rwkv-ops 0.1.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rwkv-ops might be problematic. Click here for more details.
- rwkv_ops/__init__.py +26 -0
- rwkv_ops/rwkv7_kernel/__init__.py +153 -0
- rwkv_ops/rwkv7_kernel/get_jax_devices_info.py +221 -0
- rwkv_ops/rwkv7_kernel/get_torch_devices_info.py +250 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/__init__.py +9 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_bwd.py +95 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_fwd.py +60 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_bwd.py +78 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_fwd.py +80 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_bwd.py +150 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_fwd.py +45 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/cumsum.py +34 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/wy_fast_bwd.py +61 -0
- rwkv_ops/rwkv7_kernel/jax_kernel/wy_fast_fwd.py +86 -0
- rwkv_ops/rwkv7_kernel/jax_op.py +382 -0
- rwkv_ops/rwkv7_kernel/native_keras_op.py +95 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/__init__.py +13 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_bwd.py +96 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_fwd.py +64 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_bwd.py +74 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_fwd.py +75 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_bwd.py +148 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_fwd.py +44 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/cumsum.py +31 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/wy_fast_bwd.py +63 -0
- rwkv_ops/rwkv7_kernel/torch_kernel/wy_fast_fwd.py +79 -0
- rwkv_ops/rwkv7_kernel/torch_op.py +523 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/__init__.py +34 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_A_bwd.py +328 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_A_fwd.py +186 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_h_bwd.py +157 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_h_fwd.py +160 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_o_bwd.py +382 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/chunk_o_fwd.py +137 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/cumsum.py +86 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/utils.py +20 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_bwd.py +193 -0
- rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_fwd.py +326 -0
- rwkv_ops-0.1.0.dist-info/LICENSE.txt +201 -0
- rwkv_ops-0.1.0.dist-info/METADATA +118 -0
- rwkv_ops-0.1.0.dist-info/RECORD +43 -0
- rwkv_ops-0.1.0.dist-info/WHEEL +5 -0
- rwkv_ops-0.1.0.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,86 @@
|
|
|
1
|
+
import triton
|
|
2
|
+
import triton.language as tl
|
|
3
|
+
|
|
4
|
+
from ..triton_kernel.utils import use_cuda_graph
|
|
5
|
+
|
|
6
|
+
|
|
7
|
+
@triton.autotune(
