rwkv-ops 0.1.1__py3-none-any.whl → 0.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rwkv-ops might be problematic. Click here for more details.

@@ -0,0 +1,258 @@
1
+ Metadata-Version: 2.1
2
+ Name: rwkv-ops
3
+ Version: 0.2
4
+ Home-page: https://github.com/pass-lin/rwkv_ops
5
+ License: Apache 2.0
6
+ Keywords: rwkv implement for multi backend
7
+ Classifier: Development Status :: 3 - Alpha
8
+ Classifier: Intended Audience :: Developers
9
+ Classifier: Intended Audience :: Science/Research
10
+ Classifier: License :: OSI Approved :: Apache Software License
11
+ Classifier: Operating System :: OS Independent
12
+ Classifier: Programming Language :: Python :: 3
13
+ Classifier: Programming Language :: Python :: 3.8
14
+ Classifier: Programming Language :: Python :: 3.9
15
+ Classifier: Programming Language :: Python :: 3.10
16
+ Classifier: Programming Language :: Python :: 3.11
17
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
18
+ Description-Content-Type: text/markdown
19
+ License-File: LICENSE.txt
20
+ Requires-Dist: keras
21
+
22
+ [English Document](ENREADME.md)
23
+
24
+ # RWKV OPS 项目
25
+
26
+ > 由于 RWKV 将持续迭代,核心算子会随之更新。
27
+ > 本仓专门维护「算子」本身,不维护 layer 与 model;尽可能提供各框架的 GPU 算子。
28
+
29
+ ### 当前支持
30
+ | 算子类型 | 框架支持 |
31
+ |----------|----------|
32
+ | GPU 算子 | PyTorch、JAX(TensorFlow 待 Google 支持 Triton 后上线) |
33
+ | 原生算子 | PyTorch、JAX、TensorFlow、NumPy |
34
+
35
+ > 未来若 Keras 生态扩展,可能支持 MLX、OpenVINO。
36
+ > 注意:本库依赖 `keras`。
37
+
38
+ ---
39
+
40
+ ## 安装
41
+
42
+ ```bash
43
+ pip install rwkv_ops
44
+ ```
45
+
46
+ ---
47
+
48
+ ## 环境变量
49
+
50
+ | 变量名 | 含义 | 取值 | 默认值 | 优先级 |
51
+ |---|---|---|---|---|
52
+ | `KERAS_BACKEND` | Keras 后端 | `jax` / `torch` / `tensorflow` / `numpy` | — | 低 |
53
+ | `KERNEL_BACKEND` | 算子后端 | `jax` / `torch` / `tensorflow` / `numpy` | `torch` | **高** |
54
+ | `KERNEL_TYPE` | 实现类型 | `triton` / `cuda` / `native` | — | — |
55
+
56
+ > 若 `KERNEL_BACKEND` 有值,直接采用;若为空,则用 `KERAS_BACKEND`;两者皆空则默认 `torch`。
57
+ > `native` 为原生算子,无 chunkwise,速度慢且显存高。
58
+
59
+ ---
60
+
61
+ ## rwkv7op 使用方法
62
+
63
+ ```python
64
+ from rwkv_ops import generalized_delta_rule # 或 from rwkv_ops import rwkv7_op,完全等价
65
+
66
+ def generalized_delta_rule(
67
+ r,
68
+ w,
69
+ k,
70
+ v,
71
+ a,
72
+ b,
73
+ initial_state=None,
74
+ output_final_state: bool = True,
75
+ head_first: bool = False,
76
+ ):
77
+ """
78
+ 分块 Delta Rule 注意力接口。
79
+
80
+ Args:
81
+ q: [B, T, H, K]
82
+ k: [B, T, H, K]
83
+ v: [B, T, H, V]
84
+ a: [B, T, H, K]
85
+ b: [B, T, H, K]
86
+ gk: [B, T, H, K] # decay term in log space!
