rwkv-ops 0.1.0__py3-none-any.whl → 0.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rwkv-ops might be problematic. Click here for more details.
- rwkv_ops/__init__.py +3 -0
- rwkv_ops/rwkv6_kernel/__init__.py +126 -0
- rwkv_ops/rwkv6_kernel/jax_rwkv_kernel.py +724 -0
- rwkv_ops/rwkv6_kernel/ops_rwkv_kernel.py +86 -0
- rwkv_ops/rwkv6_kernel/torch_rwkv_kernel.py +305 -0
- rwkv_ops/rwkv7_kernel/__init__.py +10 -7
- rwkv_ops/rwkv7_kernel/get_jax_devices_info.py +2 -3
- rwkv_ops/rwkv7_kernel/get_torch_devices_info.py +2 -2
- rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_bwd.py +3 -3
- rwkv_ops/rwkv7_kernel/jax_op.py +0 -2
- rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_bwd.py +1 -1
- rwkv_ops/rwkv7_kernel/torch_op.py +20 -53
- rwkv_ops-0.2.dist-info/METADATA +258 -0
- {rwkv_ops-0.1.0.dist-info → rwkv_ops-0.2.dist-info}/RECORD +17 -13
- rwkv_ops-0.1.0.dist-info/METADATA +0 -118
- {rwkv_ops-0.1.0.dist-info → rwkv_ops-0.2.dist-info}/LICENSE.txt +0 -0
- {rwkv_ops-0.1.0.dist-info → rwkv_ops-0.2.dist-info}/WHEEL +0 -0
- {rwkv_ops-0.1.0.dist-info → rwkv_ops-0.2.dist-info}/top_level.txt +0 -0
|
@@ -7,6 +7,7 @@ backward gradient computation, and integration with PyTorch's autograd system.
|
|
|
7
7
|
该文件实现了分块 Delta Rule 注意力机制的前向与反向传播,
|
|
8
8
|
使用 Triton 内核进行 GPU 加速优化。包括前向传播、梯度反向传播函数,
|
|
9
9
|
并集成了 PyTorch 的自动求导系统。
|
|
10
|
+
|
|
10
11
|
"""
|
|
11
12
|
|
|
12
13
|
import warnings
|
|
@@ -15,11 +16,11 @@ from typing import Optional
|
|
|
15
16
|
import torch
|
|
16
17
|
import triton
|
|
17
18
|
|
|
18
|
-
# 导入内核实现模块 / Import kernel implementation modules
|
|
19
19
|
from .torch_kernel.chunk_A_bwd import chunk_dplr_bwd_dqk_intra
|
|
20
20
|
from .torch_kernel.chunk_A_fwd import chunk_dplr_fwd_intra
|
|
21
21
|
from .torch_kernel.chunk_h_bwd import chunk_dplr_bwd_dhu
|
|
22
22
|
from .torch_kernel.chunk_h_fwd import chunk_dplr_fwd_h
|
|
23
|
+
|
|
23
24
|
from .torch_kernel.chunk_o_bwd import (
|
|
24
25
|
chunk_dplr_bwd_dAu,
|
|
25
26
|
chunk_dplr_bwd_dv,
|
|
@@ -37,11 +38,6 @@ from .get_torch_devices_info import (
|
|
|
37
38
|
|
|
38
39
|
|
|
39
40
|
def cast(x, dtype):
|
|
40
|
-
"""
|
|
41
|
-
Cast tensor x to specified dtype if not already in that format.
|
|
42
|
-
|
|
43
|
-
如果张量 x 不是目标数据类型,则将其转换为目标类型。
|
|
44
|
-
"""
|
|
45
41
|
if x is None or x.dtype == dtype:
|
|
46
42
|
return x
|
|
47
43
|
return x.to(dtype)
|
|
@@ -97,11 +93,11 @@ def chunk_dplr_fwd(
|
|
|
97
93
|
|
|
98
94
|
del ge
|
|
99
95
|
|
|
100
|
-
#
|
|
96
|
+
# A_ab, A_ak, gi, ge torch.float32
|
|
97
|
+
# A_qk, A_qb, qg, kg, ag, bg, dtype=q.dtype, eg: bf16
|
|
101
98
|
w, u, _ = prepare_wy_repr_fwd(ag=ag, A_ab=A_ab, A_ak=A_ak, v=v, chunk_size=BT)
|
|
102
99
|
|
|
103
100
|
del A_ab, A_ak
|
|
104
|
-
|
|
105
101
|
h, v_new, final_state = chunk_dplr_fwd_h(
|
|
106
102
|
kg=kg,
|
|
107
103
|
bg=bg,
|
|
@@ -164,6 +160,7 @@ def chunk_dplr_bwd(
|
|
