|
|
471
|
+
// -----------------------------------------------------------------
|
|
472
|
+
size_t size_h_post = B * T * n * sizeof(float);
|
|
473
|
+
size_t size_h_res = B * T * n * n * sizeof(float);
|
|
474
|
+
|
|
475
|
+
cudaMemsetAsync(d_H_post->typed_data(), 0, size_h_post, stream);
|
|
476
|
+
cudaMemsetAsync(d_H_res->typed_data(), 0, size_h_res, stream);
|
|
477
|
+
|
|
478
|
+
// 调用 Kernel
|
|
479
|
+
mhc::mhc_post_op_backward_full(
|
|
480
|
+
reinterpret_cast<mhc::floatX*>(d_layer_out->typed_data()),
|
|
481
|
+
reinterpret_cast<mhc::floatX*>(d_x_expanded->typed_data()),
|
|
482
|
+
d_H_post->typed_data(),
|
|
483
|
+
d_H_res->typed_data(),
|
|
484
|
+
reinterpret_cast<const mhc::floatX*>(grad.typed_data()),
|
|
485
|
+
reinterpret_cast<const mhc::floatX*>(layer_out.typed_data()),
|
|
486
|
+
reinterpret_cast<const mhc::floatX*>(x_expanded.typed_data()),
|
|
487
|
+
H_post.typed_data(),
|
|
488
|
+
H_res.typed_data(),
|
|
489
|
+
B, T, static_cast<int>(n), C, stream
|
|
490
|
+
);
|
|
491
|
+
|
|
492
|
+
return ffi::Error::Success();
|
|
493
|
+
}
|
|
494
|
+
// --- 注册符号 ---
|
|
495
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
496
|
+
MhcPostOpFwd, MhcPostOpFwdHost,
|
|
497
|
+
ffi::Ffi::Bind()
|
|
498
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
499
|
+
.Arg<ffi::Buffer<ffi::BF16>>()
|
|
500
|
+
.Arg<ffi::Buffer<ffi::BF16>>()
|
|
501
|
+
.Arg<ffi::Buffer<ffi::F32>>()
|
|
502
|
+
.Arg<ffi::Buffer<ffi::F32>>()
|
|
503
|
+
.Ret<ffi::Buffer<ffi::BF16>>()
|
|
504
|
+
);
|
|
505
|
+
|
|
506
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
507
|
+
MhcPostOpBwd, MhcPostOpBwdHost,
|
|
508
|
+
ffi::Ffi::Bind()
|
|
509
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
510
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // grad
|
|
511
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // lo
|
|
512
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // xe
|
|
513
|
+
.Arg<ffi::Buffer<ffi::F32>>() // hp
|
|
514
|
+
.Arg<ffi::Buffer<ffi::F32>>() // hr
|
|
515
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_lo
|
|
516
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_xe
|
|
517
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_hp
|
|
518
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_hr
|
|
519
|
+
);
|
|
520
|
+
|
|
521
|
+
/* -------------------- MHC Pre-Op FFI -------------------- */
|
|
522
|
+
|
|
523
|
+
// 前向处理器:融合 Aggregate + Sigmoid + Sinkhorn 投影
|
|
524
|
+
static ffi::Error MhcPreOpFwdHost(
|
|
525
|
+
cudaStream_t stream,
|
|
526
|
+
ffi::Buffer<ffi::BF16> x_expanded, // [B, T, n, C]
|
|
527
|
+
ffi::Buffer<ffi::F32> h_pre_raw, // [B, T, n]
|
|
528
|
+
ffi::Buffer<ffi::F32> h_post_raw, // [B, T, n]
|
|
529
|
+
ffi::Buffer<ffi::F32> h_res_raw, // [B, T, n, n]
|
|
530
|
+
ffi::ResultBuffer<ffi::BF16> x_layer_in, // [B, T, C]