87
+ initial_state: 初始状态 [N, H, K, V],N 为序列数
88
+ output_final_state: 是否返回最终状态
89
+ head_first: 是否 head-first 格式,不支持变长
90
+
91
+ Returns:
92
+ o: 输出 [B, T, H, V] 或 [B, H, T, V]
93
+ final_state: 最终状态 [N, H, K, V] 或 None
94
+ """
95
+ ```
96
+
97
+ ### torch-cuda 特殊用法
98
+
99
+ - torch-cuda 下 `head_size` 也是一个 kernel 参数,默认为 64。
100
+ - 若 `head_size ≠ 64`,请使用:
101
+
102
+ ```python
103
+ from rwkv_ops import get_generalized_delta_rule
104
+
105
+ generalized_delta_rule, RWKV7_USE_KERNEL = get_generalized_delta_rule(
106
+ your_head_size, KERNEL_TYPE="cuda"
107
+ )
108
+ ```
109
+
110
+ - `RWKV7_USE_KERNEL` 为常量,标记是否使用 chunkwise 算子。
111
+ - 两者 padding 处理逻辑不同:
112
+
113
+ ```python
114
+ if padding_mask is not None:
115
+ if RWKV7_USE_KERNEL:
116
+ w += (1 - padding_mask) * -1e9
117
+ else:
118
+ w = w * padding_mask + 1 - padding_mask
119
+ ```
120
+
121
+ ---
122
+
123
+ ### rwkv7op 实现状态
124
+
125
+ | Framework | cuda | triton | native |
126
+ |-------------|------|--------|--------|
127
+ | PyTorch | ✅ | ✅ | ✅ |
128
+ | JAX | ❌ | ✅ | ✅ |
129
+ | TensorFlow | ❌ | ❌ | ✅ |
130
+ | NumPy | ❌ | ❌ | ✅ |
131
+
132
+ ---
133
+
134
+ ## rwkv6op 使用方法
135
+
136
+ ### PyTorch 使用注意事项
137
+
138
+ - 安装依赖:`keras`、`ninja`、完整的 CUDA 工具包。
139
+ - 若使用 VS Code + 虚拟环境调试,请务必在终端手动激活虚拟环境,再运行代码,否则 ninja 可能无法工作。
140
+ - 虽然 PyTorch 在「虚拟环境中的 CUDA 版本」与「全局 CUDA 版本」不一致时仍可正常运行,但强烈建议保持一致。
141
+ - PyTorch 限制:同一程序内只能实例化 **一个** `RWKV6_OP` 对象;算子线程安全(无状态),可在多处调用。
142
+
143
+ ### JAX 使用注意事项
144
+
145
+ - 安装依赖:`keras`、`gcc`、`pybind11`、完整的 CUDA 工具包。
146
+ - 即使通过虚拟环境为 JAX 安装 CUDA,也必须在系统级安装完整 CUDA;两者版本需一致,以保证 JAX 并行编译速度。
147
+ - JAX 编译依赖 `/usr/local/cuda` 软链接,如不存在请手动创建:
148
+ ```shell
149
+ sudo ln -sf /usr/local/cuda-12.4 /usr/local/cuda
150
+ ```
151
+ - 确保 `nvcc -V` 正常输出,且 `which nvcc` 指向正确版本。
152
+ - JAX 限制:同一程序内只能实例化 **一个** `RWKV6_OP` 对象;算子线程安全(无状态),可在多处调用。
153
+ - JAX ≥ 0.6.0 不再使用 CUDA 算子,默认使用原生算子;推荐 0.4.34。
154
+
155
+ ### TensorFlow 使用注意事项
156
+
157
+ - 仅提供基于原生 API 的 `RWKV6` 算子,仅用于推理,效率较低。
158
+
159
+ ---
160
+
161
+ ### 使用方法
162
+ 需要注意的是,和rwkv7写成函数的形式不一样,RWKV6的op是一个类,需要实例化。
163
+ ```python
164
+ from rwkv_ops import RWKV6_OP
165
+
166
+ operator = RWKV6_OP(
167
+ head_size=64, # 头大小,不确定时填 64
168
+ max_sequence_length=4096, # 训练最大序列长度;推理不受限
169
+ ops_loop=False # 可选:序列长度=1 时是否用上层 API 替代 CUDA
170
+ )
171
+ ```
172
+
173
+ #### 调用
174
+
175
+ ```python
176
+ y, y_state = operator(
177
+ r, k, v, w, u,
178
+ with_state=False, # 是否使用自定义初始状态 / 输出结束状态
179
+ init_state=None, # 初始状态 [n_state, num_heads, head_size, head_size]
180
+ state_map=None # int32 一维数组,长度=batch_size,定义 init_state 映射
181
+ )
182
+ ```
183
+
184
+ | 参数 | 形状 | 说明 |
185
+ |---|---|---|
186
+ | r, k, v, w | (batch_size, seq_len, hidden_size) | — |
187
+ | u | (num_heads, head_size) 或 (hidden_size,) | — |
188
+ | init_state | (n_state, num_heads, head_size, head_size) | n_state=1 时所有样本共用;n_state=batch_size 时一一对应 |