|
164
160
|
dgk (torch.Tensor): Gradient of log decays
|
|
165
161
|
dh0 (torch.Tensor): Gradient of initial state
|
|
166
162
|
"""
|
|
163
|
+
# ******* start recomputing everything, otherwise i believe the gpu memory will be exhausted *******
|
|
167
164
|
gi, ge = chunk_rwkv6_fwd_cumsum(gk, BT)
|
|
168
165
|
A_ab, A_qk, A_ak, A_qb, qg, kg, ag, bg = chunk_dplr_fwd_intra(
|
|
169
166
|
q=q,
|
|
@@ -183,6 +180,9 @@ def chunk_dplr_bwd(
|
|
|
183
180
|
kg=kg, bg=bg, v=v, w=w, u=u, gk=gi, initial_state=initial_state, chunk_size=BT
|
|
184
181
|
)
|
|
185
182
|
del u
|
|
183
|
+
# ******* end of recomputation *******
|
|
184
|
+
# A_ak, A_ab_inv, gi, ge torch.float32
|
|
185
|
+
# A_qk, A_qb, qg, kg, ag, bg, v_new dtype=q.dtype, eg: bf16
|
|
186
186
|
|
|
187
187
|
dv_new_intra, dA_qk, dA_qb = chunk_dplr_bwd_dAu(
|
|
188
188
|
v=v, v_new=v_new, do=do, A_qb=A_qb, scale=scale, chunk_size=BT
|
|
@@ -211,7 +211,7 @@ def chunk_dplr_bwd(
|
|
|
211
211
|
do=do,
|
|
212
212
|
h=h,
|
|
213
213
|
dh=dh,
|
|
214
|
-
dv=
|
|
214
|
+
dv=dv_new,
|
|
215
215
|
w=w,
|
|
216
216
|
gk=gi,
|
|
217
217
|
chunk_size=BT,
|
|
@@ -282,11 +282,6 @@ class ChunkDPLRDeltaRuleFunction(torch.autograd.Function):
|
|
|
282
282
|
output_final_state: bool = True,
|
|
283
283
|
cu_seqlens: Optional[torch.LongTensor] = None,
|
|
284
284
|
):
|
|
285
|
-
"""
|
|
286
|
-
Forward function with autograd support.
|
|
287
|
-
|
|
288
|
-
支持自动求导的前向函数。
|
|
289
|
-
"""
|
|
290
285
|
chunk_size = 16
|
|
291
286
|
o, final_state = chunk_dplr_fwd(
|
|
292
287
|
q=q,
|
|
@@ -310,11 +305,6 @@ class ChunkDPLRDeltaRuleFunction(torch.autograd.Function):
|
|
|
310
305
|
@input_guard
|
|
311
306
|
@autocast_custom_bwd
|
|
312
307
|
def backward(ctx, do: torch.Tensor, dht: torch.Tensor):
|
|
313
|
-
"""
|
|
314
|
-
Backward function with autograd support.
|
|
315
|
-
|
|
316
|
-
支持自动求导的反向函数。
|
|
317
|
-
"""
|
|
318
308
|
q, k, v, a, b, gk, initial_state = ctx.saved_tensors
|
|
319
309
|
BT = ctx.chunk_size
|
|
320
310
|
cu_seqlens = ctx.cu_seqlens
|
|
@@ -439,6 +429,7 @@ def chunk_rwkv7(
|
|
|
439
429
|
|
|
440
430
|
RWKV-7 注意力机制的接口函数。
|
|
441
431
|
"""
|
|
432
|
+
|
|
442
433
|
if w is not None:
|
|
443
434
|
log_w = -torch.exp(w)
|
|
444
435
|
else:
|
|
@@ -458,11 +449,6 @@ def chunk_rwkv7(
|
|
|
458
449
|
|
|
459
450
|
|
|
460
451
|
def transpose_head(x, head_first):
|
|
461
|
-
"""
|
|
462
|
-
Transpose between head-first and time-first formats.
|
|
463
|
-
|
|
464
|
-
在 head-first 和 time-first 格式之间转置。
|
|
465
|
-
"""
|
|
466
452
|
if head_first:
|
|
467
453
|
x = torch.permute(x, dims=(0, 2, 1, 3))
|
|
468
454
|
out = cast(x, torch.bfloat16).contiguous()
|
|
@@ -480,11 +466,6 @@ def generalized_delta_rule(
|
|
|
480
466
|
output_final_state: bool = True,
|
|
481
467
|
head_first: bool = False,
|
|
482
468
|
):
|
|
483
|
-
"""
|
|
484
|
-
Generalized delta rule attention interface.
|
|
485
|
-
|
|
486
|
-
泛化 Delta Rule 注意力机制接口。
|
|
487
|
-
"""
|
|
488
469
|
dtype = r.dtype
|
|
489
470
|
r = transpose_head(r, head_first)
|
|
490
471
|
k = transpose_head(k, head_first)
|
|
@@ -492,30 +473,16 @@ def generalized_delta_rule(
|
|
|
492
473
|
a = transpose_head(a, head_first)
|
|
493
474
|
b = transpose_head(b, head_first)
|
|
494
475
|
w = transpose_head(w, head_first)
|
|
495
|
-
|
|
496
|
-
|
|
497
|
-
|
|
498
|
-
|
|
499
|
-
|
|
500
|
-
|
|
501
|
-
|
|
502
|
-
|
|
503
|
-
|
|
504
|
-
|
|
505
|
-
)
|
|
506
|
-
else:
|
|
507
|
-
from .native_keras_op import generalized_delta_rule
|
|
508
|
-
|
|
509
|
-
out, state = generalized_delta_rule(
|
|
510
|
-
r=r,
|
|
511
|
-
k=k,
|
|
512
|
-
v=v,
|
|
513
|
-
a=a,
|
|
514
|
-
b=b,
|
|
515
|
-
w=w,
|
|
516
|
-
initial_state=initial_state,
|
|
517
|
-
output_final_state=output_final_state,
|
|
518
|
-
)
|
|
476
|
+
out, state = chunk_rwkv7(
|
|
477
|
+
r=r,
|
|
478
|
+
k=k,
|
|
479
|
+
v=v,
|
|
480
|
+
a=a,
|
|
481
|
+
b=b,
|
|
482
|
+
w=w,
|
|
483
|
+
initial_state=initial_state,
|
|
484
|
+
output_final_state=output_final_state,
|
|
485
|
+
)
|
|
519
486
|
out = transpose_head(out, head_first)
|
|
520
487
|
if output_final_state:
|
|
521
488
|
return out, cast(state, dtype)
|
|
@@ -0,0 +1,258 @@
|
|
|
1
|
+
Metadata-Version: 2.1
|
|
2
|
+
Name: rwkv-ops
|
|
3
|
+
Version: 0.2
|
|
4
|
+
Home-page: https://github.com/pass-lin/rwkv_ops
|
|
5
|
+
License: Apache 2.0
|
|
6
|
+
Keywords: rwkv implement for multi backend
|
|
7
|
+
Classifier: Development Status :: 3 - Alpha
|
|
8
|
+
Classifier: Intended Audience :: Developers
|
|
9
|
+
Classifier: Intended Audience :: Science/Research
|
|
10
|
+
Classifier: License :: OSI Approved :: Apache Software License
|
|
11
|
+
Classifier: Operating System :: OS Independent
|
|
12
|
+
Classifier: Programming Language :: Python :: 3
|
|
13
|
+
Classifier: Programming Language :: Python :: 3.8
|
|
14
|
+
Classifier: Programming Language :: Python :: 3.9
|
|
15
|
+
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
+
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
+
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
18
|
+
Description-Content-Type: text/markdown
|
|
19
|
+
License-File: LICENSE.txt
|
|
20
|
+
Requires-Dist: keras
|
|
21
|
+
|
|
22
|
+
[English Document](ENREADME.md)
|
|
23
|
+
|
|
24
|
+
# RWKV OPS 项目
|
|
25
|
+
|
|
26
|
+
> 由于 RWKV 将持续迭代,核心算子会随之更新。
|
|
27
|
+
> 本仓专门维护「算子」本身,不维护 layer 与 model;尽可能提供各框架的 GPU 算子。
|
|
28
|
+
|
|
29
|
+
### 当前支持
|
|
30
|
+
| 算子类型 | 框架支持 |
|
|
31
|
+
|----------|----------|
|
|
32
|
+
| GPU 算子 | PyTorch、JAX(TensorFlow 待 Google 支持 Triton 后上线) |
|
|
33
|
+
| 原生算子 | PyTorch、JAX、TensorFlow、NumPy |
|
|
34
|
+
|
|
35
|
+
> 未来若 Keras 生态扩展,可能支持 MLX、OpenVINO。
|
|
36
|
+
> 注意:本库依赖 `keras`。
|
|
37
|
+
|
|
38
|
+
---
|
|
39
|
+
|
|
40
|
+
## 安装
|
|
41
|
+
|
|
42
|
+
```bash
|
|
43
|
+
pip install rwkv_ops
|
|
44
|
+
```
|
|
45
|
+
|
|
46
|
+
---
|
|
47
|
+
|
|
48
|
+
## 环境变量
|
|
49
|
+
|
|
50
|
+
| 变量名 | 含义 | 取值 | 默认值 | 优先级 |
|
|
51
|
+
|---|---|---|---|---|
|
|
52
|
+
| `KERAS_BACKEND` | Keras 后端 | `jax` / `torch` / `tensorflow` / `numpy` | — | 低 |
|
|
53
|
+
| `KERNEL_BACKEND` | 算子后端 | `jax` / `torch` / `tensorflow` / `numpy` | `torch` | **高** |
|
|
54
|
+
| `KERNEL_TYPE` | 实现类型 | `triton` / `cuda` / `native` | — | — |
|
|
55
|
+
|
|
56
|
+
> 若 `KERNEL_BACKEND` 有值,直接采用;若为空,则用 `KERAS_BACKEND`;两者皆空则默认 `torch`。
|
|
57
|
+
> `native` 为原生算子,无 chunkwise,速度慢且显存高。
|
|
58
|
+
|
|
59
|
+
---
|
|
60
|
+
|
|
61
|
+
## rwkv7op 使用方法
|
|
62
|
+
|
|
63
|
+
```python
|
|
64
|
+
from rwkv_ops import generalized_delta_rule # 或 from rwkv_ops import rwkv7_op,完全等价
|
|
65
|
+
|
|
66
|
+
def generalized_delta_rule(
|
|
67
|
+
r,
|
|
68
|
+
w,
|
|
69
|
+
k,
|
|
70
|
+
v,
|
|
71
|
+
a,
|
|
72
|
+
b,
|
|
73
|
+
initial_state=None,
|
|
74
|
+
output_final_state: bool = True,
|
|
75
|
+
head_first: bool = False,
|
|
76
|
+
):
|
|
77
|
+
"""
|
|
78
|
+
分块 Delta Rule 注意力接口。
|
|
79
|
+
|
|
80
|
+
Args:
|
|
81
|
+
q: [B, T, H, K]
|
|
82
|
+
k: [B, T, H, K]
|
|
83
|
+
v: [B, T, H, V]
|
|
84
|
+
a: [B, T, H, K]
|
|
85
|
+
b: [B, T, H, K]
|
|
86
|
+
gk: [B, T, H, K] # decay term in log space!