|
|
8
|
+
configs=[
|
|
9
|
+
triton.Config({"BS": BS}, num_warps=num_warps, num_stages=num_stages)
|
|
10
|
+
for BS in [16, 32, 64]
|
|
11
|
+
for num_warps in [4, 8, 16]
|
|
12
|
+
for num_stages in [2, 3, 4]
|
|
13
|
+
],
|
|
14
|
+
key=["S", "BT"],
|
|
15
|
+
use_cuda_graph=use_cuda_graph,
|
|
16
|
+
)
|
|
17
|
+
@triton.jit(do_not_specialize=["T"])
|
|
18
|
+
def chunk_rwkv6_fwd_cumsum_kernel(
|
|
19
|
+
s,
|
|
20
|
+
T,
|
|
21
|
+
oi,
|
|
22
|
+
oe,
|
|
23
|
+
H: tl.constexpr,
|
|
24
|
+
S: tl.constexpr,
|
|
25
|
+
BT: tl.constexpr,
|
|
26
|
+
BS: tl.constexpr,
|
|
27
|
+
):
|
|
28
|
+
cu_seqlens = None
|
|
29
|
+
chunk_indices = None
|
|
30
|
+
i_s, i_t, i_bh = tl.program_id(0), tl.program_id(1), tl.program_id(2)
|
|
31
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
32
|
+
if False:
|
|
33
|
+
i_n, i_t = (
|
|
34
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
35
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
36
|
+
)
|
|
37
|
+
bos, eos = (
|
|
38
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
39
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
40
|
+
)
|
|
41
|
+
T = eos - bos
|
|
42
|
+
else:
|
|
43
|
+
bos, eos = i_b * T, i_b * T + T
|
|
44
|
+
|
|
45
|
+
o_i = tl.arange(0, BT)
|
|
46
|
+
m_i = tl.where(o_i[:, None] >= o_i[None, :], 1.0, 0.0).to(tl.float32)
|
|
47
|
+
m_e = tl.where(o_i[:, None] > o_i[None, :], 1.0, 0.0).to(tl.float32)
|
|
48
|
+
|
|
49
|
+
p_s = tl.make_block_ptr(
|
|
50
|
+
s + (bos * H + i_h) * S,
|
|
51
|
+
(T, S),
|
|
52
|
+
(H * S, 1),
|
|
53
|
+
(i_t * BT, i_s * BS),
|
|
54
|
+
(BT, BS),
|
|
55
|
+
(1, 0),
|
|
56
|
+
)
|
|
57
|
+
p_oi = tl.make_block_ptr(
|
|
58
|
+
oi + (bos * H + i_h) * S,
|
|
59
|
+
(T, S),
|
|
60
|
+
(H * S, 1),
|
|
61
|
+
(i_t * BT, i_s * BS),
|
|
62
|
+
(BT, BS),
|
|
63
|
+
(1, 0),
|
|
64
|
+
)
|
|
65
|
+
p_oe = tl.make_block_ptr(
|
|
66
|
+
oe + (bos * H + i_h) * S,
|
|
67
|
+
(T, S),
|
|
68
|
+
(H * S, 1),
|
|
69
|
+
(i_t * BT, i_s * BS),
|
|
70
|
+
(BT, BS),
|
|
71
|
+
(1, 0),
|
|
72
|
+
)
|
|
73
|
+
# [BT, BS]
|
|
74
|
+
b_s = tl.load(p_s, boundary_check=(0, 1)).to(tl.float32)
|
|
75
|
+
b_oi = tl.dot(m_i, b_s)
|
|
76
|
+
b_oe = tl.dot(m_e, b_s)
|
|
77
|
+
tl.store(
|
|
78
|
+
p_oi,
|
|
79
|
+
b_oi.to(p_oi.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
80
|
+
boundary_check=(0, 1),
|
|
81
|
+
)
|
|
82
|
+
tl.store(
|
|
83
|
+
p_oe,
|
|
84
|
+
b_oe.to(p_oe.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
85
|
+
boundary_check=(0, 1),
|
|
86
|
+
)
|
|
@@ -0,0 +1,20 @@
|
|
|
1
|
+
import triton
|
|
2
|
+
import triton.language as tl
|
|
3
|
+
|
|
4
|
+
is_gather_supported = hasattr(triton.language, "gather")
|
|
5
|
+
if not is_gather_supported:
|
|
6
|
+
|
|
7
|
+
@triton.jit
|
|
8
|
+
def gather(src, index, axis, _builder=None):
|
|
9
|
+
# This is a fallback implementation when tl.gather is not supported
|
|
10
|
+
# In order to pass triton compiler, there is no actual gather operation
|
