rusterize 0.3.0__cp311-abi3-win_amd64.whl → 0.4.0__cp311-abi3-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of rusterize might be problematic. Click here for more details.

rusterize/__init__.py CHANGED
@@ -1,4 +1,120 @@
1
+ from __future__ import annotations
1
2
  import importlib.metadata
2
- from .core import *
3
+
4
+ from types import NoneType
5
+ from typing import List, Tuple
6
+
7
+ import numpy as np
8
+ import polars as pl
9
+ from geopandas import GeoDataFrame
10
+ import rioxarray
11
+ from xarray import DataArray
12
+ from .rusterize import _rusterize
3
13
 
4
14
  __version__ = importlib.metadata.version("rusterize")
15
+
16
+
17
+ def rusterize(
18
+ gdf: GeoDataFrame,
19
+ res: Tuple | List | None = None,
20
+ out_shape: Tuple | List | None = None,
21
+ extent: Tuple | List | None = None,
22
+ field: str | None = None,
23
+ by: str | None = None,
24
+ burn: int | float | None = None,
25
+ fun: str = "last",
26
+ background: int | float | None = np.nan,
27
+ dtype: str = "float64",
28
+ ) -> DataArray:
29
+ """
30
+ Fast geopandas rasterization into xarray.DataArray
31
+
32
+ Args:
33
+ :param gdf: geopandas dataframe to rasterize.
34
+ :param res: (xres, yres) for rasterized data.
35
+ :param out_shape: (nrows, ncols) for regularized output shape.
36
+ :param extent: (xmin, xmax, ymin, ymax) for regularized extent.
37
+ :param field: field to rasterize, mutually exclusive with `burn`. Default is None.
38
+ :param by: column to rasterize, assigns each unique value to a layer in the stack based on field. Default is None.
39
+ :param burn: burn a value onto the raster, mutually exclusive with `field`. Default is None.
40
+ :param fun: pixel function to use. Available options are `sum`, `first`, `last`, `min`, `max`, `count`, or `any`. Default is `last`.
41
+ :param background: background value in final raster. Default is np.nan.
42
+ :param dtype: specify the output dtype. Default is `float64`.
43
+
44
+ Returns:
45
+ Rasterized xarray.DataArray.
46
+
47
+ Notes:
48
+ When any of `res`, `out_shape`, or `extent` is not provided, it is inferred from the other arguments when applicable.
49
+ Unless `extent` is specified, a half-pixel buffer is applied to avoid missing points on the border.
50
+ The logics dictating the final spatial properties of the rasterized geometries follow those of GDAL.
51
+
52
+ If `field` is not in `gdf`, then a default `burn` value of 1 is rasterized.
53
+
54
+ A `None` value for `dtype` corresponds to the default of that dtype. An illegal value for a dtype will be replaced with the default of
55
+ that dtype. For example, a `background=np.nan` for `dtype="uint8"` will become `background=0`, where `0` is the default for `uint8`.
56
+ """
57
+ # type checks
58
+ if not isinstance(gdf, GeoDataFrame):
59
+ raise TypeError("`gdf` must be a geopandas dataframe.")
60
+ if not isinstance(res, (tuple, list, NoneType)):
61
+ raise TypeError("`resolution` must be a tuple or list of (x, y).")
62
+ if not isinstance(out_shape, (tuple, list, NoneType)):
63
+ raise TypeError("`out_shape` must be a tuple or list of (nrows, ncols).")
64
+ if not isinstance(extent, (tuple, list, NoneType)):
65
+ raise TypeError("`extent` must be a tuple or list of (xmin, ymin, xmax, ymax).")
66
+ if not isinstance(field, (str, NoneType)):
67
+ raise TypeError("`field` must be a string column name.")