|
|
87
|
+
initial_state: 初始状态 [N, H, K, V],N 为序列数
|
|
88
|
+
output_final_state: 是否返回最终状态
|
|
89
|
+
head_first: 是否 head-first 格式,不支持变长
|
|
90
|
+
|
|
91
|
+
Returns:
|
|
92
|
+
o: 输出 [B, T, H, V] 或 [B, H, T, V]
|
|
93
|
+
final_state: 最终状态 [N, H, K, V] 或 None
|
|
94
|
+
"""
|
|
95
|
+
```
|
|
96
|
+
|
|
97
|
+
### torch-cuda 特殊用法
|
|
98
|
+
|
|
99
|
+
- torch-cuda 下 `head_size` 也是一个 kernel 参数,默认为 64。
|
|
100
|
+
- 若 `head_size ≠ 64`,请使用:
|
|
101
|
+
|
|
102
|
+
```python
|
|
103
|
+
from rwkv_ops import get_generalized_delta_rule
|
|
104
|
+
|
|
105
|
+
generalized_delta_rule, RWKV7_USE_KERNEL = get_generalized_delta_rule(
|
|
106
|
+
your_head_size, KERNEL_TYPE="cuda"
|
|
107
|
+
)
|
|
108
|
+
```
|
|
109
|
+
|
|
110
|
+
- `RWKV7_USE_KERNEL` 为常量,标记是否使用 chunkwise 算子。
|
|
111
|
+
- 两者 padding 处理逻辑不同:
|
|
112
|
+
|
|
113
|
+
```python
|
|
114
|
+
if padding_mask is not None:
|
|
115
|
+
if RWKV7_USE_KERNEL:
|
|
116
|
+
w += (1 - padding_mask) * -1e9
|
|
117
|
+
else:
|
|
118
|
+
w = w * padding_mask + 1 - padding_mask
|
|
119
|
+
```
|
|
120
|
+
|
|
121
|
+
---
|
|
122
|
+
|
|
123
|
+
### rwkv7op 实现状态
|
|
124
|
+
|
|
125
|
+
| Framework | cuda | triton | native |
|
|
126
|
+
|-------------|------|--------|--------|
|
|
127
|
+
| PyTorch | ✅ | ✅ | ✅ |
|
|
128
|
+
| JAX | ❌ | ✅ | ✅ |
|
|
129
|
+
| TensorFlow | ❌ | ❌ | ✅ |
|
|
130
|
+
| NumPy | ❌ | ❌ | ✅ |
|
|
131
|
+
|
|
132
|
+
---
|
|
133
|
+
|
|
134
|
+
## rwkv6op 使用方法
|
|
135
|
+
|
|
136
|
+
### PyTorch 使用注意事项
|
|
137
|
+
|
|
138
|
+
- 安装依赖:`keras`、`ninja`、完整的 CUDA 工具包。
|
|
139
|
+
- 若使用 VS Code + 虚拟环境调试,请务必在终端手动激活虚拟环境,再运行代码,否则 ninja 可能无法工作。
|
|
140
|
+
- 虽然 PyTorch 在「虚拟环境中的 CUDA 版本」与「全局 CUDA 版本」不一致时仍可正常运行,但强烈建议保持一致。
|
|
141
|
+
- PyTorch 限制:同一程序内只能实例化 **一个** `RWKV6_OP` 对象;算子线程安全(无状态),可在多处调用。
|
|
142
|
+
|
|
143
|
+
### JAX 使用注意事项
|
|
144
|
+
|
|
145
|
+
- 安装依赖:`keras`、`gcc`、`pybind11`、完整的 CUDA 工具包。
|
|
146
|
+
- 即使通过虚拟环境为 JAX 安装 CUDA,也必须在系统级安装完整 CUDA;两者版本需一致,以保证 JAX 并行编译速度。
|
|
147
|
+
- JAX 编译依赖 `/usr/local/cuda` 软链接,如不存在请手动创建:
|
|
148
|
+
```shell
|
|
149
|
+
sudo ln -sf /usr/local/cuda-12.4 /usr/local/cuda
|
|
150
|
+
```
|
|
151
|
+
- 确保 `nvcc -V` 正常输出,且 `which nvcc` 指向正确版本。
|
|
152
|
+
- JAX 限制:同一程序内只能实例化 **一个** `RWKV6_OP` 对象;算子线程安全(无状态),可在多处调用。
|
|
153
|
+
- JAX ≥ 0.6.0 不再使用 CUDA 算子,默认使用原生算子;推荐 0.4.34。
|
|
154
|
+
|
|
155
|
+
### TensorFlow 使用注意事项
|
|
156
|
+
|
|
157
|
+
- 仅提供基于原生 API 的 `RWKV6` 算子,仅用于推理,效率较低。
|
|
158
|
+
|
|
159
|
+
---
|
|
160
|
+
|
|
161
|
+
### 使用方法
|
|
162
|
+
需要注意的是,和rwkv7写成函数的形式不一样,RWKV6的op是一个类,需要实例化。
|
|
163
|
+
```python
|
|
164
|
+
from rwkv_ops import RWKV6_OP
|
|
165
|
+
|
|
166
|
+
operator = RWKV6_OP(
|
|
167
|
+
head_size=64, # 头大小,不确定时填 64
|
|
168
|
+
max_sequence_length=4096, # 训练最大序列长度;推理不受限
|
|
169
|
+
ops_loop=False # 可选:序列长度=1 时是否用上层 API 替代 CUDA
|
|
170
|
+
)
|
|
171
|
+
```
|
|
172
|
+
|
|
173
|
+
#### 调用
|
|
174
|
+
|
|
175
|
+
```python
|
|
176
|
+
y, y_state = operator(
|
|
177
|
+
r, k, v, w, u,
|
|
178
|
+
with_state=False, # 是否使用自定义初始状态 / 输出结束状态