|
11
|
+
return src
|
|
12
|
+
else:
|
|
13
|
+
gather = tl.gather
|
|
14
|
+
exp = tl.exp
|
|
15
|
+
import keras
|
|
16
|
+
|
|
17
|
+
if keras.backend.backend() == "jax":
|
|
18
|
+
from ..get_jax_devices_info import *
|
|
19
|
+
else:
|
|
20
|
+
from ..get_torch_devices_info import *
|
|
@@ -0,0 +1,193 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import triton
|
|
6
|
+
import triton.language as tl
|
|
7
|
+
|
|
8
|
+
from ..triton_kernel.utils import use_cuda_graph
|
|
9
|
+
|
|
10
|
+
triton_config = {}
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
@triton.autotune(
|
|
14
|
+
configs=[
|
|
15
|
+
triton.Config(triton_config, num_warps=num_warps, num_stages=num_stages)
|
|
16
|
+
for num_warps in [2, 4, 8, 16]
|
|
17
|
+
for num_stages in [2, 3, 4]
|
|
18
|
+
],
|
|
19
|
+
key=["BT", "BK", "BV"],
|
|
20
|
+
use_cuda_graph=use_cuda_graph,
|
|
21
|
+
)
|
|
22
|
+
@triton.jit(do_not_specialize=["T"])
|
|
23
|
+
def prepare_wy_repr_bwd_kernel(
|
|
24
|
+
A_ab_inv,
|
|
25
|
+
A_ak,
|
|
26
|
+
ag,
|
|
27
|
+
v,
|
|
28
|
+
dw,
|
|
29
|
+
du,
|
|
30
|
+
dv0,
|
|
31
|
+
T,
|
|
32
|
+
dAak,
|
|
33
|
+
dAab,
|
|
34
|
+
dv,
|
|
35
|
+
dag,
|
|
36
|
+
H: tl.constexpr,
|
|
37
|
+
K: tl.constexpr,
|
|
38
|
+
V: tl.constexpr,
|
|
39
|
+
BT: tl.constexpr,
|
|
40
|
+
BK: tl.constexpr,
|
|
41
|
+
BV: tl.constexpr,
|
|
42
|
+
):
|
|
43
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
|
44
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
45
|
+
if False:
|
|
46
|
+
i_n, i_t = (
|
|
47
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
48
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
49
|
+
)
|
|
50
|
+
bos, eos = (
|
|
51
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
52
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
53
|
+
)
|
|
54
|
+
T = eos - bos
|
|
55
|
+
else:
|
|
56
|
+
bos, eos = i_b * T, i_b * T + T
|
|
57
|
+
|
|
58
|
+
p_Aak_t = tl.make_block_ptr(
|
|
59
|
+
A_ak + (bos * H + i_h) * BT,
|
|
60
|
+
(BT, T),
|
|
61
|
+
(1, H * BT),
|
|
62
|
+
(0, i_t * BT),
|
|
63
|
+
(BT, BT),
|
|
64
|
+
(0, 1),
|
|
65
|
+
)
|
|
66
|
+
p_Aab_inv_t = tl.make_block_ptr(
|
|
67
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
68
|
+
(BT, T),
|
|
69
|
+
(1, H * BT),
|
|
70
|
+
(0, i_t * BT),
|
|
71
|
+
(BT, BT),
|
|
72
|
+
(0, 1),
|
|
73
|
+
)
|
|
74
|
+
p_dAak = tl.make_block_ptr(
|
|
75
|
+
dAak + (bos * H + i_h) * BT,
|
|
76
|
+
(T, BT),
|
|
77
|
+
(H * BT, 1),
|
|
78
|
+
(i_t * BT, 0),
|
|
79
|
+
(BT, BT),
|
|
80
|
+
(1, 0),
|
|
81
|
+
)
|
|
82
|
+
p_dAab = tl.make_block_ptr(
|
|
83
|
+
dAab + (bos * H + i_h) * BT,
|
|
84
|
+
(T, BT),
|
|
85
|
+
(H * BT, 1),
|
|
86
|
+
(i_t * BT, 0),
|
|
87
|
+
(BT, BT),
|
|
88
|
+
(1, 0),
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
b_A_ab_inv_t = tl.load(p_Aab_inv_t, boundary_check=(0, 1))
|
|
92
|
+
b_A_ak_t = tl.load(p_Aak_t, boundary_check=(0, 1))
|
|
93
|
+
b_A_ak_t = tl.where(
|
|
94
|
+