68
+ if not isinstance(by, (str, NoneType)):
69
+ raise TypeError("`by` must be a string column name.")
70
+ if not isinstance(burn, (int, float, NoneType)):
71
+ raise TypeError("`burn` must be an integer or float.")
72
+ if not isinstance(fun, str):
73
+ raise TypeError("`pixel_fn` must be one of sum, first, last, min, max, count, or any.")
74
+ if not isinstance(background, (int, float, NoneType)):
75
+ raise TypeError("`background` must be integer, float, or None.")
76
+ if not isinstance(dtype, str):
77
+ raise TypeError("`dtype` must be a one of uint8, uint16, uint32, uint64, int8, int16, int32, int64, float32, float64")
78
+
79
+ # value checks
80
+ if not res and not out_shape and not extent:
81
+ raise ValueError("One of `res`, `out_shape`, or `extent` must be provided.")
82
+ if extent and not res and not out_shape:
83
+ raise ValueError("Must also specify `res` or `out_shape` with extent.")
84
+ if res and (len(res) != 2 or any(r <= 0 for r in res) or any(not isinstance(r, (int, float)) for r in res)):
85
+ raise ValueError("Resolution must be 2 positive numbers.")
86
+ if out_shape and (len(out_shape) != 2 or any(s <= 0 for s in out_shape) or any(not isinstance(s, int) for s in out_shape)):
87
+ raise ValueError("Output shape must be 2 positive integers.")
88
+ if extent and len(extent) != 4:
89
+ raise ValueError("Extent must be 4 numbers (xmin, ymin, xmax, ymax).")
90
+ if field and burn:
91
+ raise ValueError("Only one of `field` or `burn` can be specified.")
92
+
93
+ # defaults
94
+ _res = res if res else (0, 0)
95
+ _shape = out_shape if out_shape else (0, 0)
96
+ (_bounds, _has_extent) = (extent, True) if extent else (gdf.total_bounds, False)
97
+
98
+ # RasterInfo
99
+ raster_info = {
100
+ "nrows": _shape[0],
101
+ "ncols": _shape[1],
102
+ "xmin": _bounds[0],
103
+ "ymin": _bounds[1],
104
+ "xmax": _bounds[2],
105
+ "ymax": _bounds[3],
106
+ "xres": _res[0],
107
+ "yres": _res[1],
108
+ "has_extent": _has_extent,
109
+ }
110
+
111
+ # extract columns of interest and convert to polars
112
+ cols = list(set([col for col in (field, by) if col]))
113
+ try:
114
+ df = pl.from_pandas(gdf[cols]) if cols else None
115
+ except KeyError as e:
116
+ raise KeyError("Column not found in GeoDataFrame") from e
117
+
118
+ # rusterize
119
+ r = _rusterize(gdf.geometry, raster_info, fun, df, field, by, burn, background, dtype)
120
+ return DataArray.from_dict(r).rio.write_crs(gdf.crs, inplace=True)
rusterize/rusterize.pyd CHANGED
Binary file
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rusterize
3
- Version: 0.3.0
3
+ Version: 0.4.0
4
4
  Classifier: License :: OSI Approved :: MIT License
5
5
  Classifier: Operating System :: OS Independent
6
6
  Classifier: Programming Language :: Rust
@@ -14,7 +14,7 @@ Requires-Dist: xarray>=2025.1.1
14
14
  Requires-Dist: rioxarray>=0.18.2
15
15
  License-File: LICENSE
16
16
  Summary: High performance rasterization tool for Python built in Rust
17
- Keywords: fast,raster,geopandas,xarray
17
+ Keywords: rust,fast,raster,geometry,geopandas,xarray
18
18
  Requires-Python: >=3.11
19
19
  Description-Content-Type: text/markdown; charset=UTF-8; variant=GFM
20
20
  Project-URL: repository, https://github.com/ttrotto/rusterize
@@ -23,9 +23,9 @@ Project-URL: repository, https://github.com/ttrotto/rusterize
23
23
 