|
|
179
|
+
init_state=None, # 初始状态 [n_state, num_heads, head_size, head_size]
|
|
180
|
+
state_map=None # int32 一维数组,长度=batch_size,定义 init_state 映射
|
|
181
|
+
)
|
|
182
|
+
```
|
|
183
|
+
|
|
184
|
+
| 参数 | 形状 | 说明 |
|
|
185
|
+
|---|---|---|
|
|
186
|
+
| r, k, v, w | (batch_size, seq_len, hidden_size) | — |
|
|
187
|
+
| u | (num_heads, head_size) 或 (hidden_size,) | — |
|
|
188
|
+
| init_state | (n_state, num_heads, head_size, head_size) | n_state=1 时所有样本共用;n_state=batch_size 时一一对应 |
|
|
189
|
+
| state_map | (batch_size,) | 指定每个样本用到的 init_state 索引 |
|
|
190
|
+
|
|
191
|
+
| 返回值 | 形状 | 说明 |
|
|
192
|
+
|---|---|---|
|
|
193
|
+
| y | (batch_size, seq_len, hidden_size) | 输出 |
|
|
194
|
+
| y_state | (batch_size, num_heads, head_size, head_size) 或 None | 结束状态 |
|
|
195
|
+
|
|
196
|
+
---
|
|
197
|
+
|
|
198
|
+
### 分布式小贴士
|
|
199
|
+
|
|
200
|
+
- 算子本身无分布式支持;PyTorch 可直接用多线程分布式。
|
|
201
|
+
- JAX 需通过 `shard_map` 包装(示例):
|
|
202
|
+
|
|
203
|
+
```python
|
|
204
|
+
import os
|
|
205
|
+
os.environ['KERAS_BACKEND'] = 'jax'
|
|
206
|
+
|
|
207
|
+
import jax, jax.numpy as jnp
|
|
208
|
+
from jax.experimental.shard_map import shard_map
|
|
209
|
+
from jax.sharding import Mesh, PartitionSpec as P
|
|
210
|
+
from functools import partial
|
|
211
|
+
from rwkv_ops import RWKV6_OP
|
|
212
|
+
|
|
213
|
+
batch_size, seq_length = 24, 512
|
|
214
|
+
head_size, num_heads = 64, 32
|
|
215
|
+
hidden_size = head_size * num_heads
|
|
216
|
+
|
|
217
|
+
mesh = Mesh(jax.devices('gpu'), axis_names=('device_axis',))
|
|
218
|
+
device_ns = NamedSharding(mesh, P('device_axis'))
|
|
219
|
+
|
|
220
|
+
operator = RWKV6_OP(head_size=head_size, max_sequence_length=seq_length)
|
|
221
|
+
|
|
222
|
+
@partial(shard_map,
|
|
223
|
+
mesh=mesh,
|
|
224
|
+
in_specs=(P('device_axis'),) * 5,
|
|
225
|
+
out_specs=(P('device_axis'), P('device_axis')),
|
|
226
|
+
check_rep=False)
|
|
227
|
+
def call_kernel(r, k, v, w, u):
|
|
228
|
+
# 去掉最外 device 维度
|
|
229
|
+
r, k, v, w, u = map(jnp.squeeze, (r, k, v, w, u))
|
|
230
|
+
y, ys = operator(r, k, v, w, u, with_state=True)
|
|
231
|
+
return jnp.expand_dims(y, 0), jnp.expand_dims(ys, 0)
|
|
232
|
+
|
|
233
|
+
# 构造输入并放置到对应设备
|
|
234
|
+
keys = jax.random.split(jax.random.PRNGKey(0), 5)
|
|
235
|
+
inputs = [jax.random.normal(k, (mesh.size, batch_size, seq_length, hidden_size)) for k in keys]
|
|
236
|
+
inputs_r, inputs_k, inputs_v, inputs_w, inputs_u = map(
|
|
237
|
+
lambda x: jax.device_put(x, device_ns), inputs)
|
|
238
|
+
inputs_u = inputs_u[:, :, 0] # (devices, hidden_size)
|
|
239
|
+
|
|
240
|
+
# 可选:jax.jit(call_kernel, ...) 加速
|
|
241
|
+
outputs_y, y_state = call_kernel(inputs_r, inputs_k, inputs_v, inputs_w, inputs_u)
|
|
242
|
+
|
|
243
|
+
print(outputs_y.shape, outputs_y.sharding)
|
|
244
|
+
print(y_state.shape, y_state.sharding)
|
|
245
|
+
```
|
|
246
|
+
|
|
247
|
+
---
|
|
248
|
+
|
|
249
|
+
### rwkv6op 实现状态
|
|
250
|
+
|
|
251
|
+
| Framework | cuda | triton | native |