189
+ | state_map | (batch_size,) | 指定每个样本用到的 init_state 索引 |
190
+
191
+ | 返回值 | 形状 | 说明 |
192
+ |---|---|---|
193
+ | y | (batch_size, seq_len, hidden_size) | 输出 |
194
+ | y_state | (batch_size, num_heads, head_size, head_size) 或 None | 结束状态 |
195
+
196
+ ---
197
+
198
+ ### 分布式小贴士
199
+
200
+ - 算子本身无分布式支持;PyTorch 可直接用多线程分布式。
201
+ - JAX 需通过 `shard_map` 包装(示例):
202
+
203
+ ```python
204
+ import os
205
+ os.environ['KERAS_BACKEND'] = 'jax'
206
+
207
+ import jax, jax.numpy as jnp
208
+ from jax.experimental.shard_map import shard_map
209
+ from jax.sharding import Mesh, PartitionSpec as P
210
+ from functools import partial
211
+ from rwkv_ops import RWKV6_OP
212
+
213
+ batch_size, seq_length = 24, 512
214
+ head_size, num_heads = 64, 32
215
+ hidden_size = head_size * num_heads
216
+
217
+ mesh = Mesh(jax.devices('gpu'), axis_names=('device_axis',))
218
+ device_ns = NamedSharding(mesh, P('device_axis'))
219
+
220
+ operator = RWKV6_OP(head_size=head_size, max_sequence_length=seq_length)
221
+
222
+ @partial(shard_map,
223
+ mesh=mesh,
224
+ in_specs=(P('device_axis'),) * 5,
225
+ out_specs=(P('device_axis'), P('device_axis')),
226
+ check_rep=False)
227
+ def call_kernel(r, k, v, w, u):
228
+ # 去掉最外 device 维度
229
+ r, k, v, w, u = map(jnp.squeeze, (r, k, v, w, u))
230
+ y, ys = operator(r, k, v, w, u, with_state=True)
231
+ return jnp.expand_dims(y, 0), jnp.expand_dims(ys, 0)
232
+
233
+ # 构造输入并放置到对应设备
234
+ keys = jax.random.split(jax.random.PRNGKey(0), 5)
235
+ inputs = [jax.random.normal(k, (mesh.size, batch_size, seq_length, hidden_size)) for k in keys]
236
+ inputs_r, inputs_k, inputs_v, inputs_w, inputs_u = map(
237
+ lambda x: jax.device_put(x, device_ns), inputs)
238
+ inputs_u = inputs_u[:, :, 0] # (devices, hidden_size)
239
+
240
+ # 可选:jax.jit(call_kernel, ...) 加速
241
+ outputs_y, y_state = call_kernel(inputs_r, inputs_k, inputs_v, inputs_w, inputs_u)
242
+
243
+ print(outputs_y.shape, outputs_y.sharding)
244
+ print(y_state.shape, y_state.sharding)
245
+ ```
246
+
247
+ ---
248
+
249
+ ### rwkv6op 实现状态
250
+
251
+ | Framework | cuda | triton | native |
252
+ |-------------|------|--------|--------|
253
+ | PyTorch | ✅ | ❌ | ✅ |
254
+ | JAX | ⚠️ | ❌ | ✅ |
255
+ | TensorFlow | ❌ | ❌ | ✅ |
256
+ | NumPy | ❌ | ❌ | ✅ |
257
+
258
+ ⚠️ JAX 的 CUDA 实现仅适用于 < 0.6.0,推荐 0.4.34。
@@ -1,10 +1,14 @@
1
- rwkv_ops/__init__.py,sha256=zhiKsTn4RGCGGy_0VIZUgHjPZK9XlEJHy39bNkwPnH8,747
2
- rwkv_ops/rwkv7_kernel/__init__.py,sha256=k88BFK_NtUhG_27rK0_b48JCuEEXMb9_L9jGE50astc,6034
1
+ rwkv_ops/__init__.py,sha256=Kfw_9iearbIplpuxx8sUl30TxKbTO-Ehqe0290Y4sZw,841
2
+ rwkv_ops/rwkv6_kernel/__init__.py,sha256=_j6G_3fY8xPxrlZbgDT2ndX4IPiNJ4qjqIcdmNI_r9Q,4100
3
+ rwkv_ops/rwkv6_kernel/jax_rwkv_kernel.py,sha256=WOzqfQQSHHMoWqm2kRz_BhtMzGYc5USJ26qaEwuARo4,30117
4
+ rwkv_ops/rwkv6_kernel/ops_rwkv_kernel.py,sha256=otjfw5n6nf2YVpBIWIZjaCsxMyLXXwg-ma1ueXX-EdY,3274
