runbooks 0.7.5__py3-none-any.whl → 0.7.6__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- runbooks/__init__.py +1 -1
- runbooks/cfat/__init__.py +2 -2
- runbooks/finops/__init__.py +1 -1
- runbooks/finops/cli.py +1 -1
- runbooks/operate/__init__.py +2 -2
- runbooks/remediation/__init__.py +2 -2
- runbooks/remediation/acm_remediation.py +1 -1
- runbooks/remediation/base.py +1 -1
- runbooks/remediation/cloudtrail_remediation.py +1 -1
- runbooks/remediation/cognito_remediation.py +1 -1
- runbooks/remediation/dynamodb_remediation.py +1 -1
- runbooks/remediation/ec2_remediation.py +1 -1
- runbooks/remediation/ec2_unattached_ebs_volumes.py +1 -1
- runbooks/remediation/kms_enable_key_rotation.py +1 -1
- runbooks/remediation/kms_remediation.py +1 -1
- runbooks/remediation/lambda_remediation.py +1 -1
- runbooks/remediation/multi_account.py +1 -1
- runbooks/remediation/rds_remediation.py +1 -1
- runbooks/remediation/requirements.txt +2 -2
- runbooks/remediation/s3_block_public_access.py +1 -1
- runbooks/remediation/s3_enable_access_logging.py +1 -1
- runbooks/remediation/s3_encryption.py +1 -1
- runbooks/remediation/s3_remediation.py +1 -1
- runbooks/security/__init__.py +1 -1
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/METADATA +4 -2
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/RECORD +42 -62
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/top_level.txt +0 -1
- jupyter-agent/.env +0 -2
- jupyter-agent/.env.template +0 -2
- jupyter-agent/.gitattributes +0 -35
- jupyter-agent/.gradio/certificate.pem +0 -31
- jupyter-agent/README.md +0 -16
- jupyter-agent/__main__.log +0 -8
- jupyter-agent/app.py +0 -256
- jupyter-agent/cloudops-agent.png +0 -0
- jupyter-agent/ds-system-prompt.txt +0 -154
- jupyter-agent/jupyter-agent.png +0 -0
- jupyter-agent/llama3_template.jinja +0 -123
- jupyter-agent/requirements.txt +0 -9
- jupyter-agent/tmp/4ojbs8a02ir/jupyter-agent.ipynb +0 -68
- jupyter-agent/tmp/cm5iasgpm3p/jupyter-agent.ipynb +0 -91
- jupyter-agent/tmp/crqbsseag5/jupyter-agent.ipynb +0 -91
- jupyter-agent/tmp/hohanq1u097/jupyter-agent.ipynb +0 -57
- jupyter-agent/tmp/jns1sam29wm/jupyter-agent.ipynb +0 -53
- jupyter-agent/tmp/jupyter-agent.ipynb +0 -27
- jupyter-agent/utils.py +0 -409
- runbooks/inventory/aws_organization.png +0 -0
- /runbooks/inventory/{tests → Tests}/common_test_data.py +0 -0
- /runbooks/inventory/{tests → Tests}/common_test_functions.py +0 -0
- /runbooks/inventory/{tests → Tests}/script_test_data.py +0 -0
- /runbooks/inventory/{tests → Tests}/setup.py +0 -0
- /runbooks/inventory/{tests → Tests}/src.py +0 -0
- /runbooks/inventory/{tests/test_inventory_modules.py → Tests/test_Inventory_Modules.py} +0 -0
- /runbooks/inventory/{tests → Tests}/test_cfn_describe_stacks.py +0 -0
- /runbooks/inventory/{tests → Tests}/test_ec2_describe_instances.py +0 -0
- /runbooks/inventory/{tests → Tests}/test_lambda_list_functions.py +0 -0
- /runbooks/inventory/{tests → Tests}/test_moto_integration_example.py +0 -0
- /runbooks/inventory/{tests → Tests}/test_org_list_accounts.py +0 -0
- /runbooks/inventory/{Inventory_Modules.py → inventory_modules.py} +0 -0
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/WHEEL +0 -0
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/entry_points.txt +0 -0
- {runbooks-0.7.5.dist-info → runbooks-0.7.6.dist-info}/licenses/LICENSE +0 -0
@@ -1,68 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"metadata": {
|
3
|
-
"kernel_info": {
|
4
|
-
"name": "python3"
|
5
|
-
},
|
6
|
-
"language_info": {
|
7
|
-
"name": "python",
|
8
|
-
"version": "3.12"
|
9
|
-
}
|
10
|
-
},
|
11
|
-
"nbformat": 4,
|
12
|
-
"nbformat_minor": 0,
|
13
|
-
"cells": [
|
14
|
-
{
|
15
|
-
"cell_type": "markdown",
|
16
|
-
"metadata": {},
|
17
|
-
"source": "<p align=\"center\">\n <img src=\"https://huggingface.co/spaces/lvwerra/jupyter-agent/resolve/main/cloudops-agent.png\" />\n</p>\n\n\n<p style=\"text-align:center;\">Let a LLM agent write and execute code inside a notebook!</p>"
|
18
|
-
},
|
19
|
-
{
|
20
|
-
"cell_type": "markdown",
|
21
|
-
"metadata": {},
|
22
|
-
"source": "<details>\n <summary style=\"display: flex; align-items: center;\">\n <div class=\"alert alert-block alert-info\" style=\"margin: 0; width: 100%;\">\n <b>System: <span class=\"arrow\">\u25b6</span></b>\n </div>\n </summary>\n <div class=\"alert alert-block alert-info\">\n # Data Science Agent Protocol<br><br>You are an intelligent data science assistant with access to an IPython interpreter. Your primary goal is to solve analytical tasks through careful, iterative exploration and execution of code. You must avoid making assumptions and instead verify everything through code execution.<br><br>## Core Principles<br>1. Always execute code to verify assumptions<br>2. Break down complex problems into smaller steps<br>3. Learn from execution results<br>4. Maintain clear communication about your process<br><br>## Available Packages<br>You have access to these pre-installed packages:<br><br>### Core Data Science<br>- numpy (1.26.4)<br>- pandas (1.5.3)<br>- scipy (1.12.0)<br>- scikit-learn (1.4.1.post1)<br><br>### Visualization<br>- matplotlib (3.9.2)<br>- seaborn (0.13.2)<br>- plotly (5.19.0)<br>- bokeh (3.3.4)<br>- e2b_charts (latest)<br><br>### Image & Signal Processing<br>- opencv-python (4.9.0.80)<br>- pillow (9.5.0)<br>- scikit-image (0.22.0)<br>- imageio (2.34.0)<br><br>### Text & NLP<br>- nltk (3.8.1)<br>- spacy (3.7.4)<br>- gensim (4.3.2)<br>- textblob (0.18.0)<br><br>### Audio Processing<br>- librosa (0.10.1)<br>- soundfile (0.12.1)<br><br>### File Handling<br>- python-docx (1.1.0)<br>- openpyxl (3.1.2)<br>- xlrd (2.0.1)<br><br>### Other Utilities<br>- requests (2.26.0)<br>- beautifulsoup4 (4.12.3)<br>- sympy (1.12)<br>- xarray (2024.2.0)<br>- joblib (1.3.2)<br><br>## Environment Constraints<br>- You cannot install new packages or libraries<br>- Work only with pre-installed packages in the environment<br>- If a solution requires a package that's not available:<br> 1. Check if the task can be solved with base libraries<br> 2. Propose alternative approaches using available packages<br> 3. Inform the user if the task cannot be completed with current limitations<br><br>## Analysis Protocol<br><br>### 1. Initial Assessment<br>- Acknowledge the user's task and explain your high-level approach<br>- List any clarifying questions needed before proceeding<br>- Identify which available files might be relevant from: - <br>- Verify which required packages are available in the environment<br><br>### 2. Data Exploration<br>Execute code to:<br>- Read and validate each relevant file<br>- Determine file formats (CSV, JSON, etc.)<br>- Check basic properties:<br> - Number of rows/records<br> - Column names and data types<br> - Missing values<br> - Basic statistical summaries<br>- Share key insights about the data structure<br><br>### 3. Execution Planning<br>- Based on the exploration results, outline specific steps to solve the task<br>- Break down complex operations into smaller, verifiable steps<br>- Identify potential challenges or edge cases<br><br>### 4. Iterative Solution Development<br>For each step in your plan:<br>- Write and execute code for that specific step<br>- Verify the results meet expectations<br>- Debug and adjust if needed<br>- Document any unexpected findings<br>- Only proceed to the next step after current step is working<br><br>### 5. Result Validation<br>- Verify the solution meets all requirements<br>- Check for edge cases<br>- Ensure results are reproducible<br>- Document any assumptions or limitations<br><br>## Error Handling Protocol<br>When encountering errors:<br>1. Show the error message<br>2. Analyze potential causes<br>3. Propose specific fixes<br>4. Execute modified code<br>5. Verify the fix worked<br>6. Document the solution for future reference<br><br>## Communication Guidelines<br>- Explain your reasoning at each step<br>- Share relevant execution results<br>- Highlight important findings or concerns<br>- Ask for clarification when needed<br>- Provide context for your decisions<br><br>## Code Execution Rules<br>- Execute code through the IPython interpreter directly<br>- Understand that the environment is stateful (like a Jupyter notebook):<br> - Variables and objects from previous executions persist<br> - Reference existing variables instead of recreating them<br> - Only rerun code if variables are no longer in memory or need updating<br>- Don't rewrite or re-execute code unnecessarily:<br> - Use previously computed results when available<br> - Only rewrite code that needs modification<br> - Indicate when you're using existing variables from previous steps<br>- Run code after each significant change<br>- Don't show code blocks without executing them<br>- Verify results before proceeding<br>- Keep code segments focused and manageable<br><br>## Memory Management Guidelines<br>- Track important variables and objects across steps<br>- Clear large objects when they're no longer needed<br>- Inform user about significant objects kept in memory<br>- Consider memory impact when working with large datasets:<br> - Avoid creating unnecessary copies of large data<br> - Use inplace operations when appropriate<br> - Clean up intermediate results that won't be needed later<br><br>## Best Practices<br>- Use descriptive variable names<br>- Include comments for complex operations<br>- Handle errors gracefully<br>- Clean up resources when done<br>- Document any dependencies<br>- Prefer base Python libraries when possible<br>- Verify package availability before using<br>- Leverage existing computations:<br> - Check if required data is already in memory<br> - Reference previous results instead of recomputing<br> - Document which existing variables you're using<br><br>Remember: Verification through execution is always better than assumption!\n </div>\n</details>\n\n<style>\ndetails > summary .arrow {\n display: inline-block;\n transition: transform 0.2s;\n}\ndetails[open] > summary .arrow {\n transform: rotate(90deg);\n}\n</style>\n"
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"cell_type": "markdown",
|
26
|
-
"metadata": {},
|
27
|
-
"source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the Lotka-Volterra equation and plot the results.\n</div>\n"
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "markdown",
|
31
|
-
"metadata": {},
|
32
|
-
"source": "### Step 1: Import necessary packages\n\nThe Lotka-Volterra equations describe the dynamics of predator-prey systems. To solve and visualize these equations, we'll use `scipy` for numerical integration, `numpy` for array operations, and `matplotlib` for plotting.\n\n```python\nimport numpy as np\nfrom scipy.integrate import odeint\nimport matplotlib.pyplot as plt\n```\n\n### Step 2: Define the Lotka-Volterra model\n\nThe Lotka-Volterra model consists of four differential equations representing the population dynamics of two species, prey (`r`), and predators (`p`). We will implement these equations as a system of ordinary differential equations (ODEs).\n\n```python\ndef lotka_volterra(state, t, a, b, c, d):\n r = state[0]\n p = state[1]\n\n drdt = a * r - b * r * p\n dpdt = -c * p + d * r * p\n \n return [drdt, dpdt]\n```\n\n### Step 3: Set parameters and initial conditions\n\nWe need to specify the system parameters (`a`, `b`, `c`, `d`) and the initial conditions (`r0`, `p0`) for both populations (prey and predators) at time `t=0`.\n\n```python\n# System parameters (Lotka-Volterra model)\na = 0.5 # Prey growth rate\nb = 0.02 # Predation rate\nc = 0.01 # Predator mortality rate\nd = 0.001 # Conversion efficiency of prey consumption\n\n# Initial conditions\nr0 = 100 # Initial prey population\np0 = 50 # Initial predator population\n\n# Time points to solve ODE (from 0 to 100 with 1000 intervals)\nt = np.linspace(0, 100, 1000)\n```\n\n### Step 4: Solve the ODE\n\nNext, we will numerically integrate the Lotka-Volterra model using `scipy.integrate.odeint`.\n\n```python\n# Solve the Lotka-Volterra model\nstate0 = [r0, p0] # Initial state vector\nsolution = odeint(lotka_volterra, state0, t, args=(a, b, c, d))\nr, p = solution.T\n```\n\n### Step 5: Plot the results\n\nFinally, let's create a"