tl.arange(0, BT)[:, None] < tl.arange(0, BT)[None, :], b_A_ak_t, 0
|
|
95
|
+
)
|
|
96
|
+
b_A_ab_inv_t = tl.where(
|
|
97
|
+
tl.arange(0, BT)[:, None] <= tl.arange(0, BT)[None, :], b_A_ab_inv_t, 0
|
|
98
|
+
)
|
|
99
|
+
b_A_tmp_t = tl.dot(b_A_ak_t, b_A_ab_inv_t).to(v.dtype.element_ty)
|
|
100
|
+
b_dA_tmp = tl.zeros([BT, BT], dtype=tl.float32)
|
|
101
|
+
|
|
102
|
+
for i_v in range(tl.cdiv(V, BV)):
|
|
103
|
+
p_v = tl.make_block_ptr(
|
|
104
|
+
v + (bos * H + i_h) * V,
|
|
105
|
+
(T, V),
|
|
106
|
+
(H * V, 1),
|
|
107
|
+
(i_t * BT, i_v * BV),
|
|
108
|
+
(BT, BV),
|
|
109
|
+
(1, 0),
|
|
110
|
+
)
|
|
111
|
+
p_dv = tl.make_block_ptr(
|
|
112
|
+
dv + (bos * H + i_h) * V,
|
|
113
|
+
(T, V),
|
|
114
|
+
(H * V, 1),
|
|
115
|
+
(i_t * BT, i_v * BV),
|
|
116
|
+
(BT, BV),
|
|
117
|
+
(1, 0),
|
|
118
|
+
)
|
|
119
|
+
p_dv0 = tl.make_block_ptr(
|
|
120
|
+
dv0 + (bos * H + i_h) * V,
|
|
121
|
+
(T, V),
|
|
122
|
+
(H * V, 1),
|
|
123
|
+
(i_t * BT, i_v * BV),
|
|
124
|
+
(BT, BV),
|
|
125
|
+
(1, 0),
|
|
126
|
+
)
|
|
127
|
+
p_du = tl.make_block_ptr(
|
|
128
|
+
du + (bos * H + i_h) * V,
|
|
129
|
+
(T, V),
|
|
130
|
+
(H * V, 1),
|
|
131
|
+
(i_t * BT, i_v * BV),
|
|
132
|
+
(BT, BV),
|
|
133
|
+
(1, 0),
|
|
134
|
+
)
|
|
135
|
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
|
136
|
+
b_du = tl.load(p_du, boundary_check=(0, 1))
|
|
137
|
+
b_dA_tmp += tl.dot(b_du.to(b_v.dtype), tl.trans(b_v))
|
|
138
|
+
b_dv0 = tl.load(p_dv0, boundary_check=(0, 1))
|
|
139
|
+
b_dv = b_dv0 + tl.dot(b_A_tmp_t, b_du)
|
|
140
|
+
tl.store(p_dv, b_dv.to(p_dv.dtype.element_ty), boundary_check=(0, 1))
|
|
141
|
+
|
|
142
|
+
m_i = tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :]
|
|
143
|
+
b_dA_tmp = tl.where(m_i, b_dA_tmp, 0)
|
|
144
|
+
b_dA_ak = tl.dot(b_A_ab_inv_t, b_dA_tmp)
|
|
145
|
+
b_dA_ak = tl.where(m_i, b_dA_ak, 0)
|
|
146
|
+
tl.store(p_dAak, b_dA_ak, boundary_check=(0, 1))
|
|
147
|
+
b_dA_ab_inv = tl.dot(b_dA_tmp, b_A_ak_t)
|
|
148
|
+
|
|
149
|
+
for i_k in range(tl.cdiv(K, BK)):
|
|
150
|
+
p_ag = tl.make_block_ptr(
|
|
151
|
+
ag + (bos * H + i_h) * K,
|
|
152
|
+
(T, K),
|
|
153
|
+
(H * K, 1),
|
|
154
|
+
(i_t * BT, i_k * BK),
|
|
155
|
+
(BT, BK),
|
|
156
|
+
(1, 0),
|
|
157
|
+
)
|
|
158
|
+
p_dag = tl.make_block_ptr(
|
|
159
|
+
dag + (bos * H + i_h) * K,
|
|
160
|
+
(T, K),
|
|
161
|
+
(H * K, 1),
|
|
162
|
+
(i_t * BT, i_k * BK),
|
|
163
|
+
(BT, BK),
|
|
164
|
+
(1, 0),
|
|
165
|
+
)
|
|
166
|
+
p_dw = tl.make_block_ptr(
|
|
167
|
+
dw + (bos * H + i_h) * K,
|
|
168
|
+
(T, K),
|
|
169
|
+
(H * K, 1),
|
|
170
|
+
(i_t * BT, i_k * BK),
|
|
171
|
+
(BT, BK),
|
|
172
|
+
(1, 0),
|
|
173
|
+
)
|
|
174
|
+
b_ag = tl.load(p_ag, boundary_check=(0, 1))
|
|
175
|
+
b_dw = tl.load(p_dw, boundary_check=(0, 1))
|
|
176
|
+
b_dA_ab_inv += tl.dot(b_dw, tl.trans(b_ag))
|
|
177
|
+
b_dag = tl.dot(b_A_ab_inv_t.to(b_dw.dtype), b_dw)
|
|
178
|
+
tl.store(p_dag, b_dag.to(p_dag.dtype.element_ty), boundary_check=(0, 1))