24
24
  High performance rasterization tool for Python built in Rust. This
25
25
  repository stems from the [fasterize](https://github.com/ecohealthalliance/fasterize.git) package built in C++
26
- for R and ports parts of the logics into Python with a Rust backend, in addition to some useful improvements.
26
+ for R and ports parts of the logics into Python with a Rust backend, in addition to some useful improvements (see [API](#API)).
27
27
 
28
- **rusterize** is designed to work on *(multi)polygons* and *(multi)linestrings*. Functionally, it takes an input [geopandas](https://geopandas.org/en/stable/) dataframe and returns a [xarray](https://docs.xarray.dev/en/stable/).
28
+ **rusterize** is designed to work on *(multi)polygons* and *(multi)linestrings*, even when they are nested inside complex geometry collections. Functionally, it takes an input [geopandas](https://geopandas.org/en/stable/) dataframe and returns a [xarray](https://docs.xarray.dev/en/stable/).
29
29
 
30
30
  # Installation
31
31
 
@@ -49,7 +49,7 @@ git clone https://github.com/<username>/rusterize.git
49
49
  cd rusterize
50
50
 
51
51
  # Install the Rust nightly toolchain
52
- rustup toolchain install nightly-2025-01-05
52
+ rustup toolchain install nightly-2025-07-31
53
53
 
54
54
  # Install maturin
55
55
  pip install maturin
@@ -63,7 +63,7 @@ maturin develop --profile dist-release
63
63
  This package has a simple API:
64
64
 
65
65
  ``` python
66
- from rusterize.core import rusterize
66
+ from rusterize import rusterize
67
67
 
68
68
  # gdf = <import/modify dataframe as needed>
69
69
 
@@ -71,21 +71,25 @@ from rusterize.core import rusterize
71
71
  rusterize(gdf,
72
72
  res=(30, 30),
73
73
  out_shape=(10, 10)
74
- extent=(0, 300, 0, 300)
74
+ extent=(0, 10, 10, 20)
75
75
  field="field",
76
76
  by="by",
77
+ burn=None,
77
78
  fun="sum",
78
- background=0)
79
+ background=0,
80
+ dtype="uint8")
79
81
  ```
80
82
 
81
83
  - `gdf`: geopandas dataframe to rasterize
82
- - `res`: tuple of (xres, yres) for desired resolution (default: `None`)
83
- - `out_shape`: tuple of (nrows, ncols) for desired output shape (default: `None`)
84
- - `extent`: tuple of (xmin, ymin, xmax, ymax) for desired output extent (default: `None`)
85
- - `field`: field to rasterize. (default: `None` -> a value of `1` is rasterized).
86
- - `by`: column to rasterize. Assigns each group to a band in the stack. Values are taken from `field`. (default: `None` -> singleband raster)
84
+ - `res`: (xres, yres) for desired resolution (default: `None`)
85
+ - `out_shape`: (nrows, ncols) for desired output shape (default: `None`)
86
+ - `extent`: (xmin, ymin, xmax, ymax) for desired output extent (default: `None`)
87
+ - `field`: column to rasterize. Mutually exclusive with `burn`. (default: `None` -> a value of `1` is rasterized)
88
+ - `by`: column for grouping. Assign each group to a band in the stack. Values are taken from `field` if specified, else `burn` is rasterized. (default: `None` -> singleband raster)
89
+ - `burn`: a single value to burn. Mutually exclusive with `field`. (default: `None`). If no field is found in `gdf` or if `field` is `None`, then `burn=1`
87
90
  - `fun`: pixel function to use when multiple values overlap. Available options are `sum`, `first`, `last`, `min`, `max`, `count`, or `any`. (default: `last`)
88
- - `background`: background value in final raster. (default: `np.nan`)
91
+ - `background`: background value in final raster. (default: `np.nan`). A `None` value corresponds to the default of the specified dtype. An illegal value for a dtype will be replaced with the default of that dtype. For example, a `background=np.nan` for `dtype="uint8"` will become `background=0`, where `0` is the default for `uint8`.
92
+ - `dtype`: dtype of the final raster. Possible values are `uint8`, `uint16`, `uint32`, `uint64`, `int8`, `int16`, `int32`, `int64`, `float32`, `float64` (default: `float64`)
89
93
 