|
|
252
|
+
|-------------|------|--------|--------|
|
|
253
|
+
| PyTorch | ✅ | ❌ | ✅ |
|
|
254
|
+
| JAX | ⚠️ | ❌ | ✅ |
|
|
255
|
+
| TensorFlow | ❌ | ❌ | ✅ |
|
|
256
|
+
| NumPy | ❌ | ❌ | ✅ |
|
|
257
|
+
|
|
258
|
+
⚠️ JAX 的 CUDA 实现仅适用于 < 0.6.0,推荐 0.4.34。
|
|
@@ -1,16 +1,20 @@
|
|
|
1
|
-
rwkv_ops/__init__.py,sha256=
|
|
2
|
-
rwkv_ops/
|
|
3
|
-
rwkv_ops/
|
|
4
|
-
rwkv_ops/
|
|
5
|
-
rwkv_ops/
|
|
1
|
+
rwkv_ops/__init__.py,sha256=Kfw_9iearbIplpuxx8sUl30TxKbTO-Ehqe0290Y4sZw,841
|
|
2
|
+
rwkv_ops/rwkv6_kernel/__init__.py,sha256=_j6G_3fY8xPxrlZbgDT2ndX4IPiNJ4qjqIcdmNI_r9Q,4100
|
|
3
|
+
rwkv_ops/rwkv6_kernel/jax_rwkv_kernel.py,sha256=WOzqfQQSHHMoWqm2kRz_BhtMzGYc5USJ26qaEwuARo4,30117
|
|
4
|
+
rwkv_ops/rwkv6_kernel/ops_rwkv_kernel.py,sha256=otjfw5n6nf2YVpBIWIZjaCsxMyLXXwg-ma1ueXX-EdY,3274
|
|
5
|
+
rwkv_ops/rwkv6_kernel/torch_rwkv_kernel.py,sha256=Q1uPMgaS21OEfQ8-sBDjaCUASMtkSOdN3OosEUsBp9U,12918
|
|
6
|
+
rwkv_ops/rwkv7_kernel/__init__.py,sha256=GpwZ5dk7d5H6u-VSUAQ29KQVnCZdEwtKZ13_3kVJets,5888
|
|
7
|
+
rwkv_ops/rwkv7_kernel/get_jax_devices_info.py,sha256=cMIaNED7d1PvYNSyq8wNI3G7wNvcgdUj9HWRBLuSVM8,6004
|
|
8
|
+
rwkv_ops/rwkv7_kernel/get_torch_devices_info.py,sha256=ZL_rAM6lHB4nTOOU28Xm08qptfuIoijOMi_xwJG3KCo,7380
|
|
9
|
+
rwkv_ops/rwkv7_kernel/jax_op.py,sha256=tyMxvk_EblDaGsePpxw3AhELvolp7LeE5NopUhKw1R0,9107
|
|
6
10
|
rwkv_ops/rwkv7_kernel/native_keras_op.py,sha256=QPrXLbqw0chipQg_0jepRp2U19BYpBBFdKZWyaDNNoc,2488
|
|
7
|
-
rwkv_ops/rwkv7_kernel/torch_op.py,sha256=
|
|
11
|
+
rwkv_ops/rwkv7_kernel/torch_op.py,sha256=yY5QP87iDow-T6a4ZzFShyIQ8gprTQoLYcjFqgOTW4Y,13675
|
|
8
12
|
rwkv_ops/rwkv7_kernel/jax_kernel/__init__.py,sha256=uHsf_1qrtRK62IvhLuzefHGPWpHXmw1p0tqmwlHcptk,346
|
|
9
13
|
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_bwd.py,sha256=2Voq1Bdzn0DFloiLvwINBk7akmxRWIqXIQeyafrJJGg,2138
|
|
10
14
|
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_A_fwd.py,sha256=rhmglqHIIww7yPzaSBEp9ISxhhxoUbMtV51AUDyhUd8,1425
|
|
11
15
|
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_bwd.py,sha256=JDfVZsMb8yMlMN3sKT3i3l3y1YQiQkyUjnSNyan5Fqc,1888
|
|
12
16
|
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_h_fwd.py,sha256=g8b_81rIIjxeknYiklRGnox24rAvEvfKRKT-5nI0Euo,1992
|
|
13
|
-
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_bwd.py,sha256=
|
|
17
|
+
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_bwd.py,sha256=gQnToi1e1GZCvjWsEdWx6WakUN4Lc0JfaBSsSXYdN84,3369
|
|
14
18
|
rwkv_ops/rwkv7_kernel/jax_kernel/chunk_o_fwd.py,sha256=4SjQ_zTZvFxsBMeWOx0JGFg9EQ4vllvEx30EcvSZJzI,853
|
|
15
19
|
rwkv_ops/rwkv7_kernel/jax_kernel/cumsum.py,sha256=NoOh2_hA_rdH5bmaNNMAdCgVPfWvQpf-Q8BqF926jrw,667
|
|
16
20
|
rwkv_ops/rwkv7_kernel/jax_kernel/wy_fast_bwd.py,sha256=PAMtE6wCW2Hz39oiHLGqhxY77csQAMYdNP2najDO_Jg,1407
|
|
@@ -20,7 +24,7 @@ rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_bwd.py,sha256=CWtotXkVvHz4-rkuOqWh6zK
|
|
|
20
24
|
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_A_fwd.py,sha256=4RJbyUTO23OxwH1rGVxeBiBVZKNHpPL_tJ7MFoDCIts,1475