|
|
179
|
+
|
|
180
|
+
# if we know dL/dA^(-1), for dL/dA, we can use the following formula:
|
|
181
|
+
# dL/dA = -(A^(-1))^T @ (dL/dA^(-1)) @ (A^(-1))^T
|
|
182
|
+
# in the fwd pass we use fwd substitution to calculate (I-lower(A_ab))^-1.
|
|
183
|
+
# denote A = I - lower(A_ab), B = A^-1
|
|
184
|
+
# in the backward pass.
|
|
185
|
+
# dL/dA = -(B)^T @ (dL/dB) @ B^T
|
|
186
|
+
# dL/dA_ab = lower(B^T @ dL/dB @ B^T)
|
|
187
|
+
b_dA_ab_inv = tl.where(
|
|
188
|
+
tl.arange(0, BT)[:, None] >= tl.arange(0, BT)[None, :], b_dA_ab_inv, 0
|
|
189
|
+
)
|
|
190
|
+
b_dA_ab_inv = tl.dot(b_A_ab_inv_t, b_dA_ab_inv)
|
|
191
|
+
b_dA_ab_inv = tl.dot(b_dA_ab_inv, b_A_ab_inv_t)
|
|
192
|
+
b_dA_ab_inv = tl.where(m_i, b_dA_ab_inv, 0)
|
|
193
|
+
tl.store(p_dAab, b_dA_ab_inv, boundary_check=(0, 1))
|
|
@@ -0,0 +1,326 @@
|
|
|
1
|
+
# -*- coding: utf-8 -*-
|
|
2
|
+
# Copyright (c) 2023-2025, Songlin Yang, Yu Zhang
|
|
3
|
+
|
|
4
|
+
|
|
5
|
+
import triton
|
|
6
|
+
import triton.language as tl
|
|
7
|
+
|
|
8
|
+
from ..triton_kernel.utils import is_gather_supported, use_cuda_graph, gather
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
@triton.autotune(
|
|
12
|
+
configs=[triton.Config({}, num_warps=num_warps) for num_warps in [1, 2, 4, 8, 16]],
|
|
13
|
+
key=["BT"],
|
|
14
|
+
use_cuda_graph=use_cuda_graph,
|
|
15
|
+
)
|
|
16
|
+
@triton.jit(do_not_specialize=["T"])
|
|
17
|
+
def prepare_wy_repr_fwd_kernel_chunk32(
|
|
18
|
+
A_ab,
|
|
19
|
+
T,
|
|
20
|
+
A_ab_inv,
|
|
21
|
+
H: tl.constexpr,
|
|
22
|
+
BT: tl.constexpr,
|
|
23
|
+
BC: tl.constexpr, # placeholder, do not delete
|
|
24
|
+
):
|
|
25
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
|
26
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
27
|
+
if False:
|
|
28
|
+
i_n, i_t = (
|
|
29
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
30
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
31
|
+
)
|
|
32
|
+
bos, eos = (
|
|
33
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
34
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
35
|
+
)
|
|
36
|
+
T = eos - bos
|
|
37
|
+
else:
|
|
38
|
+
bos, eos = i_b * T, i_b * T + T
|
|
39
|
+
p_Aab = tl.make_block_ptr(
|
|
40
|
+
A_ab + (bos * H + i_h) * BT,
|
|
41
|
+
(T, BT),
|
|
42
|
+
(H * BT, 1),
|
|
43
|
+
(i_t * BT, 0),
|
|
44
|
+
(BT, BT),
|
|
45
|
+
(1, 0),
|
|
46
|
+
)
|
|
47
|
+
p_Aab_inv = tl.make_block_ptr(
|
|
48
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
49
|
+
(T, BT),
|
|
50
|
+
(H * BT, 1),
|
|
51
|
+
(i_t * BT, 0),
|
|
52
|
+
(BT, BT),
|
|
53
|
+
(1, 0),
|
|
54
|
+
)
|
|
55
|
+
b_A_ab = tl.load(p_Aab, boundary_check=(0, 1))
|
|
56
|
+
b_A_ab = tl.where(tl.arange(0, BT)[:, None] > tl.arange(0, BT)[None, :], b_A_ab, 0)
|
|
57
|
+
for i in range(1, BT):
|
|
58
|
+
mask = tl.arange(0, BT) == i
|
|
59
|
+
b_a = tl.sum(tl.where(mask[:, None], b_A_ab, 0), 0)
|
|
60
|
+
b_a = b_a + tl.sum(b_a[:, None] * b_A_ab, 0) * (tl.arange(0, BT) < i)
|
|
61
|
+
b_A_ab = tl.where(mask[:, None], b_a, b_A_ab)
|
|
62
|
+