90
94
  Note that control over the desired extent is not as strict as for resolution and shape. That is,
91
95
  when resolution, output shape, and extent are specified, priority is given to resolution and shape.
@@ -100,7 +104,7 @@ returns a dictionary that is converted to a xarray on the Python side
100
104
  for simpliicty.
101
105
 
102
106
  ``` python
103
- from rusterize.core import rusterize
107
+ from rusterize import rusterize
104
108
  import geopandas as gpd
105
109
  from shapely import wkt
106
110
  import matplotlib.pyplot as plt
@@ -110,7 +114,8 @@ geoms = [
110
114
  "POLYGON ((-180 -20, -140 55, 10 0, -140 -60, -180 -20), (-150 -20, -100 -10, -110 20, -150 -20))",
111
115
  "POLYGON ((-10 0, 140 60, 160 0, 140 -55, -10 0))",
112
116
  "POLYGON ((-125 0, 0 60, 40 5, 15 -45, -125 0))",
113
- "MULTILINESTRING ((-180 -70, -140 -50), (-140 -50, -100 -70), (-100 -70, -60 -50), (-60 -50, -20 -70), (-20 -70, 20 -50), (20 -50, 60 -70), (60 -70, 100 -50), (100 -50, 140 -70), (140 -70, 180 -50))"
117
+ "MULTILINESTRING ((-180 -70, -140 -50), (-140 -50, -100 -70), (-100 -70, -60 -50), (-60 -50, -20 -70), (-20 -70, 20 -50), (20 -50, 60 -70), (60 -70, 100 -50), (100 -50, 140 -70), (140 -70, 180 -50))",
118
+ "GEOMETRYCOLLECTION (POINT (50 -40), POLYGON ((75 -40, 75 -30, 100 -30, 100 -40, 75 -40)), LINESTRING (80 -40, 100 0), GEOMETRYCOLLECTION (POLYGON ((100 20, 100 30, 110 30, 110 20, 100 20))))"
114
119
  ]
115
120
 
116
121
  # Convert WKT strings to Shapely geometries
@@ -124,7 +129,7 @@ output = rusterize(
124
129
  gdf,
125
130
  res=(1, 1),
126
131
  field="value",
127
- fun="sum"
132
+ fun="sum",
128
133
  ).squeeze()
129
134
 
130
135
  # plot it
@@ -140,7 +145,7 @@ plt.show()
140
145
  **rusterize** is fast! Let’s try it on small and large datasets.
141
146
 
142
147
  ``` python
143
- from rusterize.core import rusterize
148
+ from rusterize import rusterize
144
149
  import geopandas as gpd
145
150
  import requests
146
151
  import zipfile
@@ -175,11 +180,10 @@ pytest <python file> --benchmark-min-rounds=20 --benchmark-time-unit='s'
175
180
  --------------------------------------------- benchmark: 1 tests --------------------------------------------
176
181
  Name (time in s) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
177
182
  -------------------------------------------------------------------------------------------------------------
178
- rusterize_large 1.6430 1.9249 1.7442 0.1024 1.6878 0.1974 6;0 0.5733 20 1
179
- rusterize_small 0.0912 0.1194 0.1014 0.0113 0.0953 0.0223 7;0 9.8633 20 1
183
+ rusterize_small 0.0791 0.0899 0.0812 0.0027 0.0803 0.0020 2;2 12.3214 20 1
184
+ rusterize_large 1.379545 1.4474 1.4006 0.0178 1.3966 0.0214 5;1 0.7140 20 1
180
185
  -------------------------------------------------------------------------------------------------------------
181
186
  ```
182
-
183
187
  And fasterize:
184
188
  ``` r
185
189
  library(sf)
@@ -202,9 +206,9 @@ microbenchmark(
202
206
  ```
203
207
  ```
204
208
  Unit: seconds
205
- expr min lq mean median uq max neval
206
- fasterize_large 9.9450280 10.6674467 10.8632224 10.9182963 11.1943478 11.3768210 20
207
- fasterize_small 0.4906411 0.5140836 0.5581061 0.5320919 0.5603512 0.8750579 20
209
+ expr min lq mean median uq max neval
210
+ fasterize_small 0.4741043 0.4926114 0.5191707 0.5193289 0.536741 0.5859029 20
211
+ fasterize_large 9.2199426 10.3595465 10.6653139 10.5369429 11.025771 11.7944567 20
208
212
  ```
209
213
  And on an even larger datasets? Here we use a layer from the province of Quebec, Canada representing ~2M polygons of forest stands, rasterized at 30 meters (20 rounds) with no field value and pixel function `any`. The comparison with `gdal_rasterize` was run with `hyperfine --runs 20 "gdal_rasterize -tr 30 30 -burn 1 <data_in> <data_out>"`.
210
214
  ```
@@ -212,7 +216,7 @@ And on an even larger datasets? Here we use a layer from the province of Quebec,
212
216
  --------------------------------------------- benchmark: 1 tests --------------------------------------------
213
217
  Name (time in s) Min Max Mean StdDev Median IQR Outliers OPS Rounds Iterations
214
218
  -------------------------------------------------------------------------------------------------------------
215
- rusterize 6.7270 7.0098 6.7824 0.0646 6.7686 0.0266 2;2 0.1474 20 1
219
+ rusterize 5.9331 7.2308 6.1302 0.3183 5.9903 0.1736 2;4 0.1631 20 1
216
220
  -------------------------------------------------------------------------------------------------------------
217
221
 
218
222
  # fasterize
@@ -221,8 +225,8 @@ Unit: seconds
221
225
  fasterize 157.4734 177.2055 194.3222 194.6455 213.9195 230.6504 20
222
226
 
223
227
  # gdal_rasterize (CLI) - read from fast drive, write to fast drive
224
- Time (mean ± σ): 5.801 s ± 0.124 s [User: 4.381 s, System: 1.396 s]
225
- Range (min … max): 5.649 s … 6.023 s 20 runs
228
+ Time (mean ± σ): 5.495 s ± 0.038 s [User: 4.268 s, System: 1.225 s]
229
+ Range (min … max): 5.452 s … 5.623 s 20 runs
226
230
  ```
227
231
  In terms of (multi)line rasterization speed, here's a benchmark against `gdal_rasterize` using a layer from the province of Quebec, Canada, representing a subset of the road network for a total of ~535K multilinestrings.
228
232
  ```
@@ -239,11 +243,11 @@ Range (min … max): 8.658 s … 8.874 s 20 runs
239
243
  ```
240
244
  # Comparison with other tools
241
245
 
242
- While **rusterize** is fast, there are other fast alternatives out there, including `GDAL`, `rasterio` and `geocube`. However, **rusterize** allows for a seamless, Rust-native processing with similar or lower memory footprint that doesn't require you to leave Python, and returns the geoinformation you need for downstream processing with ample control over resolution, shape, and extent.
246
+ While **rusterize** is fast, there are other fast alternatives out there, including `GDAL`, `rasterio` and `geocube`. However, **rusterize** allows for a seamless, Rust-native processing with similar or lower memory footprint that doesn't require you to leave Python, and returns the geoinformation you need for downstream processing with ample control over resolution, shape, extent, and data type.
243
247
 
244
248
  The following is a time comparison on a single run on the same forest stands dataset used earlier.
245
249
  ```
246
- rusterize: 6.7 sec
250
+ rusterize: 5.9 sec
247
251
  rasterio: 68 sec (but no spatial information)
248
252
  fasterize: 157 sec (including raster creation)
249
253
  geocube: 260 sec (larger memory footprint)
@@ -0,0 +1,6 @@
1
+ rusterize-0.4.0.dist-info/METADATA,sha256=5DBQfxRh5IW1ZTcFSZckbowAguThp6u7qEw9d_NKnGM,11408
2
+ rusterize-0.4.0.dist-info/WHEEL,sha256=bHXx23gwISJTVWPrX87IBhYNHSm5E1Xv3s6w_l3mmbU,95
3
+ rusterize-0.4.0.dist-info/licenses/LICENSE,sha256=FXkix0amECHul0Y2qWBXnEGNV2fd8GuVCIZuuzQwR-c,1130
4
+ rusterize/__init__.py,sha256=yxSEcr4MdCG8Gm3BjaDPNqIwSkfc4Y0H_TDi8scvGGU,5645
5
+ rusterize/rusterize.pyd,sha256=Y9ErkMZUNlDKTj9zmLpKm3161J32r13R7BbGhRrK7Dc,47331840
6
+ rusterize-0.4.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: maturin (1.8.3)
2
+ Generator: maturin (1.9.3)
3