|
|
531
|
+
ffi::ResultBuffer<ffi::F32> H_pre, // [B, T, n] (sigmoid后)
|
|
532
|
+
ffi::ResultBuffer<ffi::F32> H_post, // [B, T, n] (2*sigmoid后)
|
|
533
|
+
ffi::ResultBuffer<ffi::F32> H_res, // [B, T, n, n] (Sinkhorn后)
|
|
534
|
+
std::int32_t sinkhorn_iters,
|
|
535
|
+
float eps
|
|
536
|
+
) {
|
|
537
|
+
auto dims = x_expanded.dimensions();
|
|
538
|
+
int64_t B = dims[0];
|
|
539
|
+
int64_t T = dims[1];
|
|
540
|
+
int n = static_cast<int>(dims[2]);
|
|
541
|
+
int64_t C = dims[3];
|
|
542
|
+
|
|
543
|
+
// 调用 .cuh 中的融合前向接口
|
|
544
|
+
mhc::mhc_pre_op_forward(
|
|
545
|
+
reinterpret_cast<mhc::floatX*>(x_layer_in->typed_data()),
|
|
546
|
+
H_pre->typed_data(),
|
|
547
|
+
H_post->typed_data(),
|
|
548
|
+
H_res->typed_data(),
|
|
549
|
+
reinterpret_cast<const mhc::floatX*>(x_expanded.typed_data()),
|
|
550
|
+
h_pre_raw.typed_data(),
|
|
551
|
+
h_post_raw.typed_data(),
|
|
552
|
+
h_res_raw.typed_data(),
|
|
553
|
+
B, T, n, C, sinkhorn_iters, eps, stream
|
|
554
|
+
);
|
|
555
|
+
|
|
556
|
+
return ffi::Error::Success();
|
|
557
|
+
}
|
|
558
|
+
|
|
559
|
+
// 反向处理器:全量梯度回传(含 Sinkhorn 反向)
|
|
560
|
+
static ffi::Error MhcPreOpBwdHost(
|
|
561
|
+
cudaStream_t stream,
|
|
562
|
+
ffi::Buffer<ffi::BF16> grad_layer_in, // [B, T, C]
|
|
563
|
+
ffi::Buffer<ffi::F32> grad_H_post, // [B, T, n]
|
|
564
|
+
ffi::Buffer<ffi::F32> grad_H_res, // [B, T, n, n]
|
|
565
|
+
ffi::Buffer<ffi::BF16> x_expanded, // [B, T, n, C] (前向输入)
|
|
566
|
+
ffi::Buffer<ffi::F32> H_pre, // [B, T, n] (前向输出)
|
|
567
|
+
ffi::Buffer<ffi::F32> H_post, // [B, T, n] (前向输出)
|
|
568
|
+
ffi::Buffer<ffi::F32> H_res_out, // [B, T, n, n] (Sinkhorn后)
|
|
569
|
+
ffi::Buffer<ffi::F32> h_res_raw, // [B, T, n, n] (原始输入)
|
|
570
|
+
ffi::ResultBuffer<ffi::BF16> d_x_expanded, // [B, T, n, C]
|
|
571
|
+
ffi::ResultBuffer<ffi::F32> d_h_pre_raw, // [B, T, n]
|
|
572
|
+
ffi::ResultBuffer<ffi::F32> d_h_post_raw, // [B, T, n]
|
|
573
|
+
ffi::ResultBuffer<ffi::F32> d_h_res_raw, // [B, T, n, n]
|
|
574
|
+
std::int32_t sinkhorn_iters,
|
|
575
|
+
float eps
|
|
576
|
+
) {
|
|
577
|
+
auto dims = x_expanded.dimensions();
|
|
578
|
+
int64_t B = dims[0];
|
|
579
|
+
int64_t T = dims[1];
|
|
580
|
+
int n = static_cast<int>(dims[2]);
|
|
581
|
+
int64_t C = dims[3];
|
|
582
|
+
|
|
583
|
+
// -----------------------------------------------------------------
|
|
584
|
+
// 【关键修复】: 显式清零所有输出梯度缓冲区
|
|
585
|
+
// PyTorch 版本使用 torch.zeros_like,FFI 侧需手动 Memset
|
|
586
|
+
// 原因:1) 对齐框架行为;2) 防止未初始化数据导致的数值误差
|
|
587
|
+
// -----------------------------------------------------------------
|
|
588
|
+
size_t size_h_pre = B * T * n * sizeof(float);
|
|
589
|
+
size_t size_h_post = B * T * n * sizeof(float);
|
|
590
|
+
size_t size_h_res = B * T * n * n * sizeof(float);
|
|
591
|
+
// d_x_expanded 由每个线程独占写入,无需清零
|
|
592
|
+
|
|
593