|
33
|
-
},
|
34
|
-
{
|
35
|
-
"cell_type": "code",
|
36
|
-
"execution_count": 1,
|
37
|
-
"metadata": {},
|
38
|
-
"source": "import numpy as np\nfrom scipy.integrate import odeint\nimport matplotlib.pyplot as plt\n\n# Define the Lotka-Volterra model\ndef lotka_volterra(state, t, a, b, c, d):\n r = state[0]\n p = state[1]\n\n drdt = a * r - b * r * p\n dpdt = -c * p + d * r * p\n \n return [drdt, dpdt]\n\n# System parameters (Lotka-Volterra model)\na = 0.5 # Prey growth rate\nb = 0.02 # Predation rate\nc = 0.01 # Predator mortality rate\nd = 0.001 # Conversion efficiency of prey consumption\n\n# Initial conditions\nr0 = 100 # Initial prey population\np0 = 50 # Initial predator population\n\n# Time points to solve ODE (from 0 to 100 with 1000 intervals)\nt = np.linspace(0, 100, 1000)\n\n# Solve the Lotka-Volterra model\nstate0 = [r0, p0] # Initial state vector\nsolution = odeint(lotka_volterra, state0, t, args=(a, b, c, d))\nr, p = solution.T\n\n# Plot the results\nplt.figure(figsize=(10, 5))\n\nplt.subplot(121)\nplt.plot(t, r, label='Prey population')\nplt.plot(t, p, label='Predator population')\nplt.xlabel('Time')\nplt.ylabel('Population size')\nplt.title('Lotka-Volterra Model')\nplt.legend()\n\nplt.subplot(122)\nplt.plot(r, p)\nplt.xlabel('Prey population')\nplt.ylabel('Predator population')\nplt.title('Phase plane')\n\nplt.tight_layout()\nplt.show()",
|
39
|
-
"outputs": [
|
40
|
-
{
|
41
|
-
"output_type": "display_data",
|
42
|
-
"metadata": {},
|
43
|
-
"data": {
|
44
|
-
"text/plain": [
|
45
|
-
"<Figure size 1000x500 with 2 Axes>"
|
46
|
-
],
|
47
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA94AAAHqCAYAAADyGZa5AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACoY0lEQVR4nOzdd3hU1drG4d9Meg8E0khIQui9CSJFmtKRclSKR0AEPYogqCjfoYtiF7FgBwuIR8WuoCBF6R2klwChhJ5O+nx/7GRgDEiCmUzKc1/XvsjsmdnzTlAmT9Za7zJZLBYLIiIiIiIiImIXZkcXICIiIiIiIlKWKXiLiIiIiIiI2JGCt4iIiIiIiIgdKXiLiIiIiIiI2JGCt4iIiIiIiIgdKXiLiIiIiIiI2JGCt4iIiIiIiIgdKXiLiIiIiIiI2JGCt4iIiIiIiIgdKXiLFLPIyEh69uzp6DIKxWQyMXXqVEeXUWrNmzcPk8nEkSNHCv3cqVOnYjKZir4oERGxi7x/8zdt2uToUuwiMjKSoUOHOroMkVJHwVskV1F+UO7evZupU6feUND6J0aPHo3JZOLgwYPXfMx///tfTCYTO3bsuOHXWbNmDVOnTiU+Pv6Gr+EI7du3x2QyUaNGjave/+uvv2IymTCZTHz55ZfFXJ2IiJRkeT8n5B3u7u7UrFmTUaNGcfr0aUeXJyIlnIK3iB3s3r2badOmFXvwHjx4MAALFiy45mM+++wzGjRoQMOGDW/4ddasWcO0adNKXfAGcHd35+DBg2zYsCHfffPnz8fd3d0BVYmISGkxffp0PvnkE9544w1uueUW5syZQ6tWrUhNTXV0aSJSgil4i5QhLVu2pHr16nz22WdXvX/t2rXExMRYA3pJc60fWrKyssjIyCiS14iOjqZWrVr5vkdpaWl8/fXX9OjRo0heR0REyqZu3bpxzz33cP/99zNv3jweffRRYmJi+Pbbbx1dmoiUYAreIoW0detWunXrhq+vL97e3nTq1Il169ZZ7583bx533nknAB06dLBOSVuxYsU1r/nRRx/h7OzME088AcCFCxd4/PHHadCgAd7e3vj6+tKtWze2b99+3foGDx7M3r172bJlS777FixYgMlkYuDAgQCcOXOG4cOHExQUhLu7O40aNeKjjz762+tPnTrVWmdUVJT1/V05uv/pp5/SrFkzPDw8qFixIgMGDCA2NtbmOu3bt6d+/fps3ryZdu3a4enpyf/93/9x5MgRTCYTL730ErNmzSI6Oho3Nzd2795NRkYGkydPplmzZvj5+eHl5UXbtm1Zvnz5db8vVxo4cCCff/45OTk51nPff/89qamp3HXXXVd9zvX+3vPs2rWLjh074uHhQVhYGDNmzLB5nSv9/PPPtG3bFi8vL3x8fOjRowe7du0q1HsRERHH6tixIwAxMTE259PT0xk3bhyVK1fGy8uLvn37cvbsWZvHfPvtt/To0YPQ0FDc3NyIjo7m6aefJjs72+ZxBw4coH///gQHB+Pu7k5YWBgDBgwgISHB5nEF+fy9mrx+Inv37uWuu+7C19eXgIAAxowZQ1pa2t8+t6A/s6xYsQKTycT//vc/nnnmGcLCwnB3d6dTp05XXSK3fv16unbtip+fH56entx6662sXr36uu9FpKRydnQBIqXJrl27aNu2Lb6+vowfPx4XFxfeeecd2rdvz8qVK2nZsiXt2rVj9OjRzJ49m//7v/+jTp06ANY//+rdd9/lwQcf5P/+7/+YMWMGAIcPH+abb77hzjvvJCoqitOnT/POO+9w6623snv3bkJDQ69Z4+DBg5k2bRoLFiygadOm1vPZ2dn873//o23btlStWpVLly7Rvn17Dh48yKhRo4iKiuKLL75g6NChxMfHM2bMmKtev1+/fuzfv5/PPvuMV199lUqVKgFQuXJlAJ555hkmTZrEXXfdxf3338/Zs2d5/fXXadeuHVu3bsXf3996rfPnz9OtWzcGDBjAPffcQ1BQkPW+uXPnkpaWxsiRI3Fzc6NixYokJiby/vvvM3DgQEaMGEFSUhIffPABXbp0YcOGDTRu3Pj6f4nAoEGDmDp1KitWrLD+wLRgwQI6depEYGBgvscX5O8dIC4ujg4dOpCVlcVTTz2Fl5cX7777Lh4eHvmu+cknnzBkyBC6dOnC888/T2pqKnPmzKFNmzZs3bqVyMjIAr0XERFxrEOHDgEQEBBgc/6RRx6hQoUKTJkyhSNHjjBr1ixGjRrF559/bn3MvHnz8Pb2Zty4cXh7e/Pbb78xefJkEhMTefHFFwHIyMigS5cupKen88gjjxAcHMyJEyf44YcfiI+Px8/PDyjc5++13HXXXURGRjJz5kzWrVvH7NmzuXjxIh9//PE1n1PYn1mee+45zGYzjz/+OAkJCbzwwgsMHjyY9evXWx/z22+/0a1bN5o1a8aUKVMwm83MnTuXjh078vvvv9OiRYvrvheREsciIhaLxWKZO3euBbBs3Ljxmo/p06ePxdXV1XLo0CHruZMnT1p8fHws7dq1s5774osvLIBl+fLl+a4RERFh6dGjh8VisVhee+01i8lksjz99NM2j0lLS7NkZ2fbnIuJibG4ublZpk+fft33ctNNN1nCwsJsrrF48WILYHnnnXcsFovFMmvWLAtg+fTTT62PycjIsLRq1cri7e1tSUxMtJ4HLFOmTLHefvHFFy2AJSYmxuZ1jxw5YnFycrI888wzNud37txpcXZ2tjl/6623WgDL22+/ne99AhZfX1/LmTNnbO7LysqypKen25y7ePGiJSgoyHLfffdd9/ty6623WurVq2exWCyW5s2bW4YPH269hqurq+Wjjz6yLF++3AJYvvjiC+vzCvr3/uijj1oAy/r1663nzpw5Y/Hz87P5fiUlJVn8/f0tI0aMsKkvLi7O4ufnZ3N+ypQpFv1TLSLieHk/JyxdutRy9uxZS2xsrGXhwoWWgIAAi4eHh+X48eM2j+vcubMlJyfH+vyxY8danJycLPHx8dZzqamp+V7ngQcesHh6elrS0tIsFovFsnXr1nyfS39VmM/fq8n7rOndu7fN+YceesgCWLZv3249FxERYRkyZIj1dkF/Zsn7fK1Tp47NZ/lrr71mASw7d+60WCwWS05OjqVGjRqWLl262Hz/UlNTLVFRUZbbbrvtb9+LSEmlqeYiBZSdnc0vv/xCnz59qFatmvV8SEgIgwYN4o8//iAxMbHA13vhhRcYM2YMzz//PBMnTrS5z83NDbPZbH3d8+fP4+3tTa1ata46hfyv7rnnHo4fP86qVaus5xYsWICrq6t1GvxPP/1EcHCwddo5gIuLC6NHjyY5OZmVK1cW+L3kWbRoETk5Odx1112cO3fOegQHB1OjRo18U8Ld3NwYNmzYVa/Vv39/6yh6HicnJ1xdXQHIycnhwoULZGVl0bx58wJ9X640aNAgFi1aREZGBl9++SVOTk707ds33+MK8/f+008/cfPNN9v8Jr5y5cr51tT/+uuvxMfHM3DgQJvvk5OTEy1btiz01HkRESk+nTt3pnLlyoSHhzNgwAC8vb35+uuvqVKlis3jRo4cabMdZNu2bcnOzubo0aPWc1fOiEpKSuLcuXO0bduW1NRU9u7dC2Ad0V6yZMk1e6EU9vP3Wh5++GGb24888ghgfL5dS2F/Zhk2bJj1sxyM7wsYI+cA27Zt48CBAwwaNIjz589b30tKSgqdOnVi1apV11zCJVKSaaq5SAGdPXuW1NRUatWqle++OnXqkJOTQ2xsLPXq1bvutVauXMmPP/7Ik08+aV0vfaWcnBxee+013nrrLWJiYmzWel05lS0uLs7meX5+fnh4eDBgwADGjRvHggULaN++vbVxWLdu3ahQoQIAR48epUaNGtYPyyvfS979hXXgwAEsFss1t+tycXGxuV2lShWbD98rRUVFXfX8Rx99xMsvv8zevXvJzMy87uOvZcCAATz++OP8/PPPzJ8/n549e+Lj45PvcYX5ez969Kh12vmV/vrcAwcOAJfXBf6Vr69vod6LiIgUnzfffJOaNWvi7OxMUFAQtWrVyvdZClC1alWb23mfvxcvXrSe27VrFxMnTuS3337L98v7vPXbUVFRjBs3jldeeYX58+fTtm1bevfuzT333GMN5YX9/L2Wvz4/Ojoas9n8t7u0FPRnljzX+77kfUYOGTLkmq+ZkJBgfZ5IaaHgLeIA9erVIz4+nk8++YQHHnggX2h89tlnmTRpEvfddx9PP/00FStWxGw28+ijj9r8ljckJMTmeXPnzmXo0KEEBgZy22238dVXX/Hmm2/y/fffk5SUZPdu5jk5OZhMJn7++WecnJzy3e/t7W1z+2prn//uvk8//ZShQ4fSp08fnnjiCQIDA3FycmLmzJnWNXYFFRISQvv27Xn55ZdZvXo1X331VaGe/0/k/R1+8sknBAcH57vf2Vn/NIuIlFQtWrSgefPm133c1T4HASwWCwDx8fHceuut+Pr6Mn36dKKjo3F3d2fLli08+eSTNp/3L7/8MkOHDuXbb7/ll19+YfTo0dZ12GFhYYX+/C2oK0fsr6WgP7Pkud73Je85L7744jV7t9zo+xFxJP10J1JAlStXxtPTk3379uW7b+/evZjNZsLDw4Hrf1BVqlSJL7/8kjZt2tCpUyf++OMPm+YjX375JR06dOCDDz6weV58fLy1mRkYU5avdOVo++DBg1m8eDE///wzCxYswNfXl169elnvj4iIYMeOHeTk5Nj8pj5valtERMQ167/W+4uOjsZisRAVFUXNmjX/7ltwQ7788kuqVavGokWLbGqYMmXKDV1v0KBB3H///fj7+9O9e/erPqYwf+8RERHW39Rf6a/PjY6OBiAwMJDOnTvfUO0iIlK6rVixgvPnz7No0SLatWtnPf/X7uh5GjRoQIMGDZg4cSJr1qyhdevWvP3228yYMaPIPn8PHDhgMxhw8OBBcnJy/rbhZ0F/ZimovM9IX19ffUZKmaI13iIF5OTkxO233863335rM+Xq9OnTLFiwgDZt2linCHt5eQHGh861hIWFsXTpUi5dusRtt93G+fPnbV4r7ze/eb744gtOnDhhc65z5842x5Uj4H369MHT05O33nqLn3/+mX79+uHu7m69v3v37sTFxdl0V83KyuL111/H29ubW2+99Zq1X+v99evXDycnJ6ZNm5avfovFYvMeb0Teb8mvvPb69etZu3btDV3vX//6F1OmTOGtt9665pT3wvy9d+/enXXr1rFhwwbr486ePcv8+fNtrtmlSxd8fX159tlnbabLX/kcEREp2672mZaRkcFbb71l87jExESysrJszjVo0ACz2Ux6ejpQdJ+/b775ps3t119/HTD2Lv+791GQn1kKqlmzZkRHR/PSSy+RnJyc7359RkpppRFvkb/48MMPWbx4cb7zY8aMYcaMGfz666+0adOGhx56CGdnZ9555x3S09N54YUXrI9t3LgxTk5OPP/88yQkJODm5kbHjh3zbVVVvXp1fvnlF9q3b0+XLl347bff8PX1pWfPnkyfPp1hw4Zxyy23sHPnTubPn2/T3Ot6vL296dOnDwsWLADIN8185MiRvPPOOwwdOpTNmzcTGRnJl19+yerVq5k1a9ZV1zvnadasGQD//e9/GTBgAC4uLvTq1Yvo6GhmzJjBhAkTOHLkCH369MHHx4eYmBi+/vprRo4cyeOPP17g9/BXPXv2ZNGiRfTt25cePXoQExPD22+/Td26da/64Xw9fn5+TJ069bqPK+jf+/jx4/nkk0/o2rUrY8aMsW4nlje7II+vry9z5szh3//+N02bNmXAgAFUrlyZY8eO8eOPP9K6dWveeOONQr8fEREpPW655RYqVKjAkCFDGD16NCaTiU8++SRfiP3tt98YNWoUd955JzVr1iQrK4tPPvkEJycn+vfvD1Bkn78xMTH07t2brl27snbtWj799FMGDRpEo0aNrvmcoviZ5Upms5n333+fbt26Ua9ePYYNG0aVKlU4ceIEy5cvx9fXl++///6Gri3iUA7opC5SIuVt/3GtIzY21mKxWCxbtmyxdOnSxeLt7W3x9PS0dOjQwbJmzZp813vvvfcs1apVszg5OdlsLXbldmJ51q9fb92aKjU11ZKWlmZ57LHHLCEhIRYPDw9L69atLWvXrrXceuutlltvvbXA7+nHH3+0AJaQkJB8W31YLBbL6dOnLcOGDbNUqlTJ4urqamnQoIFl7ty5+R7HX7YTs1gslqefftpSpUoVi9lszre12FdffWVp06aNxcvLy+Ll5WWpXbu25eGHH7bs27fP+pgrt/a6Ut52Yi+++GK++3JycizPPvusJSIiwuLm5mZp0qSJ5YcffrAMGTLEEhERcd3vx7Ve80pX207MYin43/uOHTsst956q8Xd3d1SpUoVy9NPP2354IMPrrr92vLlyy1dunSx+Pn5Wdzd3S3R0dGWoUOHWjZt2mR9jLYTExEpGQqy7ejfPS7v8+XKrUZXr15tufnmmy0eHh6W0NBQy/jx4y1Lliyxedzhw4ct9913nyU6Otri7u5uqVixoqVDhw6WpUuX5nvtgnz+Xk3eZ83u3bst//rXvyw+Pj6WChUqWEaNGmW5dOmSzWOvtp1YQX5mudbna97n/l9//ti6daulX79+loCAAIubm5slIiLCctddd1mWLVv2t+9FpKQyWSx/+bWaiIiIiIiUG1OnTmXatGmcPXv2htZli8j1aY23iIiIiIiIiB0peIuIiIiIiIjYkYK3iIiIiIiIiB1pjbeIiIiIiIiIHWnEW0RERERERMSOFLxFRERERERE7MjZ0QWUBDk5OZw8eRIfHx9MJpOjyxEREbFhsVhISkoiNDQUs7n8/M5cn88iIlKSFebzWcEbOHnyJOHh4Y4uQ0RE5G/FxsYSFhbm6DKKjT6fRUSkNCjI57OCN+Dj4wMY3zBfX18HVyMiImIrMTGR8PBw6+dVeaHPZxERKckK8/ms4A3W6Wu+vr76YBcRkRKrvE231ueziIiUBgX5fC4/C8VEREREREREHEDBW0RERERERMSOFLxFRERERERE7EhrvEWkVMjOziYzM9PRZYjYhYuLC05OTo4uQ0REROxEwVtESjSLxUJcXBzx8fGOLkXErvz9/QkODi53DdRERETKAwVvESnR8kJ3YGAgnp6eCiVS5lgsFlJTUzlz5gwAISEhDq5IREREipqCt4iUWNnZ2dbQHRAQ4OhyROzGw8MDgDNnzhAYGKhp5yIiImWMmquJSImVt6bb09PTwZWI2F/ef+fqZSAiIlL2KHiLSImn6eVSHui/cxERkbJLwVtERERERETEjhS8RUSk2JhMJr755psScx0RERGR4uDQ4L1q1Sp69epFaGjoVX+IslgsTJ48mZCQEDw8POjcuTMHDhywecyFCxcYPHgwvr6++Pv7M3z4cJKTk4vxXYiI5Dd06FBMJhMmkwlXV1eqV6/O9OnTycrKcnRppcrUqVNp3LhxvvOnTp2iW7duxV+QiIiIyA1waPBOSUmhUaNGvPnmm1e9/4UXXmD27Nm8/fbbrF+/Hi8vL7p06UJaWpr1MYMHD2bXrl38+uuv/PDDD6xatYqRI0cW11sQEbmmrl27curUKQ4cOMBjjz3G1KlTefHFF6/62IyMjGKurnQLDg7Gzc3N0WWIiIiIFIhDg3e3bt2YMWMGffv2zXefxWJh1qxZTJw4kTvuuIOGDRvy8ccfc/LkSevI+J49e1i8eDHvv/8+LVu2pE2bNrz++ussXLiQkydPFvO7ERGx5ebmRnBwMBEREfznP/+hc+fOfPfdd4AxIt6nTx+eeeYZQkNDqVWrFgCxsbHcdddd+Pv7U7FiRe644w6OHDkCGLOEXFxciIuLs3mdRx99lLZt216zDpPJxJw5c+jWrRseHh5Uq1aNL7/80uYxO3fupGPHjnh4eBAQEMDIkSNtZg/l1Ttt2jQqV66Mr68vDz74oM0vDCIjI5k1a5bNdRs3bszUqVOvWduTTz5JzZo18fT0pFq1akyaNMna1XvevHlMmzaN7du3W2cPzJs3z/qerpwlVdD6X3rpJUJCQggICODhhx9WB3EREREpFiV2H++YmBji4uLo3Lmz9Zyfnx8tW7Zk7dq1DBgwgLVr1+Lv70/z5s2tj+ncuTNms5n169dfNdDbU3aOhV93x5GZbaFr/WBcnLSEXqSoWSwWLmVmF/vrerg4/eOu0x4eHpw/f956e9myZfj6+vLrr78CxjZSXbp0oVWrVvz+++84OzszY8YMunbtyo4dO2jXrh3VqlXjk08+4YknnrA+Z/78+bzwwgt/+9qTJk3iueee47XXXuOTTz5hwIAB7Ny5kzp16pCSkmJ93Y0bN3LmzBnuv/9+Ro0aZQ26efW6u7uzYsUKjhw5wrBhwwgICOCZZ5654e+Jj48P8+bNIzQ0lJ07dzJixAh8fHwYP348d999N3/++SeLFy9m6dKlgPE58FcFrX/58uWEhISwfPlyDh48yN13303jxo0ZMWLEDdcvcj05ORaSM7K4lJFNakY2KelZXMo0vs7IysEEmM3GL5NMgNlkwmQy/nR3ccLbzRlPVye8cv90czarA76ISClUYoN33ohOUFCQzfmgoCDrfXFxcQQGBtrc7+zsTMWKFfONCF0pPT2d9PR06+3ExMQiqTnHYuHBT7cAsH3y7fh5KniLFLVLmdnUnbyk2F939/QueLre2D+ZFouFZcuWsWTJEh555BHreS8vL95//31cXV0B+PTTT8nJyeH999+3/mA9d+5c/P39WbFiBbfffjvDhw9n7ty51uD9/fffk5aWxl133fW3Ndx5553cf//9ADz99NP8+uuvvP7667z11lssWLCAtLQ0Pv74Y7y8vAB444036NWrF88//7z132FXV1c+/PBDPD09qVevHtOnT+eJJ57g6aefxmy+sX/vJk6caP06MjKSxx9/nIULFzJ+/Hg8PDzw9vbG2dmZ4ODga16joPVXqFCBN954AycnJ2rXrk2PHj1YtmyZgrf8IxaLhbPJ6eyLS2JfXBLHL14iLiGN00lpnE5I40xSOlk5liJ7PSezyQjirs54ujnh7+FCRS83ArxcqejtavyZewR4uVnPubs4FVkNIiJSeCU2eNvTzJkzmTZtWpFf19l8+TfQmTk5RX59ESldfvjhB7y9vcnMzCQnJ4dBgwbZTLtu0KCBNXQDbN++nYMHD+Lj42NznbS0NA4dOgQYU6YnTpzIunXruPnmm5k3bx533XWXNXBeS6tWrfLd3rZtG2As22nUqJHNNVq3bk1OTg779u2zBtdGjRrh6elpc43k5GRiY2OJiIgo+DfmCp9//jmzZ8/m0KFDJCcnk5WVha+vb6GuUdD669Wrh5PT5fAREhLCzp07b6huKb+ysnPYeSKB1QfPse7wBXafSuRCyvV7NJhN4OXqjIerE56uTni4OuPqbAaLBQvGL+8tFsixGGE+x2IhLTOHlPQsUjKySMs0fq7IzrGQlJZFUlrhGjV6uToR5OdOiJ87wb4ehPq7E3zF7RA/d/w9XTSaLiJiJyU2eOeNbpw+fZqQkBDr+dOnT1s73AYHB3PmzBmb52VlZXHhwoW/HR2ZMGEC48aNs95OTEwkPDz8H9dsMplwdTKTkZ1DZraCt4g9eLg4sXt6F4e8bmF16NCBOXPm4OrqSmhoKM7Otv/k/jUsJycn06xZM+bPn5/vWpUrVwYgMDCQXr16MXfuXKKiovj5559ZsWJFoWuzB7PZjMViO7L3d2uo165dy+DBg5k2bRpdunTBz8+PhQsX8vLLL9ulPhcXF5vbJpOJHP2SVAogKzuH3w+eY9GWE6zYdyZf6DWbIDLAi9ohPkQEeBHs606QrztBvm4E+7lTwdP1H08Rz86xkJqRZZ2unpqRTVJaFvGpGZxPyeBC7mF8nc6FlMzcPzPIzLaQkpHN4bMpHD6bcs3XcHcxE+LnQbCvEchD/N0Jr+BJ1YqeVA3wJMTPAyezgrmIyI0oscE7KiqK4OBgli1bZg3aiYmJrF+/nv/85z+AMdoSHx/P5s2badasGQC//fYbOTk5tGzZ8prXdnNzs1s3XGcnExnZkJlVdNPKROQyk8l0w1O+i5uXlxfVq1cv8OObNm3K559/TmBg4N+O+t5///0MHDiQsLAwoqOjad269XWvvW7dOu69916b202aNAGgTp06zJs3j5SUFOsvA1avXo3ZbLY2fQNjRP7SpUt4eHhYr+Ht7W39xWXlypU5deqU9fGJiYnExMRcs6Y1a9YQERHBf//7X+u5o0eP2jzG1dWV7Oy/X9Nf0PpFCivhUiZzV8ewYP0xziRdXqLm6+7MLdGVaF09gMbhFagR5G33qdxOZhM+7i74uLtc/8FXsFgsJKVncT45g1MJxjT4UwlpNl/HJaRxPiWDtMwcYs6lEHPu6uHcxclEWAVPwit6UrWiBxEVvXK/NoK5t1vp+LdZRMQRHPovZHJyMgcPHrTejomJYdu2bVSsWJGqVavy6KOPMmPGDGrUqEFUVBSTJk0iNDSUPn36AMYPW127dmXEiBG8/fbbZGZmMmrUKAYMGEBoaKhD3pPRUC2bDI14i0ghDR48mBdffJE77riD6dOnExYWxtGjR1m0aBHjx48nLCwMgC5duuDr68uMGTOYPn16ga79xRdf0Lx5c9q0acP8+fPZsGEDH3zwgfV1p0yZwpAhQ5g6dSpnz57lkUce4d///rdNn42MjAyGDx/OxIkTOXLkCFOmTGHUqFHW9d0dO3Zk3rx59OrVC39/fyZPnmwztfuvatSowbFjx1i4cCE33XQTP/74I19//bXNYyIjI62fDWFhYfj4+OT7xWlB6xcpqLTMbN5ZeZj3/zhsHd2u4OlC70ah3NGkCo3C/EvNyK/JZMLX3QVfdxeiKl17SUpaZjanEy+H8lMJaZyMv0TshUvEXkgl9mIqmdmWvw3mAV6uVA3IDeIVPYkI8KJaZS+iK3nj51m4XxiIiJQ1Dg3emzZtokOHDtbbedO/hwwZwrx58xg/fjwpKSmMHDmS+Ph42rRpw+LFi3F3d7c+Z/78+YwaNYpOnTphNpvp378/s2fPLvb3kievk3mWpi+KSCF5enqyatUqnnzySfr160dSUhJVqlShU6dONiPgZrOZoUOH8uyzz9qMYv+dadOmsXDhQh566CFCQkL47LPPqFu3rvV1lyxZwpgxY7jpppvw9PSkf//+vPLKKzbX6NSpEzVq1KBdu3akp6czcOBAmzXrEyZMICYmhp49e+Ln58fTTz/9tyPevXv3ZuzYsYwaNYr09HR69OjBpEmTbK7Zv39/Fi1aRIcOHYiPj2fu3LkMHTo03/etIPWLFMSmIxcY/9UO65TsmkHejOpYg671go012WWUu4sTEQFeRARcPZxn51iIS0zj2PlUjl1I4diFVI6eTyX2QirHLqRyMTWT87lT3bcei8/3/ErerlSr5E10oJfNn2EVPHDWLjAiUg6YLH9dkFcOJSYm4ufnR0JCQqGb+vzVLTOXcTIhje9HtaFBWP5tb0Sk4NLS0oiJiSEqKsrmF24Cw4cP5+zZs9Z9wf+OyWTi66+/ts4WuhFDhw4lPj7eZu9sKVp/9997UX5OlSbF+b4tFgsf/BHDsz/tIccCgT5uTOxZl54NQjCXktFtR0pMy+RYbhA/mhvGj5wz1pTHJaZd83muTmYiAjyNkfHK3lSr7E10ZS+qVfbGz0Oj5CJSshXmc0qLcYpY3m9tNdVcROwhISGBnTt3smDBggKFbhG5PovFwrTvdzNvzREA+jWpwpTe9RT8CsHX3YX6VfyoXyX/oENyehYxZ1M4fC6ZQ2eSOXQuhUNnkok5l0J6Vg4HziRz4EwycNrmeZW83XIDuRfVA32oFeRDzWBvKnu7qfu6iJQ6Ct5FzMXJ+CBQV3MRsYc77riDDRs28OCDD3Lbbbc5uhyRMuG5n/cyb80RTCb4b/c6DG8TpWBXhLzdnGkQ5pdvJmBOjoUT8Zc4fC6Fw2eTOXQ2mcNnUzh0NpnTiemcSzaODTEXbJ7n7+lCzaC8IO5DzUBvagX74O/piohISaXgXcTy1ngreIuIPdzI1mFFsaJo3rx5//gaIiXR/zbF8s6qwwA8168Bd99U1cEVlR9ms4nwikaX9FtrVra5L2+U/FBuID9wOpn9p5M4cj6F+NRMNsRcyBfIA33cqBXsQ41AH2oFe1MzyIcaQT7qti4iJYL+JSpieY1XsrLL/dJ5EREpw6ZOncq0adNsztWqVYu9e/cC0L59e1auXGlz/wMPPMDbb79dbDVez6GzyUz+9k8Axt1WU6G7BLnWKHlaZjaHzhohfF+c8ef+00kcv3iJM0npnElK5/cD52yeU8Xfg1rBPtQM8qFmkBHIqwfafws4EZErKXgXMRet8RYRkXKiXr16LF261Hrb2dn2x4oRI0bYbHnn6elZbLVdj8ViYep3u0jLzKFtjUqM6lDd0SVJAbi7OFEv1I96obaBPDk9iwO5IXz/6bxgnsSZpHROxF/iRPwlftt7xvp4swkiA7yoGeRD3VBf6oT4UjfUl1A/dy0zEBG7UPAuYs5mrfEWEZHywdnZmeDg4Gve7+np+bf3O9Kvu0/z+4FzuDqbmdGnvjqXl3Lebs40qVqBJlUr2JyPT81g/+lk9p1OYn9ckvHn6STiUzONteXnUli8K876eF93Z2sIrxPiS90QX2oEeePmrNFxEflnFLyLWN5UcwVvEREp6w4cOEBoaCju7u60atWKmTNnUrXq5ena8+fP59NPPyU4OJhevXoxadKkEjHqbbFYeHP5QQCGt4m65t7VUvr5e7rSIqoiLaIqWs9ZLBbOJqezL84YFd99MpHdpxI5eCaZxLQs1sdcYP0V68edzSaqB3pbg3idEF/qhPgQ4O3miLckIqWUgncRu9xcTWu8RUSk7GrZsiXz5s2jVq1anDp1imnTptG2bVv+/PNPfHx8GDRoEBEREYSGhrJjxw6efPJJ9u3bx6JFi655zfT0dNLT0623ExMT7VL7pqMX2X48AVdnM/e3ibLLa0jJZTKZCPRxJ9DHnbY1Ljd1S8/K5uCZZPacMsL4nlNGIE+4lMneuCT2xiXx9dYT1scH+brZhPG6ob5EBnjhpNkTInIVCt5FTNuJiYhIedCtWzfr1w0bNqRly5ZERETwv//9j+HDhzNy5Ejr/Q0aNCAkJIROnTpx6NAhoqOjr3rNmTNn5mvYZg//2xgLQN/GVTRqKVZuzlesH29mnLNYLJxKSLMJ4ntOJXLkfCqnE9M5nXiWFfvOWq/h4eJErWCf3EBurB+vFeyrzuoiouBd1JzzRryzFLxFpHgMHTqU+Ph4vvnmG0eXUiKZTCa+/vpr+vTpUyKuU1b5+/tTs2ZNDh48eNX7W7ZsCcDBgwevGbwnTJjAuHHjrLcTExMJDw8v0jrTs7JZkrumt2/TKkV6bSl7TCYTof4ehPp70LlukPV8cnoW++IS2X3F6PjeuEQuZWazLTaebbHxNteJDPCkXhU/6of6Ub+KL/VD/ajgpX3HRcoTBe8i5qqp5iKCEYY/+ugjAFxcXKhatSr33nsv//d//5ev83NxO3LkCFFRUWzdupXGjRs7tJaSaOrUqXzzzTds27bN5vypU6eoUKHC1Z8kJCcnc+jQIf79739f9f6872dISMg1r+Hm5oabm31HoDfEXCAxLYtAHzduiqx4/SeIXIW3mzPNIirSLOLyf0PZORaOnE/JNzp+OjGdI+dTOXI+lR93nLI+voq/hzWE16/iR70qvgT6uDvi7YhIMVDwLmJ5U821nZiIdO3alblz55Kens5PP/3Eww8/jIuLCxMmTMj32IyMDFxdS9/oR2ZmJi4uLo4uo1iU1O7cjvL444/Tq1cvIiIiOHnyJFOmTMHJyYmBAwdy6NAhFixYQPfu3QkICGDHjh2MHTuWdu3a0bBhQ4fWvebQeQDa1qistbhSpJzMJqIrexNd2ZtejUKt588np7P7VCJ/nkjkz5MJ7DqRwJHzqdZtzpbsOm19bKCPG/WrGEG8fqgv9av4EaItzkTKBLOjCyhr8pqrZWnEW6Tcc3NzIzg4mIiICP7zn//QuXNnvvvuO8AYEe/Tpw/PPPMMoaGh1KpVC4DY2Fjuuusu/P39qVixInfccQdHjhyxXjM7O5tx48bh7+9PQEAA48ePx2Kx/fdm8eLFtGnTxvqYnj17cujQIev9UVFGM6kmTZpgMplo3749ADk5OUyfPp2wsDDc3Nxo3Lgxixcvtj7vyJEjmEwmPv/8c2699Vbc3d2ZP3/+Vd+7yWRizpw5dOvWDQ8PD6pVq8aXX35p85idO3fSsWNHPDw8CAgIYOTIkSQnJ1vvz/seTZs2jcqVK+Pr68uDDz5IRkaG9TGRkZHMmjXL5rqNGzdm6tSp1/x7efLJJ6lZsyaenp5Uq1aNSZMmkZmZCcC8efOYNm0a27dvx2QyYTKZmDdvnvU9XTmdv6D1v/TSS4SEhBAQEMDDDz9sfa3S7vjx4wwcOJBatWpx1113ERAQwLp166hcuTKurq4sXbqU22+/ndq1a/PYY4/Rv39/vv/+e0eXzdrc4N0qOsDBlUh5EeDtRtsalflP+2jeHNSUFU90YMfU21k48mYm9qhDn8ahVA/0xmSCM0np/Lb3DLOXHWDkJ5u55bnfaDZjKf/+YD3PL97LjztOcex8ar5/90Wk5NOIdxG73NVcI94idmGxQGZq8b+uiyf8wxEHDw8Pzp8/b729bNkyfH19+fXXXwFj9LhLly60atWK33//HWdnZ2bMmEHXrl3ZsWMHrq6uvPzyy8ybN48PP/yQOnXq8PLLL/P111/TsWNH63VTUlIYN24cDRs2JDk5mcmTJ9O3b1+2bduG2Wxmw4YNtGjRgqVLl1KvXj3rSPtrr73Gyy+/zDvvvEOTJk348MMP6d27N7t27aJGjRrW6z/11FO8/PLLNGnSBHf3a0+LnDRpEs899xyvvfYan3zyCQMGDGDnzp3UqVOHlJQU63vduHEjZ86c4f7772fUqFHWoJv3PXJ3d2fFihUcOXKEYcOGERAQwDPPPHPDfw8+Pj7MmzeP0NBQdu7cyYgRI/Dx8WH8+PHcfffd/PnnnyxevJilS5cC4Ofnl+8aBa1/+fLlhISEsHz5cg4ePMjdd99N48aNGTFixA3XX1IsXLjwmveFh4ezcuXKYqymYDKycth1MgGAllGaZi6O4+vuws3VAri52uVfAKVmZLEnb2T8RAJ/nkzkwOkkLqRk8PuBc/x+4NwVz3emQZgfDar40zDMjwZV/Air4KGRcZESTMG7iKmruYidZabCs6HXf1xR+7+T4Hpje/1aLBaWLVvGkiVLeOSRR6znvby8eP/9963B99NPPyUnJ4f333/f+sPT3Llz8ff3Z8WKFdx+++3MmjWLCRMm0K9fPwDefvttlixZYvN6/fv3t7n94YcfUrlyZXbv3k39+vWpXNnYPicgIMBm+vRLL73Ek08+yYABAwB4/vnnWb58ObNmzeLNN9+0Pu7RRx+1vv7fufPOO7n//vsBePrpp/n11195/fXXeeutt1iwYAFpaWl8/PHHeHkZ39c33niDXr168fzzzxMUZDQxcnV15cMPP8TT05N69eoxffp0nnjiCZ5++mnM5hubtDVx4kTr15GRkTz++OMsXLiQ8ePH4+Hhgbe3N87Ozn87tbyg9VeoUIE33ngDJycnateuTY8ePVi2bFmZCN6l0eFzyWRmW/BxcyasgoejyxGx4emaf914WmY2+08nsfNEAn+eSGTXyQT2nkoiMS2L1QfPs/rg5V/mVvB0oUGYPw2r+NEwzI+GYf4E+bopjIuUEAreRSxvxFtrvEXkhx9+wNvbm8zMTHJychg0aJDNFOgGDRrYrOvevn07Bw8exMfHx+Y6aWlpHDp0iISEBE6dOmXtDg3g7OxM8+bNbaYdHjhwgMmTJ7N+/XrOnTtHTo7x79GxY8eoX7/+VWtNTEzk5MmTtG7d2uZ869at2b59u8255s2bF+j9t2rVKt/tvAZbe/bsoVGjRtbQmvdaOTk57Nu3zxpcGzVqhKenp801kpOTiY2NJSIiokB1/NXnn3/O7NmzOXToEMnJyWRlZeHr61uoaxS0/nr16uHk5GR9TEhICDt37ryhuuWf23PK2Be8doiPwoiUCu4uTjQM86dhmL/1XGZ2DvvikvjzRAI7TiSw83gCe+MSuZiayar9Z1m1//L2ZpV93GhYxY8GYX65I+P+VPbRFnoijqDgXcS0xlvEzlw8jdFnR7xuIXXo0IE5c+bg6upKaGhovm7mV4Y2MLpCN2vW7KrrpvNGqQsir+HVe++9R2hoKDk5OdSvX99mbfQ/8de6HclsNudb6/h3a6jXrl3L4MGDmTZtGl26dMHPz4+FCxfy8ssv26W+vzaeM5lM1l+ESPHbf9pYg18r2Oc6jxQpuVyczNYGbANyz6VnZbMvLontxxPYeTyeHccTOHAmmbNJ6Szbe4Zle89Ynx/q554bxP1pUMWYpq6tzUTsT8G7iLk6a423iF2ZTDc85bu4eXl5Ub169QI/vmnTpnz++ecEBgZecwQ2JCSE9evX065dOwCysrLYvHkzTZs2BeD8+fPs27eP9957j7Zt2wLwxx9/2Fwjb5Q9Ozvbes7X15fQ0FBWr17Nrbfeaj2/evVqWrRoUeD3cKV169Zx77332txu0qQJAHXq1GHevHmkpKRYg/zq1asxm83WRnNgzAK4dOkSHh4e1mt4e3tb93auXLkyp05d3p4nMTGRmJiYa9a0Zs0aIiIi+O9//2s9d/ToUZvHuLq62nxvrqag9UvJEnvB6A8RUbF0/BsiUlBuzleOjBuzgS5lZLP7VKIRxHNHxg+eTeZkQhonE9JsuqmHV/SgYRV/GoT50SjM+NPbTTFBpCjp/6gi5mzWdmIicmMGDx7Miy++yB133GHtLn706FEWLVrE+PHjCQsLY8yYMTz33HPUqFGD2rVr88orrxAfH2+9RoUKFQgICODdd98lJCSEY8eO8dRTT9m8TmBgIB4eHixevJiwsDDc3d3x8/PjiSeeYMqUKURHR9O4cWPmzp3Ltm3brtm5/Hq++OILmjdvTps2bZg/fz4bNmzggw8+sL7XKVOmMGTIEKZOncrZs2d55JFH+Pe//22dpg3GNmvDhw9n4sSJHDlyhClTpjBq1Cjr+u6OHTsyb948evXqhb+/P5MnT7aZ2v1XNWrU4NixYyxcuJCbbrqJH3/8ka+//trmMZGRkcTExLBt2zbCwsLw8fHJt7d0QeuXkuVE/CUAre+WcsHD1YlmERVoFlHBei45PYtdJxLYeSKBHceNP2POpRB74RKxFy7x407jF5kmE9QI9KZRmD+Nwv1pHO5PrWAf68xOESk8Be8idrmruaaai0jheHp6smrVKp588kn69etHUlISVapUoVOnTtYR8Mcee4xTp04xZMgQzGYz9913H3379iUhwejUbDabWbhwIaNHj6Z+/frUqlWL2bNnW7cMA2Nd+OzZs5k+fTqTJ0+mbdu2rFixgtGjR5OQkMBjjz3GmTNnqFu3Lt99951NR/PCmDZtGgsXLuShhx4iJCSEzz77jLp161rf65IlSxgzZgw33XQTnp6e9O/fn1deecXmGp06daJGjRq0a9eO9PR0Bg4caLNOfsKECcTExNCzZ0/8/Px4+umn/3bEu3fv3owdO5ZRo0aRnp5Ojx49mDRpks01+/fvz6JFi+jQoQPx8fHMnTuXoUOH2lynoPVLyXLiohG8qyh4Sznl7eZMy2oBtLyim3rCpUx25a4X3x5rTFM/EX+J/aeT2X86mS82HweMWZ31Qn1pFGYE8Ubh/kQGeKpfgkgBmSzaCJDExET8/PxISEgodIOdv/pk3VEmffMn3eoHM+eeZkVUoUj5lJaWRkxMDFFRUX+7bZWUPCaTia+//po+ffrc8DWGDh1KfHy8zd7ZZdnf/fdelJ9TpUlRvu+s7Byq//dnADZN7EwlbzWYErmWM0lp7IhNYPvxeLbFxrM9Np7EtKx8j/PzcKFhmJ8RxHNHx9W8TcqTwnxOacS7iLlqOzEREZESJ/6S0XTPZIIKnmokJfJ3An3c6VzXnc51jaUzFouFI+dT2R6bG8SPx7PrZCIJlzLz7TFexd+DRuF+1iDeoIofXlovLqLgXdQubydW7icSiIiIlBgXU4yu/r7uLjiZNTVWpDBMJhNRlbyIquRFnyZVAMjIMrY123Y8PneKejwHziRzIv4SJ+Iv8dPOOADMJqgR6GOE8dyR8drBPjhrvbiUMwreRSzvH5HMLI14i0j5VRSrmObNm/fPCxHJdTHVGPGuqG2TRIqEq7OZBmHGHuH/vtnopJ6UlsmfJxLZnhvGt8fGczIhjX2nk9h3Oon/bTLWi7u7mGlYxZ8mVY2jcXgFgv20pEzKNgXvIqap5iIiIiXPxVRjxNvf0+U6jxSRG+Xj7kKr6ABaRV9u3nYmMY3txxNspqknpWWx4cgFNhy5YH1ciJ+7EcTDK9C4qjFF3d3l2rtUiJQ2Ct5FzNrVPEdTzUVEREqKhNwRb38PBW+R4hTo685tdd25LXe9eE6OhcPnktlyzAjiW4/Fsy8ukVMJaZzaGWedou5sNlEnxDd3RNyfJlUrqIu6lGoK3kXMRVPNRYpcTo7+f5KyT/+d21dqhtGR2VNNnkQcymw2UT3Qh+qBPtzVPByAlPQsdhxPyA3iF9kaG8/ZpHR25u45/vHao4AxY6VxuDEq3qSq0bzNT79Mk1JCnz5FzFlTzUWKjKurK2azmZMnT1K5cmVcXV31m24pcywWCxkZGZw9exaz2Yyrq9Yg20NqZjYAnpq6KlLieLk520xRt1gsnIi/ZB0R33rsIn+eTCQ+NZMV+86yYt9Z63OjK3vRpGoF6zT1mkHeatwmJZKCdxFzzRvxVvAW+cfMZjNRUVGcOnWKkydPOrocEbvy9PSkatWqmM36gdEeLmUYwdvDVcFbpKQzmUyEVfAkrIInPRuGAkYX9T2nEq0j4tti4zl6PpVDZ1M4dDaFLzcbjds8XJxoGOZ3OYxX9SfQR43bxPEUvIuYdaq5thMTKRKurq5UrVqVrKwssrOzHV2OiF04OTnh7OysGR12pOAtUrq5OpuN7cjC/Rmae+58crp1VHxbbhhPTs9ifcwF1sdcbtwWXtGDZlUr0DSiAk2rVtB2ZuIQCt5FzEUj3iJFzmQy4eLigouL1nGJyI25PNVcP/qIlBUB3m50qhNEpzpG47bsHAuHziaz7Vg8W2MvsuVoPPvPJBF74RKxFy7xzTZj9pynqxONwvxpGuFPs4gKNAmvQAVtNSh2pk+fIubqrDXeIiIiJc3lEW+NcomUVU5mEzWDfKgZ5MNdNxmN2xLTMtl2LJ4txy6y+ehFth2LJyk9i7WHz7P28Hnrc6tV8rKOiDeLqECNQG/MZs1CkqKj4F3EnM2aai4iIlLSpGcZwVv7AouUL77uLrSrWZl2NSsDxnZmB84ks+XYRbYcvcjmYxc5fDaFw+eMI2+tuI+bM42r+tM0d4p6Y3VQl39IwbuIuTgbwTtDI94iIiIlRt4vxJ3VvE6kXDObTdQK9qFWsA8DW1QF4GJKhnVq+uajF9l+3BgV//3AOX4/cA4AkwlqBHobU9NzR8WrVfJSbw4pMAXvIuaSu51YloK3iIhIiZGdkxe89UOyiNiq4OVKx9pBdKxtrBXPys5h3+kkthy9yJZjRhg/diGV/aeT2X86mc82xALGvuJNq1agaVV/mkZUoFGYP15uildydfovo4jlbSeWYzE+5J30AS8iIuJweb1XnJ30uSwif8/ZyUy9UD/qhfrx71bGubNJ6cb09GMX2Xo0nu3H44lPzeS3vWf4be8ZAMwmqB3sS7OICjSPrEDzyIpU8fdw4DuRkkTBu4hduTVBZnYOTmatJRMREXE064i3thASkRtQ2ceNLvWC6VIvGLi8r/jmo7lh/Fg8J+IvsftUIrtPJfLJuqMAhPi5G0E8wgji2sqs/FLwLmIuV/wmPSM7R01cRERESoCsbE01F5Gic+W+4vcRBUBcQhqbjxrd0zcdvcCuk4mcSkjjhx2n+GHHKQC8XJ1oXNWfZhEVaR5RgSZV/fFxV9O28kDBu4i5XNG0JUudzUVEREqErJzcqeYK3iJiJ8F+7vRoGEKPhiEApGZksS02ns1HLrIpd2Q8KS2L1QfPs/qgsZWZ2QS1gn25KbJC7hR1TU8vqxS8i5jZbMLZbCIrx6K9vEVEREqILOtUcwVvESkenq7O3BJdiVuiKwHGkpcDZ5LYeOQim49cYNPRixy/eIk9pxLZcyqRj9dqenpZpuBtBy5OZrJyssnIUvAWEREpCbSdmIg4mpPZRO1gX2oH+/LvmyMAOJ2YxqYjxtT0zUcvanp6GabgbQfOTibIRCPeIiIiJUS2ppqLSAkU5HuV6enH4tl01JievvXoRZLS809Prx3sS3NNTy9VFLztIG9LsUyt8RYRESkR8qaaa5tPESnJPF2duaV6JW6pfnl6+v7TSWw6ajs9Pa97+rWmp9cJ8dW/dyWMgrcduFiDt0a8RURESoIcBW8RKYWczCbqhPhSJ+Ty9PS4hDQ2Hb3ApiNGB/Xdp/JPT/d2c6ZpRAVaRFbgpsiKNAr3125LDqbgbQcuzsaHuoK3iIhIyZA3B82k3C0ipVywnzs9G4bSs2EoACnpWWyPvTw9fcvRiySnZ7Fq/1lW7T8LGDNyG4b5cVNUxdwO6hXx89A68eKk4G0HeVuKaaq5iIhIyWCxfiQreYtI2eLlln96+p5TiWw8coGNRy6wIeYi55LTrcF8DsYvIWsF+dAiqiI3RVakRVRFgnzdHftGyjgFbzvQVHMREZGSxZI75q0RbxEp65zMJupX8aN+FT+GtY7CYrFw5HwqG2MuWMP4kfOp7I1LYm9cknWdeHhFDyOER1bkpqiKVKvkhUn/aBYZBW870FRzERGRkiVvxFs/QopIeWMymYiq5EVUJS/uuikcgDOJaWw8ctEaxPecSiT2wiViL5xg0ZYTAFTydqV5REWaR1agRVRF6ob4aj/xf0DB2w5c1NVcRESkRLEGb43eiIgQ+JdtzBLTMtlyNDeIx1xk2/F4ziVnsHhXHIt3xQHGfuJNI4xmbTdFVqRxuD8ermrYVlAK3nZweY23RrxFRERKEsVuEZH8fN1daF8rkPa1AgFIz8pm5/EENhy5wMYYYxuzpLQsfj9wjt8PnAPAxcmY0t4iN4g3j6yAv6erI99GiabgbQeaai4iIlKyWHKHvM0a8RYRuS43ZyeaR1akeWRFaG80bNsXl2Sdmr7xyAVOJ6az9Vg8W4/F886qw4DRsC1vavpNkRUJ9fdw7BspQRS87SBvqnlGloK3iIhISZBjnWru2DpEREojJ7OJuqG+1A31ZcgtkVgsFmIvXLKOiG88eoHDZ1PYdzqJfaeTmL/+GABV/D1oWa0iLaMq0jIqgIgAz3K75EfB2w7ygndWjtZ4i4iIlAQW9JksIlJUTCYTVQM8qRrgyb+ahQEYW5blbl+28cgFdp1M4ET8JRZtudywLcjXjRZRAblBvCLVA73LTRBX8LYDV20nJiIiUqJYNOItImJXlbzd6Fo/hK71jYZtyelZbDl6kfUx51l/+ALbj8dzOjGd77ef5PvtJwEI8HKlRZSxj3jLqABqB/tgNpfNf6gVvO3A2cn4j0VTzUVEREqGvPFuk9qriYgUC283Z9rVrEy7mpUBSMvMZsuxi2yIucD6wxfYcuwi51My+PnPOH7+0+ic7uvubA3hLaIqUi+07GxhpuBtB9pOTEREpGTRiLeIiGO5uzhxS3QlbomuBFzunL4+5gLrYy6w+cgFEtOyWLrnDEv3nAGMLcyaRVa0Tk1vGOaPq3PpDOIK3nZgXeOtqeYiIiIlhJG8FbxFREqGKzunP9zByE67TiayPuY8G2IusCHGCOKr9p9l1f6zALi7mGkSXiG3YVsATar64+5SOvYSV/C2A1cnbScmIiJl29SpU5k2bZrNuVq1arF3714A0tLSeOyxx1i4cCHp6el06dKFt956i6CgIEeUe3nEW1PNRURKJGcnM43C/WkU7s/IdtHWLczy1ohvOHKBCykZrD18nrWHzwMHcHUy0yjczzo9vVlEBbzcSmbELZlVlXJ56xAyNNVcRETKsHr16rF06VLrbWfnyz9WjB07lh9//JEvvvgCPz8/Ro0aRb9+/Vi9erUjSr28xlu5W0SkVLhyC7NhraOwWCwcPJNsnZq+/vB5ziSls/HIRTYeucibyw/hZDZRv4ofN+c2bGseWRE/DxdHvxVAwdsuXNTVXEREygFnZ2eCg4PznU9ISOCDDz5gwYIFdOzYEYC5c+dSp04d1q1bx80331zcpWLJHfJW7hYRKZ1MJhM1gnyoEeTDPTdHYLFYOHo+1RgRz23YdiL+Ettj49keG887qw5jMkHdEF+bhm0VvVwdUr+Ctx1oqrmIiJQHBw4cIDQ0FHd3d1q1asXMmTOpWrUqmzdvJjMzk86dO1sfW7t2bapWrcratWuvGbzT09NJT0+33k5MTCyyWjXiLSJStphMJiIreRFZyYu7b6oKwPGLqdau6RuOXCDmXAq7Tiay62Qic1cfAaBmkDfd6ocw9raaxVqvgrcdqKu5iIiUdS1btmTevHnUqlWLU6dOMW3aNNq2bcuff/5JXFwcrq6u+Pv72zwnKCiIuLi4a15z5syZ+daNF5XLXc2VvEVEyqqwCp6EVfCkX9MwAE4nphlBPLdh2/7Tyew/nUzdkJRir03B2w5cclvcax9vEREpq7p162b9umHDhrRs2ZKIiAj+97//4eHhcUPXnDBhAuPGjbPeTkxMJDw8/B/XCpCjqeYiIuVOkK87vRqF0qtRKADnk4014ZV93Iq9lhK9CVp2djaTJk0iKioKDw8PoqOjefrpp63rtMBYszV58mRCQkLw8PCgc+fOHDhwwIFVa423iIiUP/7+/tSsWZODBw8SHBxMRkYG8fHxNo85ffr0VdeE53Fzc8PX19fmKGoa8RYRKb8CvN3oWj+YZhEViv21S3Twfv7555kzZw5vvPEGe/bs4fnnn+eFF17g9ddftz7mhRdeYPbs2bz99tusX78eLy8vunTpQlpamsPqdtWIt4iIlDPJyckcOnSIkJAQmjVrhouLC8uWLbPev2/fPo4dO0arVq0cWKWIiIhjlOip5mvWrOGOO+6gR48eAERGRvLZZ5+xYcMGwBjtnjVrFhMnTuSOO+4A4OOPPyYoKIhvvvmGAQMGOKRuN+t2YgreIiJSNj3++OP06tWLiIgITp48yZQpU3BycmLgwIH4+fkxfPhwxo0bR8WKFfH19eWRRx6hVatWDuloLiIi4mglesT7lltuYdmyZezfvx+A7du388cff1jXlcXExBAXF2fTNdXPz4+WLVuydu3aa143PT2dxMREm6MouTgb09g04i0iImXV8ePHGThwILVq1eKuu+4iICCAdevWUblyZQBeffVVevbsSf/+/WnXrh3BwcEsWrTIwVWLiIg4Roke8X7qqadITEykdu3aODk5kZ2dzTPPPMPgwYMBrJ1Rg4KCbJ7nyK6pAK5OToBGvEVEpOxauHDh397v7u7Om2++yZtvvllMFYmIiJRcJXrE+3//+x/z589nwYIFbNmyhY8++oiXXnqJjz766B9dd8KECSQkJFiP2NjYIqrYoDXeIiIiIiIikqdEj3g/8cQTPPXUU9a12g0aNODo0aPMnDmTIUOGWDujnj59mpCQEOvzTp8+TePGja95XTc3N9zc7NdCXsFbRERERERE8pToEe/U1FTMZtsSnZycyMkxAm1UVBTBwcE2XVMTExNZv369Q7umujjlrvHWVHMREREREZFyr0SPePfq1YtnnnmGqlWrUq9ePbZu3corr7zCfffdBxh7cT766KPMmDGDGjVqEBUVxaRJkwgNDaVPnz4Oq9vNWft4i4iIiIiIiKFEB+/XX3+dSZMm8dBDD3HmzBlCQ0N54IEHmDx5svUx48ePJyUlhZEjRxIfH0+bNm1YvHgx7u7uDqvb2lxNU81FRERERETKvRIdvH18fJg1axazZs265mNMJhPTp09n+vTpxVfYdWiNt4iIiIiIiOQp0Wu8SyvrGm8FbxERERERkXJPwdsO8ka807XGW0REREREpNxT8LYD1yuaq1ksFgdXIyIiIiIiIo6k4G0HbrnN1SwWyMpR8BYRERERESnPFLztwMXZZP1a67xFRERERETKNwVvO3B1uvxtVfAWEREREREp3xS87cDZyYw5d9A7Uw3WREREREREyjUFbzuxdjbXiLeIiIiIiEi5puBtJy65080zNOItIiIiIiJSril424lb7oi31niLiIiIiIiUbwredpLXYE3BW0REREREpHxT8LaTvDXeaq4mIiJSAlgcXYCIiJRnCt524qqp5iIiIiWOydEFiIhIuaTgbSd5zdXSNeItIiIiIiJSril424lGvEVERERERAQUvO0mr7ma1niLiIiIiIiUbwredqIRbxEREREREQEFb7vRdmIiIiIiIiICCt52Yx3x1lRzERERERGRck3B20401VxERERERERAwdturFPNNeItIiIiIiJSril424mLRrxFREREREQEBW+7UXM1ERERERERAQVvu3HTiLeIiIiIiIig4G03ec3VMrXGW0REREREpFxT8LYTFzVXExERERERERS87SZvxDtdU81FRERERETKNQVvO1FzNREREREREQEFb7vRGm8REREREREBBW+70Yi3iIiIiIiIgIK33eSNeKu5moiIiIiISPmm4G0nrtrHW0RERERERFDwthtNNRcRERERERFQ8LYbF+tUc4uDKxERERERERFHUvC2k8sj3tkOrkRERET0a3AREXEkBW87UXM1ERGRksdkcnQFIiJSHil424mbmquJiEgJk52dzQcffMCgQYPo3LkzHTt2tDlu1HPPPYfJZOLRRx+1nmvfvj0mk8nmePDBB4vgXYiIiJQ+zo4uoKxyyZ1qnqk13iIiUkKMGTOGefPm0aNHD+rXr4+pCIZ/N27cyDvvvEPDhg3z3TdixAimT59uve3p6fmPX09ERKQ0UvC2E20nJiIiJc3ChQv53//+R/fu3YvkesnJyQwePJj33nuPGTNm5Lvf09OT4ODgInktERGR0kxTze1EwVtEREoaV1dXqlevXmTXe/jhh+nRowedO3e+6v3z58+nUqVK1K9fnwkTJpCamlpkry0iIlKaaMTbTqxdzbNzsFgsRTKdT0RE5J947LHHeO2113jjjTf+8efSwoUL2bJlCxs3brzq/YMGDSIiIoLQ0FB27NjBk08+yb59+1i0aNE1r5menk56err1dmJi4j+qUUREpKRQ8LaTvBFvMMK3m7OTA6sRERGBP/74g+XLl/Pzzz9Tr149XFxcbO7/u1B8pdjYWMaMGcOvv/6Ku7v7VR8zcuRI69cNGjQgJCSETp06cejQIaKjo6/6nJkzZzJt2rQCvhsREZHSQ8HbTvJGvMFosOam77SIiDiYv78/ffv2/cfX2bx5M2fOnKFp06bWc9nZ2axatYo33niD9PR0nJxsf+HcsmVLAA4ePHjN4D1hwgTGjRtnvZ2YmEh4ePg/rldERMTRFAftxGbEOysH3BxYjIiICDB37twiuU6nTp3YuXOnzblhw4ZRu3ZtnnzyyXyhG2Dbtm0AhISEXPO6bm5uuLnpA1NERMoeBW87cTKbcDKbyM6xqMGaiIiUKGfPnmXfvn0A1KpVi8qVKxfq+T4+PtSvX9/mnJeXFwEBAdSvX59Dhw6xYMECunfvTkBAADt27GDs2LG0a9fuqtuOiYiIlHXqam5H1gZrCt4iIlICpKSkcN999xESEkK7du1o164doaGhDB8+vEg7jru6urJ06VJuv/12ateuzWOPPUb//v35/vvvi+w1REREShONeNuRi5OJS5lGczURERFHGzduHCtXruT777+ndevWgNFwbfTo0Tz22GPMmTPnhq+9YsUK69fh4eGsXLnyn5YrIiJSZih425GbixOkZZGele3oUkRERPjqq6/48ssvad++vfVc9+7d8fDw4K677vpHwVtERESuTVPN7cjNWVPNRUSk5EhNTSUoKCjf+cDAwCKdai4iIiK2FLztKC94p2UqeIuIiOO1atWKKVOmkJaWZj136dIlpk2bRqtWrRxYmYiISNmmqeZ25OZsbKeiqeYiIlISvPbaa3Tp0oWwsDAaNWoEwPbt23F3d2fJkiUOrk5ERKTsUvC2IzcXY8Q7XVPNRUSkBKhfvz4HDhxg/vz57N27F4CBAwcyePBgPDw8HFydiIhI2aXgbUd5U80VvEVEpKTw9PRkxIgRji5DRESkXLmh4H3o0CHmzp3LoUOHeO211wgMDOTnn3+matWq1KtXr6hrLLXcXXKnmmdqqrmIiDjGd999R7du3XBxceG7777728f27t27mKoSEREpXwodvFeuXEm3bt1o3bo1q1at4plnniEwMJDt27fzwQcf8OWXX9qjzlJJI94iIuJoffr0IS4ujsDAQPr06XPNx5lMJrKz9YtiEREReyh0V/OnnnqKGTNm8Ouvv+Lq6mo937FjR9atW1ekxZV2l5urKXiLiIhj5OTkEBgYaP36WodCt4iIiP0UOnjv3LmTvn375jsfGBjIuXPniqSosuLyiLd+mBEREcf7+OOPSU9Pz3c+IyODjz/+2AEVFR+LxeLoEkREpBwrdPD29/fn1KlT+c5v3bqVKlWqFElRZYW1q7n28RYRkRJg2LBhJCQk5DuflJTEsGHDHFBR8TNhcnQJIiJSDhU6eA8YMIAnn3ySuLg4TCYTOTk5rF69mscff5x7773XHjWWWppqLiIiJYnFYsFkyh88jx8/jp+fnwMqEhERKR8K3Vzt2Wef5eGHHyY8PJzs7Gzq1q1LdnY2gwYNYuLEifaosdTKm2qepq7mIiLiQE2aNMFkMmEymejUqRPOzpc//rOzs4mJiaFr164OrFBERKRsK3TwdnV15b333mPy5Mns3LmT5ORkmjRpQo0aNexRX6mmEW8RESkJ8rqZb9u2jS5duuDt7W29z9XVlcjISPr37++g6kRERMq+QgfvVatWUbt2bcLDwwkPD7eez8zMZO3atbRr165ICyzNrGu81VxNREQcaMqUKQBERkZy99134+7u7uCKREREypdCr/Fu3749jRo1yrd12IULF+jQoUORFZbnxIkT3HPPPQQEBODh4UGDBg3YtGmT9X6LxcLkyZMJCQnBw8ODzp07c+DAgSKv40a4ax9vEREpQYYMGaLQLSIi4gCFDt5gNFjr1KkT8+bNszlf1Ft1XLx4kdatW+Pi4sLPP//M7t27efnll6lQoYL1MS+88AKzZ8/m7bffZv369Xh5edGlSxfS0tKKtJYb4eaSO9VcXc1FRKQEyM7O5qWXXqJFixYEBwdTsWJFm0NERETso9DB22QyMWHCBD755BNGjRrFuHHjrIH7ap1S/4nnn3+e8PBw5s6dS4sWLYiKiuL2228nOjoaMIL+rFmzmDhxInfccQcNGzbk448/5uTJk3zzzTdFWsuN0D7eIiJSkkybNo1XXnmFu+++m4SEBMaNG0e/fv0wm81MnTrV0eWJiIiUWYUO3nkhu1+/fvz+++98+eWXdOvWjfj4+KKuje+++47mzZtz5513EhgYSJMmTXjvvfes98fExBAXF0fnzp2t5/z8/GjZsiVr164t8noKS83VRESkJJk/fz7vvfcejz32GM7OzgwcOJD333+fyZMn51tCJiIiIkXnhqaa52nSpAkbNmwgPj6eTp06FVVNVocPH2bOnDnUqFGDJUuW8J///IfRo0fz0UcfARAXFwdAUFCQzfOCgoKs911Neno6iYmJNoc9uGmNt4iIlCBxcXE0aNAAAG9vbxISEgDo2bMnP/74oyNLExERKdMKHbyHDBmCh4eH9XZwcDArV66kU6dOVK1atUiLy8nJoWnTpjz77LM0adKEkSNHMmLECN5+++1/dN2ZM2fi5+dnPa7szl6UrF3NtY+3iIiUAGFhYZw6dQqA6OhofvnlFwA2btyIm5ubI0sTEREp0wodvOfOnYuPj4/NOTc3Nz766CNiYmKKrDCAkJAQ6tata3OuTp06HDt2DDBCP8Dp06dtHnP69GnrfVczYcIEEhISrEdsbGyR1p1HU81FRKQk6du3L8uWLQPgkUceYdKkSdSoUYN7772X++67z8HViYiIlF0F2sd7x44d1K9fH7PZzI4dO/72sQ0bNiySwgBat27Nvn37bM7t37+fiIgIAKKioggODmbZsmU0btwYgMTERNavX89//vOfa17Xzc2tWH6zb51qrhFvEREpAZ577jnr13fffTdVq1Zl7dq11KhRg169ejmwMhERkbKtQMG7cePGxMXFERgYSOPGjTGZTDZbh+XdNplMZGcXXcgcO3Yst9xyC88++yx33XUXGzZs4N133+Xdd9+1vu6jjz7KjBkzqFGjBlFRUUyaNInQ0FD69OlTZHXcKHcXjXiLiEjJ1apVK1q1auXoMkRERMq8AgXvmJgYKleubP26uNx00018/fXXTJgwgenTpxMVFcWsWbMYPHiw9THjx48nJSWFkSNHEh8fT5s2bVi8eDHu7u7FVue1qLmaiIg42nfffVfgx/bu3duOlYiIiJRfBQreeVO7//p1cejZsyc9e/a85v0mk4np06czffr0YqyqYKzN1bSPt4iIOEhBZ4AV9aw1ERERuazQzdU++ugjmy1Hxo8fj7+/P7fccgtHjx4t0uJKu7zmapnZFrJzLNd5tIiISNHLyckp0KHQLSIiYj+FDt7PPvusdTuxtWvX8sYbb/DCCy9QqVIlxo4dW+QFlmZ5U80BMjTdXEREREREpFwq0FTzK8XGxlK9enUAvvnmG/71r38xcuRIWrduTfv27Yu6vlLtyuCdnpWNh6uTA6sREZHy7nrLsiZPnlxMlYiIiJQvhQ7e3t7enD9/nqpVq/LLL78wbtw4ANzd3bl06VKRF1iaOTuZcTKbyM6xqMGaiIg43Ndff21zOzMzk5iYGJydnYmOjlbwFhERsZNCB+/bbruN+++/nyZNmrB//366d+8OwK5du4iMjCzq+ko9N2czqRnZpGcqeIuIiGNt3bo137nExESGDh1K3759HVCRiIhI+VDoNd5vvvkmrVq14uzZs3z11VcEBAQAsHnzZgYOHFjkBZZ2eXt5p6mzuYiIlEC+vr5MmzaNSZMmOboUERGRMqvQI97+/v688cYb+c5PmzatSAoqa6x7eV9rxPvsfjj4K5zYDClnITsLPPyhYjUIqgcRt0CFyGKrV0REyp+EhAQSEhIcXYaIiEiZVejgLYVjDd5/HfE+ux+WTICDS69/kYAaUKsrNBpohHEREZEbMHv2bJvbFouFU6dO8cknn9CtWzcHVSUiIlL2KXjbWd5e3jbN1bYtgO/HQHYGmMxQrT1EtgG/qmB2gksX4NwBOLkVjm+C8wdgzQFY8zoEN4DGg6HxIHD3c8ybEhGRUunVV1+1uW02m6lcuTJDhgxhwoQJDqpKRESk7FPwtjM3l7+MeK+bA4ufMr6u3hm6v2hMK7+WtAQ4vAJ2fgn7F0PcTuP5v80wwneLB6BSdfu+CRERKRNiYmIcXYKIiEi5pOBtZzZrvHd/B4tzRxRaPwqdpoD5Ov3t3P2g7h3GkXoB/vwKNn4AZ/fAhneNo0YXaPsYVG1p3zcjIiJlRmxsLADh4eEOrkRERKTsK3RXcymcvKnm5qQT8N0owAI3jYDOU68fuv/KsyK0GAEPrYV/fwM1uwEmOLAEPrwd5vaAg8vAYinidyEiImVBVlYWkyZNws/Pj8jISCIjI/Hz82PixIlkZmY6ujwREZEyq9Aj3qdPn+bxxx9n2bJlnDlzBstfQl52trbNulLeiHeDrVOMaeNVmkHXmWAy3fhFTSaI7mAc5w/B6lmw7TM4+odxhDYxRsBr9Sh8uBcRkTLrkUceYdGiRbzwwgu0atUKgLVr1zJ16lTOnz/PnDlzHFyhiIhI2VTo4D106FCOHTvGpEmTCAkJwfRPAmQ54OZipq15B6Fn/wCzC/R9B5xciu4FAqKh9+tw61Ow9g3YNNdoyvb5PVC5thHA6/UDJ60qEBEp7xYsWMDChQttOpg3bNiQ8PBwBg4cqOAtIiJiJ4VOY3/88Qe///47jRs3tkM5ZY+7k5lRzp8ZN1qMhEo17PNCflWMkfS2j8H6t2H9u3B2LywaAStyzze8u2hDv4iIlCpubm5ERkbmOx8VFYWrq2vxFyQiIlJOFHoecnh4eL7p5XJtDdI3Udd8lAwnL2j3uP1f0KsSdJwIY3dCx0ngUREuHIZvH4bXm8KmDyEr3f51iIhIiTNq1Ciefvpp0tMvfw6kp6fzzDPPMGrUKAdWJiIiUrYVesR71qxZPPXUU7zzzjtX/a252Gp37nMAdgT2prlnxeJ7YXc/I+i3fNAI22teh/hj8MNYWPWS0VW96b/BxaP4ahIREYfaunUry5YtIywsjEaNGgGwfft2MjIy6NSpE/369bM+dtGiRY4qU0REpMwp9Ij33XffzYoVK4iOjsbHx4eKFSvaHHKFs/uITtpItsXEusp3OqYGN29oPRoe3QFdnwefEEg8AT8/Aa81MgJ5RopjahMRkWLl7+9P//796dmzJ+Hh4YSHh9OzZ0/69euHn5+fzVEYzz33HCaTiUcffdR6Li0tjYcffpiAgAC8vb3p378/p0+fLuJ3JCIiUjrc0Ii3FNC2BQAsz2nMGacgx9bi4gE3PwjNhsK2T+GPWZAQC79MhD9ehVYPG9ucufs6tk4REbGbuXPnFvk1N27cyDvvvEPDhg1tzo8dO5Yff/yRL774Aj8/P0aNGkW/fv1YvXp1kdcgIiJS0hU6eA8ZMsQedZQ9Odmww5hm/mX2rfhl5ji4oFwu7nDT/dDkXqO+31+GizGwbDqsng03/wdaPgAeFRxdqYiI2MnZs2fZt28fALVq1aJy5co3dJ3k5GQGDx7Me++9x4wZM6znExIS+OCDD1iwYAEdO3YEjNBfp04d1q1bx8033/zP34SIiEgpckObPGdnZ/PVV18xY8YMZsyYwddff639u//qyO+QdIo0Z19+y2lCelYJ+/44uxprvEdtgr7vQqWakBZvdECf1RCWPQ0p5x1dpYiIFKGUlBTuu+8+QkJCaNeuHe3atSM0NJThw4eTmppa6Os9/PDD9OjRg86dO9uc37x5M5mZmTbna9euTdWqVVm7du01r5eenk5iYqLNISIiUhYUOngfPHiQOnXqcO+997Jo0SIWLVrEPffcQ7169Th06JA9aiyd9vwAQGxQJzJwIT2rhIx4/5WTMzS6Gx5aB/+aC4F1IT0Rfn8JZjWAXyZB8hlHVykiIkVg3LhxrFy5ku+//574+Hji4+P59ttvWblyJY899lihrrVw4UK2bNnCzJkz890XFxeHq6sr/v7+NueDgoKIi4u75jVnzpxps848PDy8UDWJiIiUVIUO3qNHjyY6OprY2Fi2bNnCli1bOHbsGFFRUYwePdoeNZY+Fgvs+wmAuFDjt/0lNnjnMTtB/X7w4Gq4+1MIbgiZKbBmtjEC/vNTkHjS0VWKiMg/8NVXX/HBBx/QrVs3fH198fX1pXv37rz33nt8+eWXBb5ObGwsY8aMYf78+bi7uxdZfRMmTCAhIcF6xMbGFtm1RUREHKnQwXvlypW88MILNh3MAwICeO6551i5cmWRFldqndpmdA538SI++BYALmWUsKnm12I2Q51e8MAqGPQ/qNIcsi7B+jlGF/QfxhnbkomISKmTmppKUFD+Zp+BgYGFmmq+efNmzpw5Q9OmTXF2dsbZ2ZmVK1cye/ZsnJ2dCQoKIiMjg/j4eJvnnT59muDg4Gte183NzfoLgbxDRESkLCh08HZzcyMpKSnf+eTkZFxdXYukqFJv/xLjz+odcXP3BCCtpK3xvh6TCWp2gfuXwr+/gYjWkJ0Bmz6A2U3g21Fw4bCjqxQRkUJo1aoVU6ZMIS0tzXru0qVLTJs2jVatWhX4Op06dWLnzp1s27bNejRv3pzBgwdbv3ZxcWHZsmXW5+zbt49jx44V6nVERETKikJ3Ne/ZsycjR47kgw8+oEWLFgCsX7+eBx98kN69exd5gaVSzCrjz+hOuLs4AZBWUrqaF5bJBNEdjOPIH7DyBYhZCVs/MbZLa3AntH0MKtd0dKUiInIdr732Gl26dCEsLIxGjRoBsH37dtzd3VmyZEmBr+Pj40P9+vVtznl5eREQEGA9P3z4cMaNG0fFihXx9fXlkUceoVWrVupoLiIi5VKhg/fs2bMZMmQIrVq1wsXFBYCsrCx69+7Na6+9VuQFljoZqXB8o/F1VDs8kvKCdykb8b6ayDbGEbvBCOAHf4UdC41tyer1hXZPQFBdR1cpIiLXUL9+fQ4cOMD8+fPZu3cvAAMHDmTw4MF4eHgU6Wu9+uqrmM1m+vfvT3p6Ol26dOGtt94q0tcQEREpLQodvP39/fn22285cOCA9UO7Tp06VK9evciLK5Vi1xtTsn3DoGI1PNKMrVBKzRrvgghvAfd8CSe2GPuA7/0Bdi0yjto94dbxENLI0VWKiMhVeHp6MmLEiCK/7ooVK2xuu7u78+abb/Lmm28W+WuJiIiUNoUO3nlq1KhBjRo1irKWsiFvmnlUOzCZcHcxltGXujXeBVGlKQyYD3F/GtuP7frGCOF7f4AaXYwAHtbc0VWKiMgV9u3bx+uvv86ePXsA45fno0aNonbt2g6uTEREpOwqUPAeN24cTz/9NF5eXowbN+5vH/vKK68USWGl1pXBG6xrvMvUiPdfBdeHO+dB+32w6iX480s4sMQ4qnUwAnjELY6uUkSk3Pvqq68YMGAAzZs3tzY5W7duHQ0aNGDhwoX079/fwRWKiIiUTQUK3lu3biUzM9P6tVxDWgKc3GJ8HdUWAI/c4J2elUNOjgWz2eSo6uyvci3o/x60fwr+eAW2L4TDy40jog3c+gRE3Wo0bBMRkWI3fvx4JkyYwPTp023OT5kyhfHjxyt4i4iI2EmBgvfy5cuv+rX8hSUHOk2Gs/vBLwy4POINRvj2cHW61rPLjoBouONNaDceVs+CrZ/C0T/g4z8grAW0HWdMRTcXejc7ERH5B06dOsW9996b7/w999zDiy++6ICKREREyodCJ5/77rvvqvt4p6SkcN999xVJUaWWRwVoMxb6zrGeujJ4XyoLnc0Lo0IE9HwVRm+DFg+Aszsc3wCfDYC3bjYCeVa6o6sUESk32rdvz++//57v/B9//EHbtm0dUJGIiEj5UOjg/dFHH3Hp0qV85y9dusTHH39cJEWVJU5mE67Oxre53AXvPH5VoPsLMGaH8YsJNz84tw++fRheawSrXzOm6YuIiF317t2bJ598klGjRvHpp5/y6aefMmrUKJ566in69u3Ld999Zz1ERESk6BS4q3liYiIWiwWLxUJSUhLu7u7W+7Kzs/npp58IDAy0S5GlnbuzmYysnLKxl/c/4RMEnadCm3Gw5SNY+xYknYRfJxtN2ZoPg5b/Ad8QR1cqIlImPfTQQwC89dZb+fbUzrsPwGQykZ1dzj+zREREilCBg7e/vz8mkwmTyUTNmjXz3W8ymZg2bVqRFldWeLg6kZiWVbY7mxeGuy/c8ogx/fzPL40R77N7jT/XvgWN7oZbRhvN2kREpMjk5OQ4ugQREZFyqcDBe/ny5VgsFjp27MhXX31FxYoVrfe5uroSERFBaGioXYos7fI6m5f7Ee+/cnaFxoOg4QA48AusmQ1HVxtrv7d+CrW6Q+sxUPVmR1cqIiIiIiJywwocvG+99VYAYmJiCA8Px6yO1AXmbg3eGmm4KrMZanU1jtiNsOY12PMD7PvJOMJbGgG8Zjd1QhcRERERkVKnwME7T0REBACpqakcO3aMjIwMm/sbNmxYNJWVIXnBu9w2VyuM8Jvg7k/h3AFY8zps/wxi18PCQRBQHW7+DzQaCK5ejq5URERERESkQAodvM+ePcuwYcP4+eefr3q/mrHk5+5Szrua34hKNaD3bOjwX1j/Nmz6AM4fhB8fg99mQLNh0GKkGrGJiIiIiEiJV+h5u48++ijx8fGsX78eDw8PFi9ezEcffUSNGjW0/cg1aI33P+ATBJ2nwNjd0O0FqBAFly7CH6/ArAaw6AE4td3RVYqIlHhZWVl8/PHHnD592tGliIiIlDuFHvH+7bff+Pbbb2nevDlms5mIiAhuu+02fH19mTlzJj169LBHnaWah6uC9z/m5g0tH4Cb7od9P8PaN+HYGtix0Dgi20Krh6FGF60DFxG5CmdnZx588EH27Nnj6FJERETKnUInlJSUFOt+3RUqVODs2bMANGjQgC1bthRtdWWEu3PuGm9tJ/bPmZ2gTk+472cYsRwa3AkmJzjyO3w2AN5oDhveg4wUR1cqIlLitGjRgm3btjm6DBERkXKn0CPetWrVYt++fURGRtKoUSPeeecdIiMjefvttwkJ0Xrbq3F3VVdzu6jSFPq/D52nwoZ3YdM8uHAIfnrcWAfe/D5oMQJ8tc2diAjAQw89xLhx44iNjaVZs2Z4edk2qlSDVBEREfsodPAeM2YMp06dAmDKlCl07dqV+fPn4+rqyrx584q6vjLBQ13N7csvDG6bDu3Gw7YFsO4tuBhjrANfMxvq94eWDxpBXUSkHBswYAAAo0ePtp4zmUxYLBZMJpMapIqIiNhJoYP3PffcY/26WbNmHD16lL1791K1alUqVapUpMWVFXldzbXG287cvKHlSLhpuLEOfN1bcHQ17PjcOMJuMgJ4nd7g7OroakVEil1MTIyjSxARESmXCh28/8rT05OmTTWS+HfU1byY5a0Dr9MTTmyBdXNg19dwfKNxeAdB8+HQbKjRNV1EpJyIiIhwdAkiIiLlUoGC97hx4wp8wVdeeeWGiymr3DXV3HGqNIX+78HtM2DzPNj0ISTHwYpnYdWLUK+vMQoe1szRlYqIFItDhw4xa9Ysa3fzunXrMmbMGKKjox1cmYiISNlVoOC9devWAl3MZDL9o2LKKmvwVldzx/EJgvZPQpuxsOc7WP8OHN8AO/9nHFWaGQG8bh9NQxeRMmvJkiX07t2bxo0b07p1awBWr15NvXr1+P7777ntttscXKGIiEjZVKDgvXz5cnvXUaZZp5pnqau5wzm7QoN/GceJLUY39D+/ghObYdEIWPJfaD7M6IjuE+zoakVEitRTTz3F2LFjee655/Kdf/LJJxW8RURE7KTQ+3hL4XnkbSemEe+SpUpT6Ps2jN0NHSaCTwiknIGVz8Or9eDL4RC7ASwWR1cqIlIk9uzZw/Dhw/Odv++++9i9e7cDKhIRESkfCt1crUOHDn87pfy33377RwWVRXldzbXGu4Tyrgy3PgFtHs2dhv4uxK6DP780juAGcNP90OBOcPW67uVEREqqypUrs23bNmrUqGFzftu2bQQGBjqoKhERkbKv0MG7cePGNrczMzPZtm0bf/75J0OGDCmqusoUd3U1Lx2cXIw9v+v3h5PbjGnoO7+EuJ3w/Rj4ZRI0GmB0RA+s7ehqRUQKbcSIEYwcOZLDhw9zyy23AMYa7+eff75QjVRFRESkcAodvF999dWrnp86dSrJycn/uKCyyENdzUuf0MbQ5y2jG/q2+UY39AuHjTC+4V2IaAM33Qe1e6kZm4iUGpMmTcLHx4eXX36ZCRMmABAaGsrUqVMZPXq0g6sTEREpu/7xPt557rnnHlq0aMFLL71UVJcsM/LWeKureSnkWRFueQRufhgOLzcC+L6f4OgfxuEVCE3vNfYE9w93dLUiIn/LZDIxduxYxo4dS1JSEgA+Pj4OrkpERKTsK7LmamvXrsXd3b2oLlemeLoYv99IVfAuvcxmqN4JBsyHR/+EW58E7yCjGdvvL8FrDeGzgXBgKeSoe72IlEwdO3YkPj4eMAJ3XuhOTEykY8eODqxMRESkbCv0iHe/fv1sblssFk6dOsWmTZuYNGlSkRVWllhHvDOzycmxYDZrv/NSza8KdPg/aPcE7P0RNr4PR343RsL3/QQVIqHZMGjyb/AKcHS1IiJWK1asICMjI9/5tLQ0fv/9dwdUJCIiUj4UOnj7+fnZ3DabzdSqVYvp06dz++23F1lhZYmXm5P167SsbDxdi2yGvziSkwvU62McZ/cb09C3LYCLR2DpFFj+DNTpDc2GQGRb+JvdAERE7GnHjh3Wr3fv3k1cXJz1dnZ2NosXL6ZKlSqOKE1ERKRcKHQCnDt3rj3qKNPcnS8H75R0Be8yqXJN6PYcdJoEf35ljIKf2n55S7KK0cZa8MaDje3LRESKUePGjTGZTJhMpqtOKffw8OD11193QGUiIiLlww0nwE2bNrFnzx4A6tatS7NmzYqsqLLGbDbh4eLEpcxsNVgr61y9jIDd5N9wcits+cjYkuzCIWMU/LenoXYPaDoEqnUw1o6LiNhZTEwMFouFatWqsWHDBipXvvwLQFdXVwIDA3FycvqbK4iIiMg/Uejgffz4cQYOHMjq1avx9/cHID4+nltuuYWFCxcSFhZW1DWWCV5uRvBOzcxydClSHEwmqNLUOG5/BnYtgs3z4MRm2P2tcfhXhSb3QpN7wDfE0RWLSBkWEREBQI6aP4qIiDhEoYP3/fffT2ZmJnv27KFWrVoA7Nu3j2HDhnH//fezePHiIi+yLMhrsJaSrhHvcsfN2xgFb3ovxP1pjIJv/xzij8HyGbBiJtTsYoyC17gNzBp1EhH72r17N8eOHcvXaK13794OqkhERKRsK3TwXrlyJWvWrLGGboBatWrx+uuv07Zt2yItrizJ21JMU83LueD60P1F6DzNGPXe8hEcW3u5I7pvFWMEvMm/tS+4iBS5w4cP07dvX3bu3InJZMJisQDG/t5gNFoTERGRolfoBabh4eFkZmbmO5+dnU1oaGiRFHUtzz33HCaTiUcffdR6Li0tjYcffpiAgAC8vb3p378/p0+ftmsdN8Izt7N5aoammgvg6gmNB8J9i+HhDXDzw+BRERJPwMrnYVYD+KSvsT48M83R1YpIGTFmzBiioqI4c+YMnp6e7Nq1i1WrVtG8eXNWrFjh6PJERETKrEIH7xdffJFHHnmETZs2Wc9t2rSJMWPG8NJLLxVpcVfauHEj77zzDg0bNrQ5P3bsWL7//nu++OILVq5cycmTJ/PtNV4SeF6xl7eIjcq1oOuz8Nhe6P8BRLUDLHDoN/hqOLxcE358zGjWljs6JSJyI9auXcv06dOpVKkSZrMZs9lMmzZtmDlzJqNHj3Z0eSIiImVWoYP30KFD2bZtGy1btsTNzQ03NzdatmzJli1buO+++6hYsaL1KCrJyckMHjyY9957jwoVKljPJyQk8MEHH/DKK6/QsWNHmjVrxty5c1mzZg3r1q0rstcvCh65U821xluuydkNGvwLhnwPo7dCu/HgGwZpCcb2ZO+2hzmtYe2bkHLO0dWKSCmUnZ2Nj48PAJUqVeLkyZOA0Xxt3759jixNRESkTCv0Gu9Zs2bZoYy/9/DDD9OjRw86d+7MjBkzrOc3b95MZmYmnTt3tp6rXbs2VatWZe3atdx8881XvV56ejrp6enW24mJifYrPpeXpppLYVSsBh3/C+2fgpiVsHU+7PkezuyCJf8Hv06Gml2N9eDVbwMn7Q0vItdXv359tm/fTlRUFC1btuSFF17A1dWVd999l2rVqjm6PBERkTKr0D+tDxkyxB51XNPChQvZsmULGzduzHdfXFwcrq6u1m3N8gQFBREXF3fNa86cOZNp06YVdal/yzrVXM3VpDDMThDd0TguXYQ/vzJC+MktsPcH4/AKhEYDjBBeudb1ryki5dbEiRNJSUkBYPr06fTs2ZO2bdsSEBDA559/7uDqREREyq4bGibLzs7mm2++Yc+ePQDUq1eP3r174+RUtNsgxcbGMmbMGH799Vfc3d2L7LoTJkxg3Lhx1tuJiYmEh9u3g7R1qrmCt9wojwpw0/3GcXo3bJsP2xdCyhlYM9s4qjQ3Anj9fuDu5+iKRaSE6dKli/Xr6tWrs3fvXi5cuECFChWsnc1FRESk6BU6eB88eJDu3btz4sQJ65ZiM2fOJDw8nB9//JHo6OgiK27z5s2cOXOGpk2bWs9lZ2ezatUq3njjDZYsWUJGRgbx8fE2o96nT58mODj4mtfNW5tenPKmml/SVHMpCkF1ocsz0Hkq7F9ihPD9S+DEJuNY/BTU6g6NBhqj5ZqKLiLXUJQ9WUREROTqCv3T+OjRo4mOjmbdunXWD+vz589zzz33MHr0aH788cciK65Tp07s3LnT5tywYcOoXbs2Tz75JOHh4bi4uLBs2TL69+8PwL59+zh27BitWrUqsjqKgodr3hpvjXhLEXJygTo9jSPpNOz43AjhZ/fCrkXG4VUZGtwJDe+GkEagUS2RcqUwO30sWrSowI+dM2cOc+bM4ciRI4Ax+23y5Ml069YNgPbt27Ny5Uqb5zzwwAO8/fbbBX4NERGRsqLQwXvlypU2oRsgICCA5557jtatWxdpcT4+PtSvX9/mnJeXFwEBAdbzw4cPZ9y4cVSsWBFfX18eeeQRWrVqdc3Gao7i6ZIbvLWdmNiLTxC0Hg23PAKnthnT0Hd+CSlnYd1bxlG5DjS6GxrcBX5VHF2xiBQDP7/Ly04sFgtff/01fn5+NG/eHDBml8XHxxd6K86wsDCee+45atSogcVi4aOPPuKOO+5g69at1KtXD4ARI0Ywffp063M8PT2L4B2JiIiUPoUO3m5ubiQlJeU7n5ycjKura5EUVRivvvoqZrOZ/v37k56eTpcuXXjrrbeKvY7r8XQzvtWp6ZpqLnZmMkFoE+O4fQYcXAY7FsLen+DsHlg6FZZOM/YLbzQQ6vQCN29HVy0idjJ37lzr108++SR33XUXb7/9trUvS3Z2Ng899BC+vr6Fum6vXr1sbj/zzDPMmTOHdevWWYO3p6fn3y79EhERKS8KvY93z549GTlyJOvXr8disWCxWFi3bh0PPvggvXv3tkeNNlasWGGzpZm7uztvvvkmFy5cICUlhUWLFpXID3lPTTUXR3BygVpd4c558Ph+6DUbqt4CWIxtyr55EF6qAYtGwqHfIEf/fYqUZR9++CGPP/64TTNUJycnxo0bx4cffnjD183OzmbhwoWkpKTYLPWaP38+lSpVon79+kyYMIHU1NS/vU56ejqJiYk2h4iISFlQ6BHv2bNnM2TIEFq1aoWLiwsAWVlZ9O7dm9dee63ICywrrNuJaaq5OIqHPzQbYhwXj8CO/xnT0S8cMtaG7/gcfEKgwb+g4QAIqqf14CJlTFZWFnv37rU2R82zd+9ecnJyCn29nTt30qpVK9LS0vD29ubrr7+mbt26AAwaNIiIiAhCQ0PZsWMHTz75JPv27fvbdeSO2O5TRESkOBQ6ePv7+/Ptt99y8OBB63ZiderUoXr16kVeXFni6Zq7nZimmktJUCESbh0P7Z6A45uMqeh/fgVJp2DN68ZRuQ406A/1/wUVoxxdsYgUgWHDhjF8+HAOHTpEixYtAFi/fj3PPfccw4YNK/T1atWqxbZt20hISODLL79kyJAhrFy5krp16zJy5Ejr4xo0aEBISAidOnXi0KFD19wBxRHbfYqIiBSHAgfvnJwcXnzxRb777jsyMjLo1KkTU6ZMwcPDw571lRnWEW9NNZeSxGSC8JuMo8tMOPCLEcL3LzHWg/82wzjCbjICeL2+RhM3ESmVXnrpJYKDg3n55Zc5deoUACEhITzxxBM89thjhb6eq6ur9RfvzZo1Y+PGjbz22mu88847+R7bsmVLwNiW9FrB2xHbfYqIiBSHAgfvZ555hqlTp9K5c2c8PDx47bXXOHPmzD9aE1aeWNd4a6q5lFTOrpe3JrsUD3t/gJ1fQMwqOL7ROJZMMJqyNbjTaMrm7nfdy4pIyWE2mxk/fjzjx4+3rp8ubFO1v5OTk0N6evpV79u2bRtgBH0REZHypsDB++OPP+att97igQceAGDp0qX06NGD999/H7O50D3ayh2P3Knmaq4mpYKHPzS5xziSTsOur40QfmITHF5hHD+Mgxq3GSG8Zhdw0ewXkdIgKyuLFStWcOjQIQYNGgTAyZMn8fX1xdu74DscTJgwgW7dulG1alWSkpJYsGABK1asYMmSJRw6dIgFCxbQvXt3AgIC2LFjB2PHjqVdu3Y0bNjQXm9NRESkxCpw8D527Bjdu3e33u7cuTMmk4mTJ08SFhZml+LKEq/cEe+MrByysnNwdtIvK6SU8AmCmx80jguHjbXgO7+Es3uNUfG9P4CrjzFS3uBfENUenArdPkJEisHRo0fp2rUrx44dIz09ndtuuw0fHx+ef/550tPTefvttwt8rTNnznDvvfdy6tQp/Pz8aNiwIUuWLOG2224jNjaWpUuXMmvWLFJSUggPD6d///5MnDjRju9ORESk5CrwT8dZWVm4u7vbnHNxcSEzM7PIiyqL8pqrAaRkZOPnoeAtpVDFakZDtraPw+ldxij4n19BQixs/8w4PCtBvT5Qrx9UvRnMTte9rIgUjzFjxtC8eXO2b99OQECA9Xzfvn0ZMWJEoa71wQcfXPO+8PBwVq5cecN1ioiIlDUFDt4Wi4WhQ4faND1JS0vjwQcfxMvLy3ru77YJKc9cnc24OpnJyM4hJT0LPw8XR5ckcuNMJgiubxydpsDxDUYI3/U1pJ6Dje8bh3cw1L3DaMoW3hK0LEXEoX7//XfWrFmDq6urzfnIyEhOnDjhoKpERETKvgIH7yFDhuQ7d8899xRpMWWdl5sTGak52lJMyhaz2RjZrnozdH3OWP+962vY8wMkx8GGd4zDJ/RyCA+7SSFcxAFycnLIzs7fa+T48eP4+Pg4oCIREZHyocDBe+7cufaso1zwcnPmYmomyQreUlY5uRgN12rcBj1fvRzC9/4ISSdh/Rzj8K0CdfvkhvDmxgi6iNjd7bffzqxZs3j33XcBMJlMJCcnM2XKFJs+LiIiIlK01AGpGHm7Gd9uBW8pF5zdjG7nNbtAVjoc+i03hP8EiSdg3ZvG4ReeOxLeD6o0VQgXsaOXXnqJrl27UrduXdLS0hg0aBAHDhygUqVKfPbZZ44uT0REpMxS8C5GecFbU82l3HF2g1rdjCMzDQ4tM0L4vp+Nxmxr3zAOv6q5jdn6QmgThXCRIhYeHs727dv5/PPP2b59O8nJyQwfPpzBgwfj4aEtAUVEROxFwbsYeeUG76Q0BW8px1zcoXYP48i8BAeX5obwxZBwDNbMNg6/qlCnl3GoMZvIP5aZmUnt2rX54YcfGDx4MIMHD3Z0SSIiIuWGgncx8nbXiLeIDRePy+E6IxUO/mqE8P1LjBCeNx3dO8gI6nV6Q2QbYy25iBSKi4sLaWlpji5DRESkXFLwLkbeuXt5p2Tk7ygrUu65ehprveveYYTwQ8tgz/fGSHjyadj0oXF4VIBa3Y2wXq2DMYIuIgXy8MMP8/zzz/P+++/j7KwfAURERIqLPnWLUd6It6aai1yHq+flkfCsDIhZBXu+M7qjp56DbfONw9UbatxuPK7G7eDm7ejKRUq0jRs3smzZMn755RcaNGiAl5eXzf2LFi1yUGUiIiJlm4J3MfJSczWRwnN2hRqdjaPnq3BsrTESvud7ozv6rkXG4eQG1TsZ09FrdTVGxkXEhr+/P/3793d0GSIiIuWOgncx8nZzAhS8RW6Y2clY4x3ZBro+Bye2GCPhe76DC4dh30/GYXaGyLbGuvBa3cAvzNGVi5QIc+fOdXQJIiIi5ZKCdzHydjMaQiUpeIv8cyYThDUzjs5T4cxuYxR893dwZhccXm4cPz0OIY2gVg+o3R2C6mubMil3cnJyePHFF/nuu+/IyMigU6dOTJkyRVuIiYiIFBMF72LkpRFvEfswmSConnG0fwrOHzLWg+/7CY6tg1PbjWPFs8Y2ZbW6GSE8orU6pEu58MwzzzB16lQ6d+6Mh4cHr732GmfOnOHDDz90dGkiIiLlgoJ3MfLOXeOdrOAtYl8B0dB6tHGknIP9i2HvT3DoN2Obsg3vGIe7n9GUrVZ3qN4Z3H0dXbmIXXz88ce89dZbPPDAAwAsXbqUHj168P7772M2mx1cnYiISNmn4F2MFLxFHMCrEjS5xzgyUuHwCtj3o7FNWeo52PmFcZhdIKqtEcJrdQe/Ko6uXKTIHDt2jO7du1tvd+7cGZPJxMmTJwkLUw8EERERe1PwLkbqai7iYK6exhTz2t0hJxuOb7w8Jf38QWNE/NBvuevCGxvN2Wp2geCGWhcupVpWVhbu7rZ73ru4uJCZmemgikRERMoXBe9iZB3x1j7eIo5ndoKqNxvH7U/D2f25I+E/Q+wGOLXNOJY/Az4hUOM2qNkVom7VfuFS6lgsFoYOHYqbm5v1XFpaGg8++KDNXt7ax1tERMQ+FLyLkbd77oh3RjY5ORbMZo2giZQYlWsaR5uxkHzGWBe+b7HRGT3pFGz52DicXI2tymp2MdaHV4xydOUi1zVkyJB85+655x4HVCIiIlI+KXgXo7wRb4DUzGyb2yJSgngHQtN7jSMzDY7+Aft/McJ4/FE4tMw4fh4PlWoZIbxmFwhvqS7pUiJp/24RERHHUvIrRm7OZpzNJrJyLCSnZSl4i5QGLu5Gx/PqnaHb83BuvxHA9/8Cx9bCuX3GsWY2uPlB9U5GCK9+G3gFOLp6ERERESkBlPyKkclkwsvNmYRLmepsLlIamUxQuZZxtB4Dly4azdj2L4EDv8KlC7BrkXFggrCbLk9JD26gBm0iIiIi5ZSCdzHzVvAWKTs8KkD9/saRkw3HN8GBJcZo+OmdcHyDcfz2NHgHQXQnY0Q8uiN4VnR09SIiIiJSTBS8i5lPboO1pDRt4SJSppidoGpL4+g0GRKOw4FfjNHwmFWQfBq2LzAOTFClmTF9vcZtENrEeL6IiIiIlEkK3sXM18NovJR4SSPeImWaXxg0v884stLh2Do4uBQOLoMzu+DEJuNY+Zwxch7d0Qji0Z3AJ8jR1YuIiIhIEVLwLma+7rnBWyPeIuWHsxtUu9U4bn8aEk4YXdEPLoVDK4y14n9+ZRxgrAfPa+imTukiIiIipZ6CdzHzzZ1qnnhJwVuk3PKrcnm7suwsY+T74FLjOLkV4nYaxx+vgquPEdjz1oZXiHR09SIiIiJSSArexSxvqnlSmqaaiwjg5AxVbzaOjhMh+SwcXn55WnrqOdj7g3EAVIiC6A5QrQNEtTWmqYuIiIhIiabgXcysI96aai4iV+NdGRreZRw5OXBqmxHADy2D4xvhYgxsioFNH4LJbDRmq9bBCONhLcDZ1dHvQERERET+QsG7mF1urqbgLSLXYTZDlabGcesTkJYIR1fDoeXGqPi5/XBis3H8/hK4eEFka6jW3gjjgXW0d7iIiIhICaDgXcwuN1fTVHMRKSR3X6jVzTjAaNJ2eIURwg+vgJSzxhZmB34x7vcONkJ4dAfjT59gx9QtIiIiUs4peBczXw81VxORIuJXBZoMNo6cHGObsrzR8KNrIDkOdiw0DoDAurmj4e2haisjyIuIiIiI3Sl4FzNtJyYidmE2G9uQBTeA1qMhMw1i1xsh/NByOLUdzuw2jnVvgcnJWB8e1c5o0hZ+M7h6OvpdiIiIiJRJCt7FzCcveF/SVHMRsSMX98t7h3eeCinnIWalMSU9ZpXRpO3EJuP44xUwu0B4C4hsa4TxsObG/uMiIiIi8o8peBcz61RzjXiLSHHyCoD6/YwDID4WjvxuhPCYVZB4wmjcdnQ1rHwOnD2gaksjhEe2M0bHnfSRISIiInIj9FNUMcubap6akU1Wdg7OTmYHVyQi5ZJ/ODQeZBwWC1w4bBvEU87mNm5bYTze1QciWuVOTW8HQQ2M6e0iIiIicl0K3sXMx/3ytzwpLYsKXtpzV0QczGSCgGjjaDbUCOJn9xkB/MgqiPkd0uJtO6a7+0NkG+OIuAWC6oPZyYFvQkRERKTkUvAuZs5OZrxcnUjJyCYxLVPBW0RKHpMJAmsbR8uRRsf0039eHg0/usYI4nt/MA4ANz+oerOxj3hEawhpBE4uDn0bIiIiIiWFgrcD+Hq4GMFbDdZEpDQwmyGkoXHcMgqys+DUtssh/Ng6SE+AA0uMA8DFK7dZW24Qr9JMzdpERESk3FLwdgBfdxdOJaSpwZqIlE5OzkbX87Dm0HacEcRP7zRC+JHVcGwNXLpobGV2eHnuc9wg7KbcIH4LhLXQ9mUiIiJSbih4O4C1s/klBW8RKQOcnI2u56FNoNXDxtT0s3tyg/gfRqf0lLNw9A/jADA7Q2jTyyPi4S3B3dex70NERETEThS8HSCvs3mCgreIlEVmMwTVM44WI4xmbecP5obwNUYQTzwBxzcYxx+vgslsNGirerNxhN8MflUc/U5EREREioSCtwP4eRrB+2KqgreIlAMmE1SqYRzNhxlBPP6oMS396BpjFPziEYjbYRwb3jWe51fV2Es8L4gH1lHndBERESmVFLwdoIKn0ck8/lKGgysREXEAkwkqRBpHk8HGucSTRpO22PVwbC3E7YSEY7DzGOz8wniMmx+E33Q5iFdppnXiDjRnzhzmzJnDkSNHAKhXrx6TJ0+mW7duAKSlpfHYY4+xcOFC0tPT6dKlC2+99RZBQUEOrFpERMQxFLwdoELuiHd8ika8RUQA8A2F+v2MAyA9CY5vuhzEj28yOqcfXGocYKwTD2lsOz3du7LD3kJ5ExYWxnPPPUeNGjWwWCx89NFH3HHHHWzdupV69eoxduxYfvzxR7744gv8/PwYNWoU/fr1Y/Xq1Y4uXUREpNgpeDuAf+6I98VUjXiLiFyVmw9EdzAOyO2c/uflIH5sHSSdghObjGPtG8bjKkbnhvAWRuf0yrU0Pd1OevXqZXP7mWeeYc6cOaxbt46wsDA++OADFixYQMeOHQGYO3cuderUYd26ddx8882OKFlERMRhFLwdwDrVXGu8RUQKxskZQhsbR8sHcteJH7siiK+HM7vhwiHj2DbfeJ6rD4Q1M7YyC2thbIHmWdGR76RMys7O5osvviAlJYVWrVqxefNmMjMz6dy5s/UxtWvXpmrVqqxdu1bBW0REyh0FbwfwtzZX04i3iMgNMf1/e/ceH2V55n/8O5NkciAnkpBTSThXkJMQDo20iEA5aBVWVqllaUBWFzehItuuphaRtm7s2l21Femv/lpoXRCLBbWsyg9DQLAcoyAUDIJUUHMAMZkkkMlh7t8fA4MjBJKQyTNJPu/X63mRuZ97nrnm8oVXLu7nYJO69vBsQ+7yjJ0rlz7Z42nET+6WPn1Xqq2UPtri2S6I73uxCU8bJXUb4Gns0WwHDhxQZmamampqFBkZqfXr1+v666/Xvn375HA4FBsb6zM/KSlJJSUljR7P5XLJ5XJ5XzudTn+FDgBAm+I3DQvEcldzAGh94bFSv297NklyN3hWwT/ZI53c4/nz8w89jzb7/Ki0f7VnXkgX6WvDPaviaaM8f3ZJsOxrtCfXXXed9u3bp4qKCr388svKysrS1q1bW3y8vLw8LV26tBUjBAAgMNB4W+Diqea1MsbIZrNZHBEAdED2ICl5sGcbcY9n7OwZz43aPtlz/jnihZ5V8b9v82wXdO31pUZ8hOcZ40Eh1nyPAOZwONS3b19JUkZGhvbs2aNnnnlGM2fOVG1trcrLy31WvUtLS5WcnNzo8XJzc7Vo0SLva6fTqbS0NL/FDwBAW6HxtsCFxrvebVTlqldUGL/MAUCbiIiTvj7Js0meVfFTRV9qxPdKpz6Qvjju2Q78yTMvOExKGep5hNnXMjwr5F17eU55h5fb7ZbL5VJGRoZCQkKUn5+vGTNmSJKKiop04sQJZWZmNvr+0NBQhYaGtlW4AAC0GRpvC4Q7ghQabJer3q3ys3U03gBgFXuQlHS9Z8vI8oydK5c+LTzfjJ/faio8N3I7uevie8O7nm/CR1xsxjvRKeq5ubmaOnWq0tPTVVlZqdWrV2vLli3auHGjYmJiNG/ePC1atEhxcXGKjo7WggULlJmZyY3VAACdEo23RbpGOFTirNEXZ2uVFhdhdTgAgAvCY6W+EzybJLnd0pmPPM34ha3kfencF77PFZek2B5fWhXP8KySOzrm/+PLysr0/e9/X8XFxYqJidGQIUO0ceNGffvbnmvsn3rqKdntds2YMUMul0uTJ0/Wc889Z3HUAABYg8bbIrERIecbb26wBgABzW6XEvp6tqEzPWP1tZ7nin+5GT99RCr/2LP9bZ1n3tenSt9bY13sfvS73/3uivvDwsK0bNkyLVu2rI0iAgAgcNF4W+TLN1gDALQzwQ7PqeVfGy7pXs9YTYX02Xue68Q/fVf6dK9n1RsAAHR6NN4W6drl/CPFqmm8AaBDCIuReo/zbJJkjOSutzIiAAAQIOxWB3AleXl5GjlypKKiopSYmKjp06erqKjIZ05NTY2ys7MVHx+vyMhIzZgxQ6WlpRZF3HSx51e8OdUcADoom41HkAEAAEkB3nhv3bpV2dnZ2rlzpzZt2qS6ujpNmjRJ1dXV3jkPPvig/vKXv2jt2rXaunWrPvvsM91xxx0WRt00cecb7zOseAMAAABAhxbQp5q/+eabPq9XrlypxMREFRYWauzYsaqoqNDvfvc7rV69WuPHj5ckrVixQgMGDNDOnTsD+pEl8ZGexvvzapfFkQAAAAAA/CmgV7y/qqKiQpIUFxcnSSosLFRdXZ0mTpzondO/f3+lp6drx44dlsTYVAmRoZKk01WseAMAAABARxbQK95f5na7tXDhQo0ZM0aDBg2SJJWUlMjhcCg2NtZnblJSkkpKSho9lsvlkst1caXZ6XT6JeYrudh4s+INAAAAAB1Zu1nxzs7O1sGDB7VmzbU/DzUvL08xMTHeLS0trRUibJ6E86ean66k8QYAAACAjqxdNN45OTnasGGDCgoK1L17d+94cnKyamtrVV5e7jO/tLRUycnJjR4vNzdXFRUV3u3kyZP+Cr1RF1a8nTX1qq13t/nnAwAAAADaRkA33sYY5eTkaP369dq8ebN69erlsz8jI0MhISHKz8/3jhUVFenEiRPKzMxs9LihoaGKjo722dpaTHiIgu02SdxgDQAAAAA6soC+xjs7O1urV6/Wq6++qqioKO912zExMQoPD1dMTIzmzZunRYsWKS4uTtHR0VqwYIEyMzMD+o7mkmS32xTXxaGySpdOV9YqJSbc6pAAAAAAAH4Q0I338uXLJUnjxo3zGV+xYoXmzJkjSXrqqadkt9s1Y8YMuVwuTZ48Wc8991wbR9oyCZGhnsabFW8AAAAA6LACuvE2xlx1TlhYmJYtW6Zly5a1QUStKyEqVCrmBmsAAAAA0JEF9DXeHV1CF8+dzT+v5lneAAAAANBR0XhbKCHq/LO8WfEGAAAAgA6LxttC8edXvE9X0XgDAAAAQEdF422hbudXvE/ReAMAAABAh0XjbaHk6DBJUklFjcWRAAAAAAD8hcbbQkkxnsa71MmKNwAAAAB0VDTeFrqw4l3lqldlTZ3F0QAAAAAA/IHG20JdQoMVFeZ5lHqpk9PNAQAAAKAjovG22MXrvDndHAAAAAA6IhpviyWfv867hBVvAAAAAOiQaLwtluRd8T5ncSQAAAAAAH+g8bZYCiveAAAAANCh0XhbLIlrvAEAAACgQ6PxttiFm6txV3MAAAAA6JhovC2WEutpvD8r5xpvAAAAAOiIaLwt1r1rhCTp8+paVbvqLY4GAAAAANDaaLwtFhMeouiwYEnSp6x6AwAAAECHQ+MdAC6sep88c9biSAAAAAAArY3GOwCkxYVLovEGAAAAgI6IxjsApJ1f8f7kC041BwAAAICOhsY7AKTFnT/V/AtWvAEAAACgo6HxDgAXTzVnxRsAAAAAOhoa7wDgvbkaK94AAAAA0OHQeAeAC9d4V9bU64vqWoujAQAAAAC0JhrvABDuCFJqTJgk6aPTVRZHAwAAAABoTTTeAaJ3t0hJ0rFT1RZHAgAAAABoTTTeAaJPty6SpGOnWPEGAAAAgI6ExjtAXFjx/ogVbwAAAADoUGi8A0Qfb+PNijcAAAAAdCQ03gGi9/lTzT/+/KzqGtwWRwMAAAAAaC003gEiOTpMEY4g1buNTpzhed4AgMCVl5enkSNHKioqSomJiZo+fbqKiop85owbN042m81nmz9/vkURAwBgLRrvAGG329Qv0XO6eVFJpcXRAADQuK1btyo7O1s7d+7Upk2bVFdXp0mTJqm62vc+Jffee6+Ki4u923/+539aFDEAANYKtjoAXDQgJVr7P6nQoc+cumVwitXhAABwWW+++abP65UrVyoxMVGFhYUaO3asdzwiIkLJycltHR4AAAGHFe8Acn1qtCTpcLHT4kgAAGi6iooKSVJcXJzP+KpVq5SQkKBBgwYpNzdXZ89e+VIql8slp9PpswEA0BGw4h1ABqR4Gu9DNN4AgHbC7XZr4cKFGjNmjAYNGuQd/973vqcePXooNTVV77//vh566CEVFRVp3bp1jR4rLy9PS5cubYuwAQBoUzTeAaR/cpQkqbiiRmeqaxXXxWFxRAAAXFl2drYOHjyo7du3+4zfd9993p8HDx6slJQUTZgwQceOHVOfPn0ue6zc3FwtWrTI+9rpdCotLc0/gQMA0IY41TyARIWFqEd8hCRONwcABL6cnBxt2LBBBQUF6t69+xXnjh49WpJ09OjRRueEhoYqOjraZwMAoCOg8Q4wA89f573/k3JrAwEAoBHGGOXk5Gj9+vXavHmzevXqddX37Nu3T5KUksLNQwEAnQ+nmgeY4eld9fqBEr378RdWhwIAwGVlZ2dr9erVevXVVxUVFaWSkhJJUkxMjMLDw3Xs2DGtXr1at9xyi+Lj4/X+++/rwQcf1NixYzVkyBCLowcAoO3ReAeY4T26SpLePVEuY4xsNpvFEQEA4Gv58uWSpHHjxvmMr1ixQnPmzJHD4dBbb72lp59+WtXV1UpLS9OMGTP0k5/8xIJoAQCwHo13gBmYGi1HkF1nqmv198/PqldCF6tDAgDAhzHmivvT0tK0devWNooGAIDAxzXeASY0OEiDu8dIEqebAwAAAEAHQOMdgDLOn26+6/jnFkcCAAAAALhWNN4BaEzfBEnS9g9PX/V0PgAAAABAYKPxDkCjesbJEWzXZxU1Onaq2upwAAAAAADXgMY7AIU7gjSqZ5wkaduHpyyOBgAAAABwLWi8A9S3+nlONy8oovEGAAAAgPaMxjtATbw+SZK049hpVZytszgaAAAAAEBL0XgHqD7dInVdUpTqGozeOlxqdTgAAAAAgBai8Q5gUwcnS5JeP1BscSQAAAAAgJai8Q5g3xmSIknaeuSUypw1FkcDAAAAAGgJGu8A1jcxShk9uqrebbS28BOrwwEAAAAAtACNd4C7e1S6JGnNnhNqcBuLowEAAAAANBeNd4C7dXCKYiNCdPLMOa71BgAAAIB2iMY7wIU7gjTnxp6SpGUFR2UMq94AAAAA0J7QeLcDc27sqS6OIH1QUqnX9n9mdTgAAAAAgGag8W4HYiMcmn9TH0lS3usf6GxtvcURAQAAAACaisa7nbh3bG917xquEmeNnnjjA6vDAQAAAAA0EY13OxEWEqS8OwZLkv6442P9v7+VWBwRAAAAAKApaLzbkW/166a5Y3pKkh5Ys08HPqmwNiAAAAAAwFXReLczP75lgL7VL0Hn6ho0d+VuHfyU5hsAAAAAAhmNdzsTEmTXc7OGa2BqtE5X1Wrm/9mhjZx2DgAAAAABi8a7HYoKC9GL931DN/aJV3Vtg/7lhUL9cO1+lVXWWB0aAAAAAOArOkzjvWzZMvXs2VNhYWEaPXq0du/ebXVIfhUdFqKVc0fpX8b2ls0mvVz4icY9uUU/33BIx09XWx0eAAAAAOC8DtF4v/TSS1q0aJGWLFmid999V0OHDtXkyZNVVlZmdWh+5Qi2K/eWAVr7L5kamhars7UN+r/bj+vmX27RtGe365m3PlThx2d0rrbB6lABAAAAoNOyGWOM1UFcq9GjR2vkyJF69tlnJUlut1tpaWlasGCBHn744au+3+l0KiYmRhUVFYqOjvZ3uH5hjFFBUZle2PGxthw5pS//V7XbpL6JkeqV0EXdu0aoe9dwJUeHKSYiRDHhIYqNcCgmPEQRIUGy223WfQkAwGV1hDrVEq35vQc++qaqaxv09o9uVnp8RCtFCADozJpTp4LbKCa/qa2tVWFhoXJzc71jdrtdEydO1I4dOy77HpfLJZfL5X3tdDr9Hqe/2Ww2je+fpPH9k1TmrFFBUZk2f1Cm906Uq6zSpSOlVTpSWnXV44QE2eQIsis0JEihwXY5gu1yBNkVZLfJZrPJbpPs5//0fW2T3X7xZ1sL+ndbI2+60qEa+5zG3tPYZ1ztcwCgJcZ+vZuybuxpdRgAAMBi7b7xPn36tBoaGpSUlOQznpSUpA8++OCy78nLy9PSpUvbIjxLJEaHaebIdM0cmS5JKnPW6G+fOXXizFl9Wn5On3xxVqVOlyrO1an8bJ2c5+pU2+CWJNU1GNU1NKia09MB4JolRodaHQIAAAgA7b7xbonc3FwtWrTI+9rpdCotLc3CiPwrMTpMidFhje43xqimzq1zdQ1y1Teott4tV71brjq3ahsa5Kp3yxjJbYzcRnK7zcWfjZE5/3ODd/zKVy9cafcV913le17pqomrXk/R7i+4ABCIenfrYnUIOO+n0wapwW3UtUuI1aEAADqhdt94JyQkKCgoSKWlpT7jpaWlSk5Ovux7QkNDFRrKKsQFNptN4Y4ghTuCrA4FAAC/mJHR3eoQAACdWLu/q7nD4VBGRoby8/O9Y263W/n5+crMzLQwMgAAAAAAOsCKtyQtWrRIWVlZGjFihEaNGqWnn35a1dXVmjt3rtWhAQAAAAA6uQ7ReM+cOVOnTp3So48+qpKSEt1www168803L7nhGgAAAAAAba1DNN6SlJOTo5ycHKvDAAAAAADAR7u/xhsAAAAAgEBG4w0AAAAAgB/ReAMAAAAA4Ec03gAAAAAA+BGNNwAAAAAAfkTjDQAAAACAH9F4AwAAAADgRzTeAAAAAAD4EY03AAAAAAB+ROMNAAAAAIAf0XgDAAAAAOBHwVYHEAiMMZIkp9NpcSQAAFzqQn26UK86C+ozACCQNac+03hLqqyslCSlpaVZHAkAAI2rrKxUTEyM1WG0GeozAKA9aEp9tpnO9s/nl+F2u/XZZ58pKipKNpvtmo7ldDqVlpamkydPKjo6upUi7PjIW/ORs5Yhb81HzlqmNfNmjFFlZaVSU1Nlt3eeq8Soz9Yjb81HzlqGvDUfOWsZq+ozK96S7Ha7unfv3qrHjI6O5i9AC5C35iNnLUPemo+ctUxr5a0zrXRfQH0OHOSt+chZy5C35iNnLdPW9bnz/LM5AAAAAAAWoPEGAAAAAMCPaLxbWWhoqJYsWaLQ0FCrQ2lXyFvzkbOWIW/NR85ahrwFFv57tAx5az5y1jLkrfnIWctYlTdurgYAAAAAgB+x4g0AAAAAgB/ReAMAAAAA4Ec03gAAAAAA+BGNdytbtmyZevbsqbCwMI0ePVq7d++2OqSAkZeXp5EjRyoqKkqJiYmaPn26ioqKfObU1NQoOztb8fHxioyM1IwZM1RaWmpRxIHniSeekM1m08KFC71j5OzyPv30U/3TP/2T4uPjFR4ersGDB2vv3r3e/cYYPfroo0pJSVF4eLgmTpyoDz/80MKIrdXQ0KDFixerV69eCg8PV58+ffSzn/1MX74NCDmT3n77bd12221KTU2VzWbTK6+84rO/KTk6c+aMZs2apejoaMXGxmrevHmqqqpqw2/ROVGfG0d9vnbU56ajPjcP9blp2kV9Nmg1a9asMQ6Hw/z+9783f/vb38y9995rYmNjTWlpqdWhBYTJkyebFStWmIMHD5p9+/aZW265xaSnp5uqqirvnPnz55u0tDSTn59v9u7da77xjW+YG2+80cKoA8fu3btNz549zZAhQ8wDDzzgHSdnlzpz5ozp0aOHmTNnjtm1a5f56KOPzMaNG83Ro0e9c5544gkTExNjXnnlFbN//35z++23m169eplz585ZGLl1Hn/8cRMfH282bNhgjh8/btauXWsiIyPNM888451Dzox5/fXXzSOPPGLWrVtnJJn169f77G9KjqZMmWKGDh1qdu7cabZt22b69u1r7r777jb+Jp0L9fnKqM/XhvrcdNTn5qM+N017qM803q1o1KhRJjs72/u6oaHBpKammry8PAujClxlZWVGktm6dasxxpjy8nITEhJi1q5d651z+PBhI8ns2LHDqjADQmVlpenXr5/ZtGmTuemmm7yFnZxd3kMPPWS++c1vNrrf7Xab5ORk8+STT3rHysvLTWhoqHnxxRfbIsSAc+utt5p77rnHZ+yOO+4ws2bNMsaQs8v5amFvSo4OHTpkJJk9e/Z457zxxhvGZrOZTz/9tM1i72yoz81DfW466nPzUJ+bj/rcfIFanznVvJXU1taqsLBQEydO9I7Z7XZNnDhRO3bssDCywFVRUSFJiouLkyQVFhaqrq7OJ4f9+/dXenp6p89hdna2br31Vp/cSOSsMa+99ppGjBihO++8U4mJiRo2bJief/557/7jx4+rpKTEJ28xMTEaPXp0p83bjTfeqPz8fB05ckSStH//fm3fvl1Tp06VRM6aoik52rFjh2JjYzVixAjvnIkTJ8put2vXrl1tHnNnQH1uPupz01Gfm4f63HzU52sXKPU5uFWOAp0+fVoNDQ1KSkryGU9KStIHH3xgUVSBy+12a+HChRozZowGDRokSSopKZHD4VBsbKzP3KSkJJWUlFgQZWBYs2aN3n33Xe3Zs+eSfeTs8j766CMtX75cixYt0o9//GPt2bNHP/jBD+RwOJSVleXNzeX+vnbWvD388MNyOp3q37+/goKC1NDQoMcff1yzZs2SJHLWBE3JUUlJiRITE332BwcHKy4ujjz6CfW5eajPTUd9bj7qc/NRn69doNRnGm9YIjs7WwcPHtT27dutDiWgnTx5Ug888IA2bdqksLAwq8NpN9xut0aMGKH/+I//kCQNGzZMBw8e1G9+8xtlZWVZHF1g+tOf/qRVq1Zp9erVGjhwoPbt26eFCxcqNTWVnAGdCPW5aajPLUN9bj7qc8fBqeatJCEhQUFBQZfcrbK0tFTJyckWRRWYcnJytGHDBhUUFKh79+7e8eTkZNXW1qq8vNxnfmfOYWFhocrKyjR8+HAFBwcrODhYW7du1a9+9SsFBwcrKSmJnF1GSkqKrr/+ep+xAQMG6MSJE5LkzQ1/Xy/60Y9+pIcffljf/e53NXjwYM2ePVsPPvig8vLyJJGzpmhKjpKTk1VWVuazv76+XmfOnCGPfkJ9bjrqc9NRn1uG+tx81OdrFyj1mca7lTgcDmVkZCg/P9875na7lZ+fr8zMTAsjCxzGGOXk5Gj9+vXavHmzevXq5bM/IyNDISEhPjksKirSiRMnOm0OJ0yYoAMHDmjfvn3ebcSIEZo1a5b3Z3J2qTFjxlzyKJwjR46oR48ekqRevXopOTnZJ29Op1O7du3qtHk7e/as7HbfkhAUFCS32y2JnDVFU3KUmZmp8vJyFRYWeuds3rxZbrdbo0ePbvOYOwPq89VRn5uP+twy1Ofmoz5fu4Cpz61yizYYYzyPKwkNDTUrV640hw4dMvfdd5+JjY01JSUlVocWEO6//34TExNjtmzZYoqLi73b2bNnvXPmz59v0tPTzebNm83evXtNZmamyczMtDDqwPPlu6YaQ84uZ/fu3SY4ONg8/vjj5sMPPzSrVq0yERER5n/+53+8c5544gkTGxtrXn31VfP++++badOmdbpHb3xZVlaW+drXvuZ9XMm6detMQkKC+fd//3fvHHLmuYPxe++9Z9577z0jyfz3f/+3ee+998zHH39sjGlajqZMmWKGDRtmdu3aZbZv32769evH48T8jPp8ZdTn1kF9vjrqc/NRn5umPdRnGu9W9utf/9qkp6cbh8NhRo0aZXbu3Gl1SAFD0mW3FStWeOecO3fO/Ou//qvp2rWriYiIMP/wD/9giouLrQs6AH21sJOzy/vLX/5iBg0aZEJDQ03//v3Nb3/7W5/9brfbLF682CQlJZnQ0FAzYcIEU1RUZFG01nM6neaBBx4w6enpJiwszPTu3ds88sgjxuVyeeeQM2MKCgou+/+xrKwsY0zTcvT555+bu+++20RGRpro6Ggzd+5cU1lZacG36Vyoz42jPrcO6nPTUJ+bh/rcNO2hPtuMMaZ11s4BAAAAAMBXcY03AAAAAAB+ROMNAAAAAIAf0XgDAAAAAOBHNN4AAAAAAPgRjTcAAAAAAH5E4w0AAAAAgB/ReAMAAAAA4Ec03gAAAAAA+BGNN4AWmTNnjqZPn251GAAAoA3ZbDa98sorAXMcoL2g8QZwCZvNdsXtscce0zPPPKOVK1daHSoAAH4xZ84cb91zOBzq27evfvrTn6q+vt7q0NqVxx57TDfccMMl48XFxZo6dWrbBwRYJNjqAAAEnuLiYu/PL730kh599FEVFRV5xyIjIxUZGWlFaAAAtJkpU6ZoxYoVcrlcev3115Wdna2QkBDl5uZeMre2tlYOh8OCKNun5ORkq0MA2hQr3gAukZyc7N1iYmJks9l8xiIjIy851XzcuHFasGCBFi5cqK5duyopKUnPP/+8qqurNXfuXEVFRalv37564403fD7r4MGDmjp1qiIjI5WUlKTZs2fr9OnTbfyNAQC4VGhoqJKTk9WjRw/df//9mjhxol577TVJFy+5evzxx5WamqrrrrtOknTy5Endddddio2NVVxcnKZNm6a///3vkqS3335bISEhKikp8fmchQsX6lvf+lajcdhsNi1fvlxTp05VeHi4evfurZdfftlnzoEDBzR+/HiFh4crPj5e9913n6qqqrz7L8S7dOlSdevWTdHR0Zo/f75qa2u9c3r27Kmnn37a57g33HCDHnvssUZje+ihh/T1r39dERER6t27txYvXqy6ujpJ0sqVK7V06VLt37/fe/bAhbPlvnqqeVPj/+Uvf6mUlBTFx8crOzvb+1lAoKPxBtBq/vCHPyghIUG7d+/WggULdP/99+vOO+/UjTfeqHfffVeTJk3S7NmzdfbsWUlSeXm5xo8fr2HDhmnv3r168803VVpaqrvuusvibwIAwKXCw8N9GtX8/HwVFRVp06ZN2rBhg+rq6jR58mRFRUVp27ZteueddxQZGakpU6aotrZWY8eOVe/evfXCCy94j1FXV6dVq1bpnnvuueJnL168WDNmzND+/fs1a9Ysffe739Xhw4clSdXV1Zo8ebK6du2qPXv2aO3atXrrrbeUk5Pjc4z8/HwdPnxYW7Zs0Ysvvqh169Zp6dKl15STqKgorVy5UocOHdIzzzyj559/Xk899ZQkaebMmfq3f/s3DRw4UMXFxSouLtbMmTMvOUZT4y8oKNCxY8dUUFCgP/zhD1q5ciWXvaH9MABwBStWrDAxMTGXjGdlZZlp06Z5X990003mm9/8pvd1fX296dKli5k9e7Z3rLi42EgyO3bsMMYY87Of/cxMmjTJ57gnT540kkxRUVHrfhEAAJrhy3XO7XabTZs2mdDQUPPDH/7Quz8pKcm4XC7ve1544QVz3XXXGbfb7R1zuVwmPDzcbNy40RhjzC9+8QszYMAA7/4///nPJjIy0lRVVTUaiyQzf/58n7HRo0eb+++/3xhjzG9/+1vTtWtXn2P87//+r7Hb7aakpMQbb1xcnKmurvbOWb58uYmMjDQNDQ3GGGN69OhhnnrqKZ/PGTp0qFmyZIlPLOvXr2801ieffNJkZGR4Xy9ZssQMHTr0st/pwnGaGn+PHj1MfX29d86dd95pZs6c2WgsQCBhxRtAqxkyZIj356CgIMXHx2vw4MHesaSkJElSWVmZJGn//v0qKCjwXjMeGRmp/v37S5KOHTvWhpEDAHCpDRs2KDIyUmFhYZo6dapmzpzpc9r14MGDfa7r3r9/v44ePaqoqChvXYuLi1NNTY23rs2ZM0dHjx7Vzp07JXlOx77rrrvUpUuXK8aSmZl5yesLK96HDx/W0KFDfY4xZswYud1un3u0DB06VBERET7HqKqq0smTJ5uZmYteeukljRkzxnsp2k9+8hOdOHGiWcdoavwDBw5UUFCQ93VKSor3dwog0HFzNQCtJiQkxOe1zWbzGbPZbJIkt9stSaqqqtJtt92mX/ziF5ccKyUlxY+RAgBwdTfffLOWL18uh8Oh1NRUBQf7/ur81Wa5qqpKGRkZWrVq1SXH6tatmyQpMTFRt912m1asWKFevXrpjTfe0JYtW/z2HZrDbrfLGOMzdqVrqHfs2KFZs2Zp6dKlmjx5smJiYrRmzRr913/9l1/iu9zvGRd+pwACHY03AMsMHz5cf/7zn9WzZ89LfpkBAMBqXbp0Ud++fZs8f/jw4XrppZeUmJio6OjoRuf98z//s+6++251795dffr00ZgxY6567J07d+r73/++z+thw4ZJkgYMGKCVK1equrra+48B77zzjux2u/emb5JnRf7cuXMKDw/3HiMyMlJpaWmSPP848OUnmzidTh0/frzRmP7617+qR48eeuSRR7xjH3/8sc8ch8OhhoaGK363psYPtGecag7AMtnZ2Tpz5ozuvvtu7dmzR8eOHdPGjRs1d+7cqxZpAAACzaxZs5SQkKBp06Zp27ZtOn78uLZs2aIf/OAH+uSTT7zzJk+erOjoaP385z/X3Llzm3TstWvX6ve//72OHDmiJUuWaPfu3d6bj82aNUthYWHKysrSwYMHVVBQoAULFmj27Nney7wkzyPP5s2bp0OHDun111/XkiVLlJOTI7vd0xKMHz9eL7zwgrZt26YDBw4oKyvL59Tur+rXr59OnDihNWvW6NixY/rVr36l9evX+8zp2bOnjh8/rn379un06dNyuVyXzVtT4gfaMxpvAJZJTU3VO++8o4aGBk2aNEmDBw/WwoULFRsb6/0lAACA9iIiIkJvv/220tPTdccdd2jAgAGaN2+eampqfFbA7Xa75syZo4aGBp9V7CtZunSp1qxZoyFDhuiPf/yjXnzxRV1//fXez924caPOnDmjkSNH6h//8R81YcIEPfvssz7HmDBhgvr166exY8dq5syZuv32232uWc/NzdVNN92k73znO7r11ls1ffp09enTp9GYbr/9dj344IPKycnRDTfcoL/+9a9avHixz5wZM2ZoypQpuvnmm9WtWze9+OKLl81bU+IH2jOb+eqFHAAAAAD8at68eTp16pT3ueBXYrPZtH79ek2fPr3FnzdnzhyVl5f7PDsbQNvhokoAAACgjVRUVOjAgQNavXp1k5puAB0DjTcAAADQRqZNm6bdu3dr/vz5+va3v211OADaCKeaAwAAAADgR9y9CAAAAAAAP6LxBgAAAADAj2i8AQAAAADwIxpvAAAAAAD8iMYbAAAAAAA/ovEGAAAAAMCPaLwBAAAAAPAjGm8AAAAAAPyIxhsAAAAAAD/6/0N+XusaAChwAAAAAElFTkSuQmCC"