3
  Root-Is-Purelib: false
4
4
  Tag: cp311-abi3-win_amd64
rusterize/core.py DELETED
@@ -1,107 +0,0 @@
1
- from __future__ import annotations
2
-
3
- from types import NoneType
4
- from typing import Any, Dict, Tuple
5
-
6
- import polars as pl
7
- from geopandas import GeoDataFrame
8
- import rioxarray
9
- from xarray import DataArray
10
- from .rusterize import _rusterize
11
-
12
-
13
- def rusterize(gdf: GeoDataFrame,
14
- res: Tuple[int, ...] | Tuple[float, ...] | None = None,
15
- out_shape: Tuple[int, ...] | None = None,
16
- extent: Tuple[int, ...] | Tuple[float, ...] | None = None,
17
- field: str | None = None,
18
- by: str | None = None,
19
- fun: str = "last",
20
- background: int | float | None = None,
21
- ) -> Dict[str, Any]:
22
- """
23
- Fast geopandas rasterization into xarray.DataArray
24
-
25
- Args:
26
- :param gdf: geopandas dataframe to rasterize.
27
- :param res: tuple of (xres, yres) for rasterized data.
28
- :param out_shape: tuple of (nrows, ncols) for regularized output shape.
29
- :param extent: tuple of (xmin, xmax, ymin, ymax) for regularized extent.
30
- :param field: field to rasterize. Default is None.
31
- :param by: column to rasterize, assigns each unique value to a layer in the stack based on field. Default is None.
32
- :param fun: pixel function to use. Available options are `sum`, `first`, `last`, `min`, `max`, `count`, or `any`. Default is `last`.
33
- :param background: background value in final raster. Default is None (NaN).
34
-
35
- Returns:
36
- Rasterized xarray.DataArray.
37
-
38
- Note:
39
- When any of `res`, `out_shape`, or `extent` is not provided, it is inferred from the other arguments when applicable.
40
- Unless `extent` is specified, a half-pixel buffer is applied to avoid missing points on the border.
41
- The logics dictating the final spatial properties of the rasterized geometries follow those of GDAL.
42
- """
43
- # type checks
44
- if not isinstance(gdf, GeoDataFrame):
45
- raise TypeError("Must pass a valid geopandas dataframe.")
46
- if not isinstance(res, (tuple, NoneType)):
47
- raise TypeError("Must pass a valid resolution tuple (x, y).")
48
- if not isinstance(out_shape, (tuple, NoneType)):
49
- raise TypeError("Must pass a valid output shape tuple (nrows, ncols).")
50
- if not isinstance(extent, (tuple, NoneType)):
51
- raise TypeError("Must pass a valid extent tuple (xmin, ymin, xmax, ymax).")
52
- if not isinstance(field, (str, NoneType)):
53
- raise TypeError("Must pass a valid string to field.")
54
- if not isinstance(by, (str, NoneType)):
55
- raise TypeError("Must pass a valid string to by.")