5
+ rwkv_ops/rwkv6_kernel/torch_rwkv_kernel.py,sha256=Q1uPMgaS21OEfQ8-sBDjaCUASMtkSOdN3OosEUsBp9U,12918
6
+ rwkv_ops/rwkv7_kernel/__init__.py,sha256=GpwZ5dk7d5H6u-VSUAQ29KQVnCZdEwtKZ13_3kVJets,5888
3
7
  rwkv_ops/rwkv7_kernel/get_jax_devices_info.py,sha256=cMIaNED7d1PvYNSyq8wNI3G7wNvcgdUj9HWRBLuSVM8,6004
4
8
  rwkv_ops/rwkv7_kernel/get_torch_devices_info.py,sha256=ZL_rAM6lHB4nTOOU28Xm08qptfuIoijOMi_xwJG3KCo,7380
5
9
  rwkv_ops/rwkv7_kernel/jax_op.py,sha256=tyMxvk_EblDaGsePpxw3AhELvolp7LeE5NopUhKw1R0,9107
6
10
  rwkv_ops/rwkv7_kernel/native_keras_op.py,sha256=QPrXLbqw0chipQg_0jepRp2U19BYpBBFdKZWyaDNNoc,2488
7
- rwkv_ops/rwkv7_kernel/torch_op.py,sha256=d6VQM7SS5ynQ_YTmqHzDIn2MLiXkYcMiSJD2eXEkTSg,12277
11
+ rwkv_ops/rwkv7_kernel/torch_op.py,sha256=yY5QP87iDow-T6a4ZzFShyIQ8gprTQoLYcjFqgOTW4Y,13675
8
12
  rwkv_ops/rwkv7_kernel/jax_kernel/__init__.py,sha256=uHsf_1qrtRK62IvhLuzefHGPWpHXmw1p0tqmwlHcptk,346
9
13
  rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_bwd.py,sha256=2Voq1Bdzn0DFloiLvwINBk7akmxRWIqXIQeyafrJJGg,2138
10
14
  rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_fwd.py,sha256=rhmglqHIIww7yPzaSBEp9ISxhhxoUbMtV51AUDyhUd8,1425
@@ -36,8 +40,8 @@ rwkv_ops/rwkv7_kernel/triton_kernel/cumsum.py,sha256=pRp_z587PrnpgRVpi031IndyjVI
36
40
  rwkv_ops/rwkv7_kernel/triton_kernel/utils.py,sha256=TNGlkwGq4t-TOcdVBk_N_vHPLzMFTu_F0V-O1RprIO4,553
37
41
  rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_bwd.py,sha256=szaG11q_WmpyhXi6aVWwzizvflCh5wND8wGA_V8afzA,5479
38
42
  rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_fwd.py,sha256=jbb19DUTHENU2RIOv_T4m_W1eXMqdRqG0XevIkBOhI4,9438
39
- rwkv_ops-0.1.1.dist-info/LICENSE.txt,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
40
- rwkv_ops-0.1.1.dist-info/METADATA,sha256=g2e5rhSz-SFLzyj76FbShCNtgdWAjgTV0ukw3WYR2fo,3608
41
- rwkv_ops-0.1.1.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
42
- rwkv_ops-0.1.1.dist-info/top_level.txt,sha256=cVqoKE-WR_e2gHL87-6O4K1kG6-yTJGB2huyr6FmD2I,9
43
- rwkv_ops-0.1.1.dist-info/RECORD,,
43
+ rwkv_ops-0.2.dist-info/LICENSE.txt,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
44
+ rwkv_ops-0.2.dist-info/METADATA,sha256=cUhC6EYLULLgNLVtLOg4qMSoAZjIDcrojax6egCTU04,8409
45
+ rwkv_ops-0.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
46
+ rwkv_ops-0.2.dist-info/top_level.txt,sha256=cVqoKE-WR_e2gHL87-6O4K1kG6-yTJGB2huyr6FmD2I,9
47
+ rwkv_ops-0.2.dist-info/RECORD,,
@@ -1,119 +0,0 @@
1
- Metadata-Version: 2.1
2
- Name: rwkv-ops
3
- Version: 0.1.1
4
- Home-page: https://github.com/your-org/rwkv_ops
5
- License: Apache 2.0
6
- Keywords: rwkv attention cuda triton pytorch jax
7
- Classifier: Development Status :: 3 - Alpha
8
- Classifier: Intended Audience :: Developers
9
- Classifier: Intended Audience :: Science/Research
10
- Classifier: License :: OSI Approved :: Apache Software License
11
- Classifier: Operating System :: OS Independent