|
|
21
25
|
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_bwd.py,sha256=zo6l0ZZUhXFu8wEFD76I0zSqFT9IXFKUKtyeaSwk380,1795
|
|
22
26
|
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_h_fwd.py,sha256=0ucN1U0EDTDqcyTPLLcsAX6FLTf2E_3toOY9p81gWYE,1858
|
|
23
|
-
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_bwd.py,sha256=
|
|
27
|
+
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_bwd.py,sha256=ioPrS0NYQhpFk1j8rAxqtbwpx1CwjJQnrJEBDqVy-As,3283
|
|
24
28
|
rwkv_ops/rwkv7_kernel/torch_kernel/chunk_o_fwd.py,sha256=54yoa3NpV64H-koURt-hUWpFHhUjwXpGvXPp2_ETCnw,825
|
|
25
29
|
rwkv_ops/rwkv7_kernel/torch_kernel/cumsum.py,sha256=hQkpyaa0eUyB4V3UVks7l1_dHwOrbump0FZILityBKw,611
|
|
26
30
|
rwkv_ops/rwkv7_kernel/torch_kernel/wy_fast_bwd.py,sha256=gk6QdoT1oq5B8Hp8Ak-SGqHm8CEj3MErUeWcRsaaOQM,1470
|
|
@@ -36,8 +40,8 @@ rwkv_ops/rwkv7_kernel/triton_kernel/cumsum.py,sha256=pRp_z587PrnpgRVpi031IndyjVI
|
|
|
36
40
|
rwkv_ops/rwkv7_kernel/triton_kernel/utils.py,sha256=TNGlkwGq4t-TOcdVBk_N_vHPLzMFTu_F0V-O1RprIO4,553
|
|
37
41
|
rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_bwd.py,sha256=szaG11q_WmpyhXi6aVWwzizvflCh5wND8wGA_V8afzA,5479
|
|
38
42
|
rwkv_ops/rwkv7_kernel/triton_kernel/wy_fast_fwd.py,sha256=jbb19DUTHENU2RIOv_T4m_W1eXMqdRqG0XevIkBOhI4,9438
|
|
39
|
-
rwkv_ops-0.
|
|
40
|
-
rwkv_ops-0.
|
|
41
|
-
rwkv_ops-0.
|
|
42
|
-
rwkv_ops-0.
|
|
43
|
-
rwkv_ops-0.
|
|
43
|
+
rwkv_ops-0.2.dist-info/LICENSE.txt,sha256=QwcOLU5TJoTeUhuIXzhdCEEDDvorGiC6-3YTOl4TecE,11356
|
|
44
|
+
rwkv_ops-0.2.dist-info/METADATA,sha256=cUhC6EYLULLgNLVtLOg4qMSoAZjIDcrojax6egCTU04,8409
|
|
45
|
+
rwkv_ops-0.2.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
|
|
46
|
+
rwkv_ops-0.2.dist-info/top_level.txt,sha256=cVqoKE-WR_e2gHL87-6O4K1kG6-yTJGB2huyr6FmD2I,9
|
|
47
|
+
rwkv_ops-0.2.dist-info/RECORD,,
|
|
@@ -1,118 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.1
|
|
2
|
-
Name: rwkv-ops
|
|
3
|
-
Version: 0.1.0
|
|
4
|
-
Home-page: https://github.com/your-org/rwkv_ops
|
|
5
|
-
License: Apache 2.0
|
|
6
|
-
Keywords: rwkv attention cuda triton pytorch jax
|
|
7
|
-
Classifier: Development Status :: 3 - Alpha
|
|
8
|
-
Classifier: Intended Audience :: Developers
|
|
9
|
-
Classifier: Intended Audience :: Science/Research
|
|
10
|
-
Classifier: License :: OSI Approved :: Apache Software License
|
|
11
|
-
Classifier: Operating System :: OS Independent
|
|
12
|
-
Classifier: Programming Language :: Python :: 3
|
|
13
|
-
Classifier: Programming Language :: Python :: 3.8
|
|
14
|
-
Classifier: Programming Language :: Python :: 3.9
|
|
15
|
-
Classifier: Programming Language :: Python :: 3.10
|
|
16
|
-
Classifier: Programming Language :: Python :: 3.11
|
|
17
|
-
Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
|
|
18
|
-
Description-Content-Type: text/markdown
|
|
19
|
-
License-File: LICENSE.txt
|
|
20
|
-
Requires-Dist: keras
|
|
21
|
-
|
|
22
|
-
[English Document](ENREADME.md)
|
|
23
|
-