56
- if not isinstance(fun, str):
57
- raise TypeError("Must pass a valid string to pixel_fn. Select one of sum, first, last, min, max, count, or any.")
58
- if not isinstance(background, (int, float, NoneType)):
59
- raise TypeError("Must pass a valid background type.")
60
-
61
- # value checks
62
- if not res and not out_shape and not extent:
63
- raise ValueError("One of `res`, `out_shape`, or `extent` must be provided.")
64
- if extent and not res and not out_shape:
65
- raise ValueError("Must also specify `res` or `out_shape` with extent.")
66
- if res and (len(res) != 2 or any(r <= 0 for r in res) or any(not isinstance(r, (int, float)) for r in res)):
67
- raise ValueError("Resolution must be 2 positive numbers.")
68
- if out_shape and (len(out_shape) != 2 or any(s <= 0 for s in out_shape) or any(not isinstance(s, int) for s in out_shape)):
69
- raise ValueError("Output shape must be 2 positive integers.")
70
- if extent and len(extent) != 4:
71
- raise ValueError("Extent must be 4 numbers (xmin, ymin, xmax, ymax).")
72
- if by and not field:
73
- raise ValueError("If `by` is specified, `field` must also be specified.")
74
-
75
- # defaults
76
- _res = res if res else (0, 0)
77
- _shape = out_shape if out_shape else (0, 0)
78
- (_bounds, has_extent) = (extent, True) if extent else (gdf.total_bounds, False)
79
-
80
- # RasterInfo
81
- raster_info = {
82
- "nrows": _shape[0],
83
- "ncols": _shape[1],
84
- "xmin": _bounds[0],
85
- "ymin": _bounds[1],
86
- "xmax": _bounds[2],
87
- "ymax": _bounds[3],
88
- "xres": _res[0],
89
- "yres": _res[1],
90
- "has_extent": has_extent
91
- }
92
-
93
- # extract columns of interest and convert to polars
94
- cols = list(set([col for col in (field, by) if col]))
95
- df = pl.from_pandas(gdf[cols]) if cols else None
96
-
97
- # rusterize
98
- r = _rusterize(
99
- gdf.geometry,
100
- raster_info,
101
- fun,
102
- df,
103
- field,
104
- by,
105
- background
106
- )
107
- return DataArray.from_dict(r).rio.write_crs(gdf.crs, inplace=True)
@@ -1,7 +0,0 @@
1
- rusterize-0.3.0.dist-info/METADATA,sha256=spu-itZ6aACvDps3MbfUaXPUKignwHjgr8_m9Ryd8b4,10435
2
- rusterize-0.3.0.dist-info/WHEEL,sha256=4qYHF3r3_wk9215EqUuzc4CZ76XfRcqOTn7Cv3gIg80,95
3
- rusterize-0.3.0.dist-info/licenses/LICENSE,sha256=FXkix0amECHul0Y2qWBXnEGNV2fd8GuVCIZuuzQwR-c,1130
4
- rusterize/core.py,sha256=b6ciLMbrBCihdQdOVifAg9d2pE0gjX-aj08erPSSDBM,4694
5
- rusterize/__init__.py,sha256=rQSJ7V7ykrsuWz-cQK5Dm9E7usCYmCD3dIUrnosWABc,105
6
- rusterize/rusterize.pyd,sha256=-muUoytgSoapAGDQ64QvZptJHex0oYuDIwA0SiIa_X4,40093184
7
- rusterize-0.3.0.dist-info/RECORD,,