|
+
cudaMemsetAsync(d_h_pre_raw->typed_data(), 0, size_h_pre, stream);
|
|
594
|
+
cudaMemsetAsync(d_h_post_raw->typed_data(), 0, size_h_post, stream);
|
|
595
|
+
cudaMemsetAsync(d_h_res_raw->typed_data(), 0, size_h_res, stream);
|
|
596
|
+
|
|
597
|
+
// 调用 .cuh 中的融合反向接口
|
|
598
|
+
mhc::mhc_pre_op_backward(
|
|
599
|
+
reinterpret_cast<mhc::floatX*>(d_x_expanded->typed_data()),
|
|
600
|
+
d_h_pre_raw->typed_data(),
|
|
601
|
+
d_h_post_raw->typed_data(),
|
|
602
|
+
d_h_res_raw->typed_data(),
|
|
603
|
+
reinterpret_cast<const mhc::floatX*>(grad_layer_in.typed_data()),
|
|
604
|
+
grad_H_post.typed_data(),
|
|
605
|
+
grad_H_res.typed_data(),
|
|
606
|
+
reinterpret_cast<const mhc::floatX*>(x_expanded.typed_data()),
|
|
607
|
+
H_pre.typed_data(),
|
|
608
|
+
H_post.typed_data(),
|
|
609
|
+
H_res_out.typed_data(),
|
|
610
|
+
h_res_raw.typed_data(),
|
|
611
|
+
B, T, n, C, sinkhorn_iters, eps, stream
|
|
612
|
+
);
|
|
613
|
+
|
|
614
|
+
return ffi::Error::Success();
|
|
615
|
+
}
|
|
616
|
+
|
|
617
|
+
// 注册 FFI 符号(追加到文件末尾)
|
|
618
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
619
|
+
MhcPreOpFwd, MhcPreOpFwdHost,
|
|
620
|
+
ffi::Ffi::Bind()
|
|
621
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
622
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // x_expanded
|
|
623
|
+
.Arg<ffi::Buffer<ffi::F32>>() // h_pre_raw
|
|
624
|
+
.Arg<ffi::Buffer<ffi::F32>>() // h_post_raw
|
|
625
|
+
.Arg<ffi::Buffer<ffi::F32>>() // h_res_raw
|
|
626
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // x_layer_in
|
|
627
|
+
.Ret<ffi::Buffer<ffi::F32>>() // H_pre
|
|
628
|
+
.Ret<ffi::Buffer<ffi::F32>>() // H_post
|
|
629
|
+
.Ret<ffi::Buffer<ffi::F32>>() // H_res
|
|
630
|
+
.Attr<std::int32_t>("sinkhorn_iters")
|
|
631
|
+
.Attr<float>("eps")
|
|
632
|
+
);
|
|
633
|
+
|
|
634
|
+
XLA_FFI_DEFINE_HANDLER_SYMBOL(
|
|
635
|
+
MhcPreOpBwd, MhcPreOpBwdHost,
|
|
636
|
+
ffi::Ffi::Bind()
|
|
637
|
+
.Ctx<ffi::PlatformStream<cudaStream_t>>()
|
|
638
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // grad_layer_in
|
|
639
|
+
.Arg<ffi::Buffer<ffi::F32>>() // grad_H_post
|
|
640
|
+
.Arg<ffi::Buffer<ffi::F32>>() // grad_H_res
|
|
641
|
+
.Arg<ffi::Buffer<ffi::BF16>>() // x_expanded
|
|
642
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_pre
|
|
643
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_post
|
|
644
|
+
.Arg<ffi::Buffer<ffi::F32>>() // H_res_out
|
|
645
|
+
.Arg<ffi::Buffer<ffi::F32>>() // h_res_raw
|
|
646
|
+
.Ret<ffi::Buffer<ffi::BF16>>() // d_x_expanded
|
|
647
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_h_pre_raw
|
|
648
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_h_post_raw
|
|
649
|
+
.Ret<ffi::Buffer<ffi::F32>>() // d_h_res_raw
|
|
650
|
+
.Attr<std::int32_t>("sinkhorn_iters")
|
|
651
|
+
.Attr<float>("eps")
|
|
652
|
+
);
|