12
- Classifier: Programming Language :: Python :: 3
13
- Classifier: Programming Language :: Python :: 3.8
14
- Classifier: Programming Language :: Python :: 3.9
15
- Classifier: Programming Language :: Python :: 3.10
16
- Classifier: Programming Language :: Python :: 3.11
17
- Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
18
- Description-Content-Type: text/markdown
19
- License-File: LICENSE.txt
20
- Requires-Dist: keras
21
-
22
- [English Document](ENREADME.md)
23
- # RWKV OPS 项目
24
- > 由于 RWKV 将持续迭代,核心算子会随之更新。
25
- > 本仓专门维护「算子」本身,不维护 layer 与 model;尽可能提供各框架的 GPU 算子。
26
- > 目前:
27
- > • GPU 算子:PyTorch、JAX(TensorFlow 待 Google 支持 Triton 后上线)
28
- > • 原生算子:PyTorch、JAX、TensorFlow、NumPy
29
- > 未来若 Keras 生态扩展,可能支持 MLX、OpenVINO。
30
- > 注意:本库依赖 `keras`。
31
-
32
- ---
33
- ## 安装方法
34
- pip install rwkv_ops
35
- ## 环境变量
36
-
37
- | 变量名 | 含义 | 取值 | 默认值 | 优先级 |
38
- |---|---|---|---|---|
39
- | `KERAS_BACKEND` | Keras 后端 | jax / torch / tensorflow / numpy | — | 低 |
40
- | `KERNEL_BACKEND` | 算子后端 | jax / torch / tensorflow / numpy | torch | **高** |
41
- | `KERNEL_TYPE` | 实现类型 | triton / cuda / native | — | — |
42
-
43
- > 若 `KERNEL_BACKEND` 有值,直接采用;若为空,则用 `KERAS_BACKEND`;两者皆空则默认 torch。
44
- > `native` 为原生算子,无 chunkwise,速度慢且显存高。
45
-
46
- ---
47
-
48
- ## rwkv7op 使用方法
49
-
50
- ```python
51
- from rwkv_ops import generalized_delta_rule # 或 from rwkv_ops import rwkv7_op,完全等价
52
-
53
- def generalized_delta_rule(
54
- r,
55
- w,
56
- k,
57
- v,
58
- a,
59
- b,
60
- initial_state=None,
61
- output_final_state: bool = True,
62
- head_first: bool = False,
63
- ):
64
- """
65
- 分块 Delta Rule 注意力接口。
66
-
67
- Args:
68
- q: [B, T, H, K]
69
- k: [B, T, H, K]
70
- v: [B, T, H, V]
71
- a: [B, T, H, K]
72
- b: [B, T, H, K]
73
- gk: [B, T, H, K] # decay term in log space!
74
- initial_state: 初始状态 [N, H, K, V],N 为序列数
75
- output_final_state: 是否返回最终状态
76
- head_first: 是否 head-first 格式,不支持变长
77
-
78
- Returns:
79
- o: 输出 [B, T, H, V] 或 [B, H, T, V]
80
- final_state: 最终状态 [N, H, K, V] 或 None
81
- """
82
- ```
83
-
84
- ---
85
-
86
-
87
- torch-cuda下head-size也是一个kernel参数,默认是64.
88
- 若 head-size ≠ 64,请使用:
89
-
90
- ```python
91
- from rwkv_ops import get_generalized_delta_rule
92
-
93
- generalized_delta_rule, RWKV7_USE_KERNEL = get_generalized_delta_rule(
94
- your_head_size, KERNEL_TYPE="cuda"
95
- )
96
- ```
97
-
98
- `RWKV7_USE_KERNEL` 为常量,标记是否使用 chunkwise 算子;
99
- 因为两者padding 处理逻辑不同,具体如下
100
-
101
- ```python
102
- if padding_mask is not None:
103
- if RWKV7_USE_KERNEL:
104
- w += (1 - padding_mask) * -1e9
105
- else:
106
- w = w * padding_mask + 1 - padding_mask
107
- ```
108
-
109
- ---
110
-
111
- ### rwkv7op的实现状态
112
-
113
-
114
- | Framework | cuda | triton | native |
115
- |-------------|------|--------|--------|
116
- | PyTorch | ✅ | ✅ | ✅ |
117
- | JAX | ❌ | ✅ | ✅ |
118
- | TensorFlow | ❌ | ❌ | ✅ |
119
- | NumPy | ❌ | ❌ | ✅ |