b_A_ab += tl.arange(0, BT)[:, None] == tl.arange(0, BT)[None, :]
|
|
63
|
+
tl.store(p_Aab_inv, b_A_ab.to(p_Aab_inv.dtype.element_ty), boundary_check=(0, 1))
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
@triton.autotune(
|
|
67
|
+
configs=[
|
|
68
|
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
|
69
|
+
for num_warps in [2, 4, 8]
|
|
70
|
+
for num_stages in [2, 3, 4]
|
|
71
|
+
],
|
|
72
|
+
key=["BC"],
|
|
73
|
+
use_cuda_graph=use_cuda_graph,
|
|
74
|
+
)
|
|
75
|
+
@triton.jit(do_not_specialize=["T"])
|
|
76
|
+
def prepare_wy_repr_fwd_kernel_chunk64(
|
|
77
|
+
A_ab,
|
|
78
|
+
T,
|
|
79
|
+
A_ab_inv,
|
|
80
|
+
H: tl.constexpr,
|
|
81
|
+
BT: tl.constexpr,
|
|
82
|
+
BC: tl.constexpr,
|
|
83
|
+
GATHER_SUPPORTED: tl.constexpr = is_gather_supported,
|
|
84
|
+
):
|
|
85
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
|
86
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
87
|
+
if False:
|
|
88
|
+
i_n, i_t = (
|
|
89
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
90
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
91
|
+
)
|
|
92
|
+
bos, eos = (
|
|
93
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
94
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
95
|
+
)
|
|
96
|
+
T = eos - bos
|
|
97
|
+
else:
|
|
98
|
+
bos, eos = i_b * T, i_b * T + T
|
|
99
|
+
|
|
100
|
+
p_A1 = tl.make_block_ptr(
|
|
101
|
+
A_ab + (bos * H + i_h) * BT,
|
|
102
|
+
(T, BT),
|
|
103
|
+
(H * BT, 1),
|
|
104
|
+
(i_t * BT, 0),
|
|
105
|
+
(BC, BC),
|
|
106
|
+
(1, 0),
|
|
107
|
+
)
|
|
108
|
+
p_A2 = tl.make_block_ptr(
|
|
109
|
+
A_ab + (bos * H + i_h) * BT,
|
|
110
|
+
(T, BT),
|
|
111
|
+
(H * BT, 1),
|
|
112
|
+
(i_t * BT + BC, BC),
|
|
113
|
+
(BC, BC),
|
|
114
|
+
(1, 0),
|
|
115
|
+
)
|
|
116
|
+
p_A3 = tl.make_block_ptr(
|
|
117
|
+
A_ab + (bos * H + i_h) * BT,
|
|
118
|
+
(T, BT),
|
|
119
|
+
(H * BT, 1),
|
|
120
|
+
(i_t * BT + BC, 0),
|
|
121
|
+
(BC, BC),
|
|
122
|
+
(1, 0),
|
|
123
|
+
)
|
|
124
|
+
p_A_inv1 = tl.make_block_ptr(
|
|
125
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
126
|
+
(T, BT),
|
|
127
|
+
(H * BT, 1),
|
|
128
|
+
(i_t * BT, 0),
|
|
129
|
+
(BC, BC),
|
|
130
|
+
(1, 0),
|
|
131
|
+
)
|
|
132
|
+
p_A_inv2 = tl.make_block_ptr(
|
|
133
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
134
|
+
(T, BT),
|
|
135
|
+
(H * BT, 1),
|
|
136
|
+
(i_t * BT + BC, BC),
|
|
137
|
+
(BC, BC),
|
|
138
|
+
(1, 0),
|
|
139
|
+
)
|
|
140
|
+
p_A_inv3 = tl.make_block_ptr(
|
|
141
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
142
|
+
(T, BT),
|
|
143
|
+
(H * BT, 1),
|
|
144
|
+
(i_t * BT + BC, 0),
|
|
145
|
+
(BC, BC),
|
|
146
|
+
(1, 0),
|
|
147
|
+
)
|
|
148
|
+
p_A_inv4 = tl.make_block_ptr(
|
|
149
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
150
|
+
(T, BT),
|
|
151
|
+
(H * BT, 1),
|
|
152
|
+
(i_t * BT, BC),
|
|
153
|
+
(BC, BC),
|
|
154
|
+
(1, 0),
|
|
155
|
+
)
|
|
156
|
+
|
|
157
|
+
b_A = tl.load(p_A1, boundary_check=(0, 1))
|
|
158
|
+
b_A2 = tl.load(p_A2, boundary_check=(0, 1))
|
|
159
|
+