|
48
|
-
}
|
49
|
-
}
|
50
|
-
]
|
51
|
-
},
|
52
|
-
{
|
53
|
-
"cell_type": "markdown",
|
54
|
-
"metadata": {},
|
55
|
-
"source": "This script solves the Lotka-Volterra equations and plots the time series of both populations as well as their phase plane trajectory. The phase plane shows how the prey and predator populations interact over time, illustrating the oscillatory nature of their dynamics."
|
56
|
-
},
|
57
|
-
{
|
58
|
-
"cell_type": "markdown",
|
59
|
-
"metadata": {},
|
60
|
-
"source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the Lotka-Volterra equation and plot the results.\n</div>\n"
|
61
|
-
},
|
62
|
-
{
|
63
|
-
"cell_type": "markdown",
|
64
|
-
"metadata": {},
|
65
|
-
"source": "In my previous response, I provided the corrected code snippet to solve the Lotka-Volterra equations and plot the results. Here it is again for clarity:\n\n\n```python\nimport numpy as np\nfrom scipy.integrate import odeint\nimport matplotlib.pyplot as plt\n\n# Define the Lotka-Volterra model\ndef lotka_volterra(state, t, a, b, c, d):\n r = state[0]\n p = state[1]\n\n drdt = a * r - b * r * p\n dpdt = -c * p + d * r * p\n \n return [drdt, dpdt]\n\n# System parameters (Lotka-Volterra model)\na = 0.5 # Prey growth rate\nb = 0.02 # Predation rate\nc = 0.03 # Predator mortality rate\nd = 0.0002 # Conversion efficiency of prey consumption\n\n# Initial conditions\nr0 = 100 # Initial prey population\np0 = 50 # Initial predator population\n\n# Time points to solve ODE (from 0 to 100 with 1000 intervals)\nt = np.linspace(0, 100, 1000)\n\n# Solve the Lotka-Volterra model\nstate0 = [r0, p0] # Initial state vector\nsolution = odeint(lotka_volterra, state0, t, args=(a, b, c, d))\nr, p = solution.T\n\n# Plot the results\nplt.figure(figsize=(10, 5))\n\nplt.subplot(121)\nplt.plot(t, r, label='Prey population')\nplt.plot(t, p, label='Predator population')\nplt.xlabel('Time')\nplt.ylabel('Population size')\nplt.title('Lotka-Volterra Model')\nplt.legend()\n\nplt.subplot(122)\nplt.plot(r, p)\nplt.xlabel('Prey population')\nplt.ylabel('Predator population')\nplt.title('Phase plane')\n\nplt.tight_layout()\nplt.show()\n```\n\nThis code defines the Lotka-Volterra equations, sets the system parameters and initial conditions, solves the equations using `scipy.integrate.odeint`, and plots the population sizes over time as well as their phase plane trajectory. The phase plane demonstrates the oscillatory behavior characteristic of Lotka-Volterra models."
|
66
|
-
}
|
67
|
-
]
|
68
|
-
}
|
@@ -1,91 +0,0 @@
|
|
1
|
-
{
|
2
|
-
"metadata": {
|
3
|
-
"kernel_info": {
|
4
|
-
"name": "python3"
|
5
|
-
},
|
6
|
-
"language_info": {
|
7
|
-
"name": "python",
|
8
|
-
"version": "3.12"
|
9
|
-
}
|
10
|
-
},
|
11
|
-
"nbformat": 4,
|
12
|
-
"nbformat_minor": 0,
|
13
|
-
"cells": [
|
14
|
-
{
|
15
|
-
"cell_type": "markdown",
|
16
|
-
"metadata": {},
|
17
|
-
"source": "<p align=\"center\">\n <img src=\"cloudops-agent.png\" alt=\"Jupyter Agent\" />\n</p>\n\n\n<p style=\"text-align:center;\">Let a LLM agent write and execute code inside a notebook!</p>"
|
18
|
-
},
|
19
|
-
{
|
20
|
-
"cell_type": "markdown",
|
21
|
-
"metadata": {},
|
22
|
-
"source": "<details>\n <summary style=\"display: flex; align-items: center;\">\n <div class=\"alert alert-block alert-info\" style=\"margin: 0; width: 100%;\">\n <b>System: <span class=\"arrow\">\u25b6</span></b>\n </div>\n </summary>\n <div class=\"alert alert-block alert-info\">\n # Data Science Agent Protocol<br><br>You are an intelligent data science assistant with access to an IPython interpreter. Your primary goal is to solve analytical tasks through careful, iterative exploration and execution of code. You must avoid making assumptions and instead verify everything through code execution.<br><br>## Core Principles<br>1. Always execute code to verify assumptions<br>2. Break down complex problems into smaller steps<br>3. Learn from execution results<br>4. Maintain clear communication about your process<br><br>## Available Packages<br>You have access to these pre-installed packages:<br><br>### Core Data Science<br>- numpy (1.26.4)<br>- pandas (1.5.3)<br>- scipy (1.12.0)<br>- scikit-learn (1.4.1.post1)<br><br>### Visualization<br>- matplotlib (3.9.2)<br>- seaborn (0.13.2)<br>- plotly (5.19.0)<br>- bokeh (3.3.4)<br>- e2b_charts (latest)<br><br>### Image & Signal Processing<br>- opencv-python (4.9.0.80)<br>- pillow (9.5.0)<br>- scikit-image (0.22.0)<br>- imageio (2.34.0)<br><br>### Text & NLP<br>- nltk (3.8.1)<br>- spacy (3.7.4)<br>- gensim (4.3.2)<br>- textblob (0.18.0)<br><br>### Audio Processing<br>- librosa (0.10.1)<br>- soundfile (0.12.1)<br><br>### File Handling<br>- python-docx (1.1.0)<br>- openpyxl (3.1.2)<br>- xlrd (2.0.1)<br><br>### Other Utilities<br>- requests (2.26.0)<br>- beautifulsoup4 (4.12.3)<br>- sympy (1.12)<br>- xarray (2024.2.0)<br>- joblib (1.3.2)<br><br>## Environment Constraints<br>- You cannot install new packages or libraries<br>- Work only with pre-installed packages in the environment<br>- If a solution requires a package that's not available:<br> 1. Check if the task can be solved with base libraries<br> 2. Propose alternative approaches using available packages<br> 3. Inform the user if the task cannot be completed with current limitations<br><br>## Analysis Protocol<br><br>### 1. Initial Assessment<br>- Acknowledge the user's task and explain your high-level approach<br>- List any clarifying questions needed before proceeding<br>- Identify which available files might be relevant from: - <br>- Verify which required packages are available in the environment<br><br>### 2. Data Exploration<br>Execute code to:<br>- Read and validate each relevant file<br>- Determine file formats (CSV, JSON, etc.)<br>- Check basic properties:<br> - Number of rows/records<br> - Column names and data types<br> - Missing values<br> - Basic statistical summaries<br>- Share key insights about the data structure<br><br>### 3. Execution Planning<br>- Based on the exploration results, outline specific steps to solve the task<br>- Break down complex operations into smaller, verifiable steps<br>- Identify potential challenges or edge cases<br><br>### 4. Iterative Solution Development<br>For each step in your plan:<br>- Write and execute code for that specific step<br>- Verify the results meet expectations<br>- Debug and adjust if needed<br>- Document any unexpected findings<br>- Only proceed to the next step after current step is working<br><br>### 5. Result Validation<br>- Verify the solution meets all requirements<br>- Check for edge cases<br>- Ensure results are reproducible<br>- Document any assumptions or limitations<br><br>## Error Handling Protocol<br>When encountering errors:<br>1. Show the error message<br>2. Analyze potential causes<br>3. Propose specific fixes<br>4. Execute modified code<br>5. Verify the fix worked<br>6. Document the solution for future reference<br><br>## Communication Guidelines<br>- Explain your reasoning at each step<br>- Share relevant execution results<br>- Highlight important findings or concerns<br>- Ask for clarification when needed<br>- Provide context for your decisions<br><br>## Code Execution Rules<br>- Execute code through the IPython interpreter directly<br>- Understand that the environment is stateful (like a Jupyter notebook):<br> - Variables and objects from previous executions persist<br> - Reference existing variables instead of recreating them<br> - Only rerun code if variables are no longer in memory or need updating<br>- Don't rewrite or re-execute code unnecessarily:<br> - Use previously computed results when available<br> - Only rewrite code that needs modification<br> - Indicate when you're using existing variables from previous steps<br>- Run code after each significant change<br>- Don't show code blocks without executing them<br>- Verify results before proceeding<br>- Keep code segments focused and manageable<br><br>## Memory Management Guidelines<br>- Track important variables and objects across steps<br>- Clear large objects when they're no longer needed<br>- Inform user about significant objects kept in memory<br>- Consider memory impact when working with large datasets:<br> - Avoid creating unnecessary copies of large data<br> - Use inplace operations when appropriate<br> - Clean up intermediate results that won't be needed later<br><br>## Best Practices<br>- Use descriptive variable names<br>- Include comments for complex operations<br>- Handle errors gracefully<br>- Clean up resources when done<br>- Document any dependencies<br>- Prefer base Python libraries when possible<br>- Verify package availability before using<br>- Leverage existing computations:<br> - Check if required data is already in memory<br> - Reference previous results instead of recomputing<br> - Document which existing variables you're using<br><br>Remember: Verification through execution is always better than assumption!\n </div>\n</details>\n\n<style>\ndetails > summary .arrow {\n display: inline-block;\n transition: transform 0.2s;\n}\ndetails[open] > summary .arrow {\n transform: rotate(90deg);\n}\n</style>\n"
|
23
|
-
},
|
24
|
-
{
|
25
|
-
"cell_type": "markdown",
|
26
|
-
"metadata": {},
|
27
|
-
"source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the linear equation and plot the results.\n</div>\n"
|
28
|
-
},
|
29
|
-
{
|
30
|
-
"cell_type": "code",
|
31
|
-
"execution_count": 1,
|
32
|
-
"metadata": {},
|
33
|
-
"source": "import numpy as np\n\n# Define the coefficients of the line\nm = 2 # slope\nc = 3 # intercept\n\n# Generate x values\nx = np.linspace(-10, 10, 400)\n\n# Calculate y values\ny = m * x + c\n\nprint(\"The equation of the line is: y = {:.2f}x + {:.2f}\".format(m, c))\n\n# Plot the line\nimport matplotlib.pyplot as plt\nplt.plot(x, y)\nplt.xlabel('x')\nplt.ylabel('y')\nplt.title('Linear Equation y = {:.2f}x + {:.2f}'.format(m, c))\nplt.grid(True)\nplt.axhline(0, color='black')\nplt.axvline(0, color='black')\nplt.show()",