# RWKV OPS 项目
|
|
24
|
-
> 由于 RWKV 将持续迭代,核心算子会随之更新。
|
|
25
|
-
> 本仓专门维护「算子」本身,不维护 layer 与 model;尽可能提供各框架的 GPU 算子。
|
|
26
|
-
> 目前:
|
|
27
|
-
> • GPU 算子:PyTorch、JAX(TensorFlow 待 Google 支持 Triton 后上线)
|
|
28
|
-
> • 原生算子:PyTorch、JAX、TensorFlow、NumPy
|
|
29
|
-
> 未来若 Keras 生态扩展,可能支持 MLX、OpenVINO。
|
|
30
|
-
> 注意:本库依赖 `keras`。
|
|
31
|
-
|
|
32
|
-
---
|
|
33
|
-
|
|
34
|
-
## 环境变量
|
|
35
|
-
|
|
36
|
-
| 变量名 | 含义 | 取值 | 默认值 | 优先级 |
|
|
37
|
-
|---|---|---|---|---|
|
|
38
|
-
| `KERAS_BACKEND` | Keras 后端 | jax / torch / tensorflow / numpy | — | 低 |
|
|
39
|
-
| `KERNEL_BACKEND` | 算子后端 | jax / torch / tensorflow / numpy | torch | **高** |
|
|
40
|
-
| `KERNEL_TYPE` | 实现类型 | triton / cuda / native | — | — |
|
|
41
|
-
|
|
42
|
-
> 若 `KERNEL_BACKEND` 有值,直接采用;若为空,则用 `KERAS_BACKEND`;两者皆空则默认 torch。
|
|
43
|
-
> `native` 为原生算子,无 chunkwise,速度慢且显存高。
|
|
44
|
-
|
|
45
|
-
---
|
|
46
|
-
|
|
47
|
-
## rwkv7op 使用方法
|
|
48
|
-
|
|
49
|
-
```python
|
|
50
|
-
from rwkv_ops import generalized_delta_rule # 或 from rwkv_ops import rwkv7_op,完全等价
|
|
51
|
-
|
|
52
|
-
def generalized_delta_rule(
|
|
53
|
-
r,
|
|
54
|
-
w,
|
|
55
|
-
k,
|
|
56
|
-
v,
|
|
57
|
-
a,
|
|
58
|
-
b,
|
|
59
|
-
initial_state=None,
|
|
60
|
-
output_final_state: bool = True,
|
|
61
|
-
head_first: bool = False,
|
|
62
|
-
):
|
|
63
|
-
"""
|
|
64
|
-
分块 Delta Rule 注意力接口。
|
|
65
|
-
|
|
66
|
-
Args:
|
|
67
|
-
q: [B, T, H, K]
|
|
68
|
-
k: [B, T, H, K]
|
|
69
|
-
v: [B, T, H, V]
|
|
70
|
-
a: [B, T, H, K]
|
|
71
|
-
b: [B, T, H, K]
|
|
72
|
-
gk: [B, T, H, K] # decay term in log space!
|
|
73
|
-
initial_state: 初始状态 [N, H, K, V],N 为序列数
|
|
74
|
-
output_final_state: 是否返回最终状态
|
|
75
|
-
head_first: 是否 head-first 格式,不支持变长
|
|
76
|
-
|
|
77
|
-
Returns:
|
|
78
|
-
o: 输出 [B, T, H, V] 或 [B, H, T, V]
|
|
79
|
-
final_state: 最终状态 [N, H, K, V] 或 None
|
|
80
|
-
"""
|
|
81
|
-
```
|
|
82
|
-
|
|
83
|
-
---
|
|
84
|
-
|
|
85
|
-
|
|
86
|
-
torch-cuda下head-size也是一个kernel参数,默认是64.
|
|
87
|
-
若 head-size ≠ 64,请使用:
|
|
88
|
-
|
|
89
|
-
```python
|
|
90
|
-
from rwkv_ops import get_generalized_delta_rule
|
|
91
|
-
|
|
92
|
-
generalized_delta_rule, RWKV7_USE_KERNEL = get_generalized_delta_rule(
|
|
93
|
-
your_head_size, KERNEL_TYPE="cuda"
|
|
94
|
-
)
|
|
95
|
-
```
|
|
96
|
-
|
|
97
|
-
`RWKV7_USE_KERNEL` 为常量,标记是否使用 chunkwise 算子;
|
|
98
|
-
因为两者padding 处理逻辑不同,具体如下
|
|
99
|
-
|
|
100
|
-
```python
|
|
101
|
-
if padding_mask is not None:
|
|
102
|
-
if RWKV7_USE_KERNEL:
|
|
103
|
-
w += (1 - padding_mask) * -1e9
|
|
104
|
-
else:
|
|
105
|
-
w = w * padding_mask + 1 - padding_mask
|
|
106
|
-
```
|
|
107
|
-
|
|
108
|
-
---
|
|
109
|
-
|
|
110
|
-
### rwkv7op的实现状态
|
|
111
|
-
|
|
112
|
-
|
|
113
|
-
| Framework | cuda | triton | native |
|
|
114
|
-
|-------------|------|--------|--------|
|
|
115
|
-
| PyTorch | ✅ | ✅ | ✅ |
|
|
116
|
-
| JAX | ❌ | ✅ | ✅ |
|
|
117
|
-
| TensorFlow | ❌ | ❌ | ✅ |
|
|
118
|
-
| NumPy | ❌ | ❌ | ✅ |
|
|
File without changes
|
|
File without changes
|
|
File without changes
|