b_A3 = tl.load(p_A3, boundary_check=(0, 1))
|
|
160
|
+
b_A = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A, 0)
|
|
161
|
+
b_A2 = tl.where(tl.arange(0, BC)[:, None] > tl.arange(0, BC)[None, :], b_A2, 0)
|
|
162
|
+
|
|
163
|
+
for i in range(1, BC):
|
|
164
|
+
if GATHER_SUPPORTED:
|
|
165
|
+
row_idx = tl.full([1, BC], i, dtype=tl.int16)
|
|
166
|
+
# [1, BK] -> [BK]
|
|
167
|
+
b_a = tl.sum(gather(b_A, row_idx, axis=0), 0)
|
|
168
|
+
b_a2 = tl.sum(gather(b_A2, row_idx, axis=0), 0)
|
|
169
|
+
else:
|
|
170
|
+
mask = tl.arange(0, BC) == i
|
|
171
|
+
b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0)
|
|
172
|
+
b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0)
|
|
173
|
+
mask = tl.arange(0, BC) == i
|
|
174
|
+
# b_a = tl.sum(tl.where(mask[:, None], b_A, 0), 0)
|
|
175
|
+
# b_a2 = tl.sum(tl.where(mask[:, None], b_A2, 0), 0)
|
|
176
|
+
b_a = b_a + tl.sum(b_a[:, None] * b_A, 0) * (tl.arange(0, BC) < i)
|
|
177
|
+
b_a2 = b_a2 + tl.sum(b_a2[:, None] * b_A2, 0) * (tl.arange(0, BC) < i)
|
|
178
|
+
b_A = tl.where(mask[:, None], b_a, b_A)
|
|
179
|
+
b_A2 = tl.where(mask[:, None], b_a2, b_A2)
|
|
180
|
+
|
|
181
|
+
# blockwise computation of lower triangular matrix's inverse
|
|
182
|
+
# i.e., [A11, 0; A21, A22]^-1 = [A11^-1, 0; -A22^-1 A21 A11^-1, A22^-1]
|
|
183
|
+
b_A += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
|
184
|
+
b_A2 += tl.arange(0, BC)[:, None] == tl.arange(0, BC)[None, :]
|
|
185
|
+
b_A3 = tl.dot(tl.dot(b_A2, b_A3), b_A)
|
|
186
|
+
# tl.debug_barrier()
|
|
187
|
+
tl.store(
|
|
188
|
+
p_A_inv1,
|
|
189
|
+
b_A.to(p_A_inv1.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
190
|
+
boundary_check=(0, 1),
|
|
191
|
+
)
|
|
192
|
+
tl.store(
|
|
193
|
+
p_A_inv2,
|
|
194
|
+
b_A2.to(p_A_inv2.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
195
|
+
boundary_check=(0, 1),
|
|
196
|
+
)
|
|
197
|
+
tl.store(
|
|
198
|
+
p_A_inv3,
|
|
199
|
+
b_A3.to(p_A_inv3.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
200
|
+
boundary_check=(0, 1),
|
|
201
|
+
)
|
|
202
|
+
# causal mask
|
|
203
|
+
tl.store(
|
|
204
|
+
p_A_inv4,
|
|
205
|
+
tl.zeros([BC, BC], dtype=tl.float32).to(p_A_inv4.dtype.element_ty),
|
|
206
|
+
boundary_check=(0, 1),
|
|
207
|
+
)
|
|
208
|
+
|
|
209
|
+
|
|
210
|
+
@triton.autotune(
|
|
211
|
+
configs=[
|
|
212
|
+
triton.Config({}, num_warps=num_warps, num_stages=num_stages)
|
|
213
|
+
for num_warps in [2, 4, 8, 16]
|
|
214
|
+
for num_stages in [2, 3, 4]
|
|
215
|
+
],
|
|
216
|
+
key=["H", "K", "V", "BT", "BK", "BV"],
|
|
217
|
+
use_cuda_graph=use_cuda_graph,
|
|
218
|
+
)
|
|
219
|
+
@triton.jit(do_not_specialize=["T"])
|
|
220
|
+
def wu_fwd_kernel(
|
|
221
|
+
ag,
|
|
222
|
+
v,
|
|
223
|
+
A_ab_inv,
|
|
224
|
+
A_ak,
|
|
225
|
+
T,
|
|
226
|
+
w,
|
|
227
|
+
u,
|
|
228
|
+
H: tl.constexpr,
|
|
229
|
+
K: tl.constexpr,
|
|
230
|
+
V: tl.constexpr,
|
|
231
|
+
BT: tl.constexpr,
|
|
232
|
+
BK: tl.constexpr,
|
|
233
|
+
BV: tl.constexpr,
|
|
234
|
+
):
|
|
235
|
+
i_t, i_bh = tl.program_id(0), tl.program_id(1)
|
|
236
|
+
i_b, i_h = i_bh // H, i_bh % H
|
|
237
|
+
if False:
|
|
238
|
+
i_n, i_t = (
|
|
239
|
+
tl.load(chunk_indices + i_t * 2).to(tl.int32),
|
|
240
|
+
tl.load(chunk_indices + i_t * 2 + 1).to(tl.int32),
|
|
241
|
+
)
|
|
242
|
+
bos, eos = (
|
|
243
|
+
tl.load(cu_seqlens + i_n).to(tl.int32),
|
|
244
|
+
tl.load(cu_seqlens + i_n + 1).to(tl.int32),
|
|
245
|
+
)
|
|
246
|
+
T = eos - bos
|
|
247
|
+
else:
|
|
248
|
+
bos, eos = i_b * T, i_b * T + T
|
|
249
|
+
o_s = tl.arange(0, BT)
|
|
250
|
+
|
|
251
|
+
p_A_ab_inv = tl.make_block_ptr(
|
|
252
|
+
A_ab_inv + (bos * H + i_h) * BT,
|
|
253
|
+
(T, BT),
|
|
254
|
+
(H * BT, 1),
|
|
255
|
+
(i_t * BT, 0),
|
|
256
|
+
(BT, BT),
|
|
257
|
+
(1, 0),
|
|
258
|
+
)
|
|
259
|
+
p_A_ak = tl.make_block_ptr(
|
|
260
|
+
A_ak + (bos * H + i_h) * BT,
|
|
261
|
+
(T, BT),
|
|
262
|
+
(H * BT, 1),
|
|
263
|
+
(i_t * BT, 0),
|
|
264
|
+
(BT, BT),
|
|
265
|
+
(1, 0),
|
|
266
|
+
)
|
|
267
|
+
|
|
268
|
+
b_Aab_inv = tl.load(p_A_ab_inv, boundary_check=(0, 1))
|
|
269
|
+
b_Aak = tl.load(p_A_ak, boundary_check=(0, 1))
|
|
270
|
+
b_Aab_inv = tl.where(o_s[:, None] >= o_s[None, :], b_Aab_inv, 0)
|
|
271
|
+
b_Aak = tl.where(o_s[:, None] > o_s[None, :], b_Aak, 0)
|
|
272
|
+
# let's use tf32 here
|
|
273
|
+
b_Aak = tl.dot(b_Aab_inv, b_Aak)
|
|
274
|
+
# (SY 01/04) should be bf16 or tf32? To verify.
|
|
275
|
+
b_Aak = b_Aak.to(v.dtype.element_ty, fp_downcast_rounding="rtne")
|
|
276
|
+
b_Aab_inv = b_Aab_inv.to(ag.dtype.element_ty, fp_downcast_rounding="rtne")
|
|
277
|
+
|
|
278
|
+
for i_k in range(tl.cdiv(K, BK)):
|
|
279
|
+
p_ag = tl.make_block_ptr(
|
|
280
|
+
ag + (bos * H + i_h) * K,
|
|
281
|
+
(T, K),
|
|
282
|
+
(H * K, 1),
|
|
283
|
+
(i_t * BT, i_k * BK),
|
|
284
|
+
(BT, BK),
|
|
285
|
+
(1, 0),
|
|
286
|
+
)
|
|
287
|
+
p_w = tl.make_block_ptr(
|
|
288
|
+
w + (bos * H + i_h) * K,
|
|
289
|
+
(T, K),
|
|
290
|
+
(H * K, 1),
|
|
291
|
+
(i_t * BT, i_k * BK),
|
|
292
|
+
(BT, BK),
|
|
293
|
+
(1, 0),
|
|
294
|
+
)
|
|
295
|
+
b_ag = tl.load(p_ag, boundary_check=(0, 1))
|
|
296
|
+
b_w = tl.dot(b_Aab_inv, b_ag) # both bf16 or fp16
|
|
297
|
+
tl.store(
|
|
298
|
+
p_w,
|
|
299
|
+
b_w.to(p_w.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
300
|
+
boundary_check=(0, 1),
|
|
301
|
+
)
|
|
302
|
+
|
|
303
|
+
for i_v in range(tl.cdiv(V, BV)):
|
|
304
|
+
p_v = tl.make_block_ptr(
|
|
305
|
+
v + (bos * H + i_h) * V,
|
|
306
|
+
(T, V),
|
|
307
|
+
(H * V, 1),
|
|
308
|
+
(i_t * BT, i_v * BV),
|
|
309
|
+
(BT, BV),
|
|
310
|
+
(1, 0),
|
|
311
|
+
)
|
|
312
|
+
p_u = tl.make_block_ptr(
|
|
313
|
+
u + (bos * H + i_h) * V,
|
|
314
|
+
(T, V),
|
|
315
|
+
(H * V, 1),
|
|
316
|
+
(i_t * BT, i_v * BV),
|
|
317
|
+
(BT, BV),
|
|
318
|
+
(1, 0),
|
|
319
|
+
)
|
|
320
|
+
b_v = tl.load(p_v, boundary_check=(0, 1))
|
|
321
|
+
b_u = tl.dot(b_Aak, b_v) # both bf16 or fp16
|
|
322
|
+
tl.store(
|
|
323
|
+
p_u,
|
|
324
|
+
b_u.to(p_u.dtype.element_ty, fp_downcast_rounding="rtne"),
|
|
325
|
+
boundary_check=(0, 1),
|
|
326
|
+
)
|