|
34
|
-
"outputs": [
|
35
|
-
{
|
36
|
-
"output_type": "stream",
|
37
|
-
"name": "stdout",
|
38
|
-
"text": "The equation of the line is: y = 2.00x + 3.00\n"
|
39
|
-
},
|
40
|
-
{
|
41
|
-
"output_type": "display_data",
|
42
|
-
"metadata": {},
|
43
|
-
"data": {
|
44
|
-
"text/plain": [
|
45
|
-
"<Figure size 640x480 with 1 Axes>"
|
46
|
-
],
|
47
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiDElEQVR4nO3deXhMd/8//uckmUwS2WUnQoTYJSilte900doiXVBV1ShFtbgVoUVR1NLtcyvuEmstLUpjq6qtSIh9ixAksSWTdTKZef/+8M38RHYmOTNnno/rynWZM+8583rNmUmezvucMwohhAARERGRBbCSugAiIiKiysLgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQxblxo0bUCgUWLlypdSlWKTp06dDoVBIXQYRWTAGH5KNlStXQqFQ4MSJE1KXUmHyg0NxP0lJSVKXiKysLEyfPh0HDhyQuhSTo9frsXLlSrz22mvw9/dHlSpV0KhRI3z55ZfIyckp83oOHz6Ml19+GQ4ODvDx8cHo0aORkZFRaJxGo8Hnn38OPz8/2Nvbo1WrVoiOjjZmS0a1ZcsWdO/eHX5+flCpVKhevTr69euHs2fPlnkdFy5cQI8ePeDo6Ah3d3e88847uHfvXqFxer0ec+fORa1atWBnZ4cmTZpg7dq1xmyHTJSN1AUQVaaAgABkZ2dDqVRKXcpz+f777+Ho6Fhouaura+UX85SsrCxERkYCADp06FDgvilTpmDixIkSVGUasrKyMHToULz44ov48MMP4eXlhSNHjmDatGnYu3cv9u3bV+oesdjYWHTu3Bn169fHggULkJiYiPnz5+PKlSv4448/CowdMmQINm3ahE8++QR16tTBypUr0atXL+zfvx8vv/xyRbb6TOLi4uDm5oYxY8bAw8MDSUlJ+Pnnn9GyZUscOXIETZs2LfHxiYmJaNeuHVxcXDBr1ixkZGRg/vz5iIuLw/Hjx2Fra2sY+5///Adz5szB8OHD8cILL2Dbtm0IDw+HQqFAWFhYRbdKUhJEMrFixQoBQPz7779Sl/JcMjMzi71v2rRpAoC4d+9eJVZUPvfu3RMAxLRp06QuxeRoNBrxzz//FFoeGRkpAIjo6OhS19GzZ0/h6+sr0tLSDMv+7//+TwAQu3fvNiw7duyYACDmzZtnWJadnS1q164tWrdu/ZydFC8+Pl4AEPv37zfK+pKSkoSNjY0YMWJEqWNHjhwp7O3tRUJCgmFZdHS0ACB+/PFHw7LExEShVCpFRESEYZlerxdt27YV1atXF3l5eUapnUwTp7rIohR1jM+QIUPg6OiI27dvo0+fPnB0dISnpyc+/fRT6HS6Ao/X6/VYtGgRGjZsCDs7O3h7e2PEiBF49OhRgXHbtm1D7969Dbvsa9eujZkzZxZaX4cOHdCoUSOcPHkS7dq1g4ODAyZPnmyUXhMTE9GnTx9UqVIFXl5eGDt2LHbv3g2FQlFgGqpmzZoYMmRIocd36NChwB6b3NxcTJ06Fc2bN4eLiwuqVKmCtm3bYv/+/YYxN27cgKenJwAgMjLSMAU3ffp0AEUf45OXl4eZM2eidu3aUKlUqFmzJiZPngyNRlNgXM2aNfHKK6/g0KFDaNmyJezs7BAYGIj//e9/Jb4OQgjUrFkTr7/+eqH7cnJy4OLighEjRpS4DmOxtbVFmzZtCi1/4403ADyepimJWq1GdHQ03n77bTg7OxuWv/vuu3B0dMSGDRsMyzZt2gRra2t88MEHhmV2dnYYNmwYjhw5glu3bgEAVqxYAYVCgZ9//rnAc82aNQsKhQI7d+4sf6NG5OXlBQcHB6SmppY69tdff8Urr7yCGjVqGJZ16dIFdevWLfDabNu2DVqtFh999JFhmUKhwMiRI5GYmIgjR44YtQcyLZzqIgKg0+nQvXt3tGrVCvPnz8eePXvwzTffoHbt2hg5cqRh3IgRI7By5UoMHToUo0ePRnx8PJYuXYqYmBj8888/him0lStXwtHREePGjYOjoyP27duHqVOnQq1WY968eQWe+8GDB+jZsyfCwsLw9ttvw9vbu9R6Hz58WGiZjY2NYaorOzsbnTt3xs2bNzF69Gj4+fnhl19+wb59+575NVKr1fjvf/+LQYMGYfjw4UhPT8fy5cvRvXt3HD9+HCEhIfD09MT333+PkSNH4o033sCbb74JAGjSpEmx633//fexatUq9OvXD+PHj8exY8cwe/ZsXLhwAVu2bCkw9urVq+jXrx+GDRuGwYMH4+eff8aQIUPQvHlzNGzYsMj1KxQKvP3225g7dy4ePnwId3d3w32///471Go13n777RJ7T0tLg1arLfU1srOzK3IKsjT5x2Z5eHiUOC4uLg55eXlo0aJFgeW2trYICQlBTEyMYVlMTAzq1q1bICABQMuWLQE8njLz9/fH0KFDsXnzZowbNw5du3aFv78/4uLiEBkZiWHDhqFXr17l7ud5paamQqvVIikpCYsWLYJarUbnzp1LfMzt27eRkpJS6LUBHvf8ZICLiYlBlSpVUL9+/ULj8u83xalAMhKpdzkRGUtZprryd8OvWLHCsGzw4MECgJgxY0aBsaGhoaJ58+aG23///bcAINasWVNg3K5duwotz8rKKvTcI0aMEA4ODiInJ8ewrH379gKA+OGHH8rUY/5UV1E/wcHBhnGLFi0SAMSGDRsMyzIzM0VQUFChaYiAgAAxePDgQs/Vvn170b59e8PtvLw8odFoCox59OiR8Pb2Fu+9955hWUlTXfn154uNjRUAxPvvv19g3KeffioAiH379hWoE4A4ePCgYVlKSopQqVRi/PjxhV+sJ1y6dEkAEN9//32B5a+99pqoWbOm0Ov1JT4+fzuV9lPU61gWXbp0Ec7OzuLRo0cljtu4cWOh1yBf//79hY+Pj+F2w4YNRadOnQqNO3fuXKH33N27d4W7u7vo2rWr0Gg0IjQ0VNSoUaPAdFpZGWOqKzg42PCaOjo6iilTpgidTlfiY/79918BQPzvf/8rdN+ECRMEAMNnr3fv3iIwMLDQuMzMTAFATJw48ZlrJ9PHPT5E/8+HH35Y4Hbbtm3xyy+/GG5v3LgRLi4u6Nq1K+7fv29Y3rx5czg6OmL//v0IDw8HANjb2xvuT09Ph0ajQdu2bfHjjz/i4sWLBQ7SVKlUGDp0aLlq/fXXXwv9T75KlSqGf+/cuRO+vr7o16+fYZmDgwM++OADfPbZZ+V6rnzW1tawtrYG8HjKLzU1FXq9Hi1atMCpU6eeaZ35/wsfN25cgeXjx4/H/PnzsWPHDnTs2NGwvEGDBmjbtq3htqenJ4KDg3H9+vUSn6du3bpo1aoV1qxZY9jODx8+xB9//IHPPvus1AOKv/nmm0LTmUXx8/MrdczTZs2ahT179uC7774r9eD07OxsAI/fM0+zs7Mz3J8/trhxT64LAHx8fLBs2TIMGjQIbdu2RWxsLKKjowu9x4qSkZFR4Iy0/NcpLS2twOdEqVTCxcWl1PUBj6ff1Go1rl+/jhUrViA7Oxs6nQ5WVsUfnVHaa5M/RqVSleu1Iflh8CHC4194+cem5HNzcyvwx+7KlStIS0uDl5dXketISUkx/PvcuXOYMmUK9u3bB7VaXWBcWlpagdvVqlUrcLZJWbRr167EaZGEhAQEBQUV+oMeHBxcrud52qpVq/DNN9/g4sWLBaZ+atWq9UzrS0hIgJWVFYKCggos9/HxgaurKxISEgosf/LYjXxPb6fivPvuuxg1ahQSEhIQEBCAjRs3QqvV4p133in1sc2bNy91zLNYv349pkyZgmHDhhWYUi1OfqB++vgn4PHxSk8Gbnt7+2LHPbmufGFhYVi9ejV27NiBDz74oNSppXyjRo3CqlWrCi3v06dPgdvt27cv8yUOWrduXaCu/Cmp+fPnF/uY0l6bJ8eU97UheWHwIQIMezJKotfr4eXlhTVr1hR5f35wSk1NRfv27eHs7IwZM2agdu3asLOzw6lTp/D5559Dr9cXeJzUv2SL29uh0+kKvC6rV6/GkCFD0KdPH0yYMAFeXl6wtrbG7Nmzce3atQqp4WnFbSchRKmPDQsLw9ixY7FmzRpMnjwZq1evRosWLcoUBh8+fIjc3NxSx9nb25d5r0Z0dDTeffdd9O7dGz/88EOZHuPr6wsAuHv3bqH77t69W2CPk6+vL27fvl3kOKDw3qkHDx4YroF1/vx56PX6Evew5Pvss88KHCOVnJyMt99+G/Pnzy+wZ9PNza3UdRXFzc0NnTp1wpo1a0oMPqW9Nu7u7oa9PL6+vti/fz+EEAXee8W9NiQvDD5EZVS7dm3s2bMHL730Uolh5cCBA3jw4AE2b96Mdu3aGZbHx8dXRpkAHl+v6OzZs4V+sV+6dKnQWDc3tyLPmElISEBgYKDh9qZNmxAYGIjNmzcXWOe0adMKPK48V2YOCAiAXq/HlStXChxompycjNTUVAQEBJR5XaVxd3dH7969sWbNGrz11lv4559/sGjRojI99s0338Rff/1V6rjBgweX6argx44dwxtvvIEWLVpgw4YNsLEp26/iRo0awcbGBidOnMCAAQMMy3NzcxEbG1tgWUhICPbv3w+1Wl1gyurYsWOG+58UERGB9PR0zJ49G5MmTcKiRYsKTUEWpUGDBmjQoIHh9o0bNwA83kv29HWcnlV2dnahPaVPq1atGjw9PYu8gGn+wff5QkJC8N///hcXLlwoUHtxrw3JC09nJyqjAQMGQKfTYebMmYXuy8vLM4SH/L0ST+6FyM3NxXfffVcpdQJAr169cOfOHWzatMmwLCsrCz/99FOhsbVr18bRo0cL7NHYvn274XTnfEX1dezYsUKn/jo4OABAmU4/zj9j6OkAsmDBAgBA7969S11Hebzzzjs4f/48JkyYAGtr6zJfqO6bb75BdHR0qT9lOX7qwoUL6N27N2rWrInt27eXGKIvXryImzdvGm67uLigS5cuWL16NdLT0w3Lf/nlF2RkZKB///6GZf369YNOpyuwzTUaDVasWIFWrVrB39/fsHzTpk1Yv3495syZg4kTJyIsLAxTpkzB5cuXy/T6GMuT08X5bty4gb179xY6W+vatWuF9jT27du30Ht37969uHz5coHX5vXXX4dSqSzwmRRC4IcffkC1atWKvOQAyQf3+JDs/Pzzz9i1a1eh5WPGjHmu9bZv3x4jRozA7NmzERsbi27dukGpVOLKlSvYuHEjvv32W/Tr1w9t2rSBm5sbBg8ejNGjR0OhUOCXX34p03RMWW3atKnI06a7du0Kb29vDB8+HEuXLsW7776LkydPwtfXF7/88oshlDzp/fffx6ZNm9CjRw8MGDAA165dw+rVq1G7du0C41555RVs3rwZb7zxBnr37o34+Hj88MMPaNCgQYGvS7C3t0eDBg2wfv161K1bF+7u7mjUqBEaNWpU6LmbNm2KwYMH46effjJMER4/fhyrVq1Cnz59ChzYbAy9e/dG1apVsXHjRvTs2bPY47WeZqxjfNLT09G9e3c8evQIEyZMwI4dOwrcX7t27QLHt9SvX7/QsTFfffUV2rRpg/bt2+ODDz5AYmIivvnmG3Tr1g09evQwjGvVqhX69++PSZMmISUlBUFBQVi1ahVu3LiB5cuXG8alpKRg5MiR6NixI0aNGgUAWLp0Kfbv348hQ4bg0KFDZZryMobGjRujc+fOCAkJgZubG65cuYLly5dDq9Vizpw5BcbmH4OUv4cJACZPnoyNGzeiY8eOGDNmDDIyMjBv3jw0bty4wAkE1atXxyeffIJ58+ZBq9XihRdewNatW/H3339jzZo1ZZr6JjMm4RllREaVfzp7cT+3bt0q9nT2KlWqFFrf06de5/vpp59E8+bNhb29vXBychKNGzcWn332mbhz545hzD///CNefPFFYW9vL/z8/MRnn30mdu/eXeg03/bt24uGDRuWuceSTmd/et0JCQnitddeEw4ODsLDw0OMGTPGcOr906caf/PNN6JatWpCpVKJl156SZw4caLQ6ex6vV7MmjVLBAQECJVKJUJDQ8X27dvF4MGDRUBAQIH1HT58WDRv3lzY2toWOLW9qNdUq9WKyMhIUatWLaFUKoW/v7+YNGlSgdP+hXh8Onvv3r0LvSZP11majz76SAAQUVFRZX6MseS//4r7efp0eABF9vb333+LNm3aCDs7O+Hp6SkiIiKEWq0uNC47O1t8+umnwsfHR6hUKvHCCy+IXbt2FRjz5ptvCicnJ3Hjxo0Cy7dt2yYAiK+//vqZenyW09mnTZsmWrRoIdzc3ISNjY3w8/MTYWFh4syZM4XGBgQEFHrfCSHE2bNnRbdu3YSDg4NwdXUVb731lkhKSio0TqfTGd7Ptra2omHDhmL16tXlrpnMj0III/43lIhM2oEDB9CxY0fs37/faMdfmJuxY8di+fLlSEpKKnIPGBHJG4/xISKLkZOTg9WrV6Nv374MPUQWisf4EJHspaSkYM+ePdi0aRMePHjw3Md7EZH5YvAhItk7f/483nrrLXh5eWHx4sU8XZnIgpnNMT6zZ8/G5s2bcfHiRdjb26NNmzb4+uuvC1x8rEOHDoWutTFixIgyXxyMiIiI5M1sjvH566+/EBERgaNHjyI6OhparRbdunVDZmZmgXHDhw/H3bt3DT9z586VqGIiIiIyNWYz1fX0dVlWrlwJLy8vnDx5ssDVcR0cHODj41PZ5REREZEZMJvg87T8y5e7u7sXWL5mzRqsXr0aPj4+ePXVV/HFF1+UePaGRqMp8GV1er0eDx8+RNWqVct16X0iIiKSjhAC6enp8PPzK/Gim2ZzjM+T9Ho9XnvtNaSmpuLQoUOG5T/99BMCAgLg5+eHM2fO4PPPP0fLli2xefPmYtc1ffp0REZGVkbZREREVMFu3bqF6tWrF3u/WQafkSNH4o8//sChQ4dKbG7fvn3o3Lkzrl69Wujy+/me3uOTlpaGGjVqID4+Hk5OTkarWavVYv/+/ejYsSOUSqXR1msq5N4fIP8e5d5fZmam4UtPr127VuZvUTcnct+Gcu8PkH+PFdlfeno6atWqhdTU1BI/32Y31TVq1Chs374dBw8eLDH0AI+/qwZAicFHpVJBpVIVWu7u7l7gG42fl1arhYODA6pWrSrbN7Oc+wPk36Pc+7OzszP8293dHa6urtIVU0Hkvg3l3h8g/x4rsr/89ZV2mIrZBB8hBD7++GNs2bIFBw4cQK1atUp9TGxsLADA19e3gqsjIiIic2A2wSciIgJRUVHYtm0bnJyckJSUBABwcXGBvb09rl27hqioKPTq1QtVq1bFmTNnMHbsWLRr1w5NmjSRuHoiIiIyBWYTfL7//nsAKPTFiitWrMCQIUNga2uLPXv2YNGiRcjMzIS/vz/69u2LKVOmSFAtERERmSKzCT6lHYPt7+9f6KrNRERERE8ymys3ExERET0vBh8iIiKyGAw+REREZDEYfIiIiMhiMPgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVWKJHUObmVIW4PZXLmZiIiIzNeBSykYuz4W+jxr9M/MhberNN8+z+BDREREFUar0+ObPy/jh7+uAQCqOQCZuXmS1cPgQ0RERBXiTmo2Pl4bg5MJjwAAb7X0R6giHv5uDpLVxOBDRERERrfnfDI+3XQaqVlaOKls8HW/JuhazwM7d8ZLWheDDxERERlNbp4ec3ddxH8PPQ44Taq7YOmgZqhR1QFarVbi6hh8iIiIyEhuPczCqLUxOH0rFQAw9KWamNizHlQ21tIW9gQGHyIiInpuu84mYcKm00jPyYOznQ3m9W+K7g19pC6rEAYfIiIiemaaPB1m77yIlYdvAABC/F2xNDwU1SU8gLkkDD5ERET0TBIeZGJUVAzibqcBAD5oF4gJ3YOhtDbd6yMz+BAREVG5bT9zBxN/jUOGJg9uDkp8M6ApOtXzlrqsUjH4EBERUZnlaHWYuf081hy7CQBoEeCGJeGh8HWxl7iysmHwISIiojK5fi8DEVExuHBXDQD4qENtjOtaFzYmPLX1NAYfIiIiKtXWmNuYvCUOWbk6VK1iiwUDQ9C+rqfUZZUbgw8REREVKztXh+m/ncP6E7cAAC8GuuPbsFB4O9tJXNmzYfAhIiKiIl1JTkdE1ClcTs6AQgF83KkOxnSuA2srhdSlPTMGHyIiIipk44lbmLrtHLK1Ong4qvBtWAheCvKQuqznxuBDREREBpmaPHyx7Sw2n7oNAHgpqCoWDgyBl5N5Tm09jcGHiIiIAAAXk9SIWHMK1+5lwkoBjO1SFx91DDLrqa2nMfgQERFZOCEE1v97C9N+OwdNnh7ezip8GxaKFwOrSl2a0TH4EBERWbAMTR4mb47Db6fvAADa1/XEggFNUdVRJXFlFYPBh4iIyEKdu5OGUVExiL+fCWsrBT7tFowR7QJhJaOpracx+BAREVkYIQRWH7uJmdvPIzdPD18XOywZFIoWNd2lLq3Cmc01pmfPno0XXngBTk5O8PLyQp8+fXDp0qUCY3JychAREYGqVavC0dERffv2RXJyskQVExERmR51jhajomLwxdazyM3To3M9L+wc3dYiQg9gRsHnr7/+QkREBI4ePYro6GhotVp069YNmZmZhjFjx47F77//jo0bN+Kvv/7CnTt38Oabb0pYNRERkek4k5iKVxYfwo64u7CxUmBK7/r47+AWcKtiK3VplcZsprp27dpV4PbKlSvh5eWFkydPol27dkhLS8Py5csRFRWFTp06AQBWrFiB+vXr4+jRo3jxxRelKJuIiEhyQgisPHwDs3ZegFYnUM3VHkvDQxFaw03q0iqd2QSfp6WlpQEA3N0f75o7efIktFotunTpYhhTr1491KhRA0eOHCk2+Gg0Gmg0GsNttfrxN85qtVpotVqj1Zu/LmOu05TIvT9A/j1aSn/5/5Zjn5ayDeXaH1AxPaZlazFpyzlEX0gBAHSt74XZbzSEi72y0l/LityGZV2nQgghjP7sFUyv1+O1115DamoqDh06BACIiorC0KFDC4QYAGjZsiU6duyIr7/+ush1TZ8+HZGRkYWWR0VFwcHBwfjFE5EkcnJyEBYWBgBYt24d7OzkcRVaopLcSAdWXbHGQ40C1gqBPgF6tPURUMjwpK2srCyEh4cjLS0Nzs7OxY4zyz0+EREROHv2rCH0PI9JkyZh3LhxhttqtRr+/v7o1q1biS9ceWm1WkRHR6Nr165QKpVGW6+pkHt/gPx7lHt/Tx4P2KlTJ7i6ukpXTAWR+zaUe3+A8XrU6wVWHEnAkmNXkKcX8Hezx+KBTdGomvH+rj2LityG+TM2pTG74DNq1Chs374dBw8eRPXq1Q3LfXx8kJubi9TU1AK/0JKTk+Hj41Ps+lQqFVSqwhdpUiqVFfLBqqj1mgq59wfIv0e59vdkT3LtMR/7M3/P0+OjzFyM33ga+y4+ntrq3dgXs/s2hrOd6bxmFbENy7o+szmrSwiBUaNGYcuWLdi3bx9q1apV4P7mzZtDqVRi7969hmWXLl3CzZs30bp168oul4iIqNKduPEQvRb/jX0XU2BrY4Uv+zTC0vBQkwo9UjObPT4RERGIiorCtm3b4OTkhKSkJACAi4sL7O3t4eLigmHDhmHcuHFwd3eHs7MzPv74Y7Ru3ZpndBERkazp9QI/HLyGb/68DJ1eoJZHFSwND0VDPxepSzM5ZhN8vv/+ewBAhw4dCixfsWIFhgwZAgBYuHAhrKys0LdvX2g0GnTv3h3fffddJVdKRERUee5naDBuw2kcvHwPAPB6iB++eqMxHFVm8ye+UpnNq1KWk8/s7OywbNkyLFu2rBIqIiIiktbR6w8wem0MUtI1UNlYYcbrDTGghT8Ucjxty0jMJvgQERHRYzq9wLL9V7Foz2XoBRDk5Yhl4c0Q7OMkdWkmj8GHiIjIjKSk52Ds+lj8c/UBAKBvs+qY2achHGz5J70s+CoRERGZiX+u3seYdbG4n6GBvdIaM/s0Qr/m1Ut/IBkw+BAREZm4PJ0ei/dewZL9VyEEEOzthGVvhSLIi1Nb5cXgQ0REZMKS1Tn4eG0Mjsc/BACEveCPaa82hL2ttcSVmScGHyIiIhN14FIKxm04jYeZuahia41ZbzbG6yHVpC7LrDH4EBERmZg8nR4L9l7E9weuAQDq+zpjWXgoAj0dJa7M/DH4EBERmZBHGuDtn0/g5M1UAMA7LwbgP73rw07JqS1jYPAhIiIyEfsu3cPcM9bIykuFk8oGc/o2Qe8mvlKXJSsMPkRERBLLzdNj3u6L+L+/4wEo0MjPGcveaoaAqlWkLk12GHyIiIgkdOthFj5eG4PYW6kAgHY+enw3vCUc7VXSFiZTDD5EREQS2X0uCRM2noY6Jw/OdjaY80YjaG+cgMrGSurSZIvBh4iIqJJp8nSYvfMiVh6+AQAI8XfFkkGh8HFSYucNSUuTPQYfIiKiSpTwIBOjomIQdzsNADC8bS1M6F4PtjZW0Gq1Elcnfww+RERElWTHmbuY+OsZpGvy4OqgxDf9m6JzfW+py7IoDD5EREQVLEerw5c7zmP10ZsAgBYBblg8KBR+rvYSV2Z5GHyIiIgq0PV7GYiIisGFu2oAwEcdamNs17pQWvMAZikw+BAREVWQbbG3MXlzHDJzdXCvYouFA0PQvq6n1GVZNAYfIiIiI8vO1SHy93NY9+8tAECrWu5YPCgU3s52EldGDD5ERERGdDUlHRFrYnApOR0KBfBxxyCM7lwHNpzaMgkMPkREREay6WQivth6FtlaHTwcVVg0MAQv1/GQuix6AoMPERHRc8rKzcMXW8/h11OJAICXgqpi4cAQeDlxasvUMPgQERE9h0tJ6YiIOoWrKRmwUgCfdKmLiI5BsLZSSF0aFYHBh4iI6BkIIbD+31uY9ts5aPL08HZW4duwULwYWFXq0qgEDD5ERETllKHJw3+2xGFb7B0AQLu6nlg4oCmqOvIb1U0dgw8REVE5nLuTho+jYnD9fiasrRQY360uPmxXG1ac2jILDD5ERERlIITA6mM3MXP7eeTm6eHrYoclg0LRoqa71KVROTD4EBERlUKdo8WkzXHYceYuAKBzPS/M798UblVsJa6MyovBh4iIqARxiWmIiDqFmw+zYGOlwOc96uH9trWgUHBqyxwx+BARERVBCIFVh29g1s6LyNXpUc3VHkvCQ9GshpvUpdFzYPAhIiJ6SlqWFp/9ehq7zyUDALo18Ma8fk3h4qCUuDJ6Xmb1xSEHDx7Eq6++Cj8/PygUCmzdurXA/UOGDIFCoSjw06NHD2mKJSIisxRz8xF6L/kbu88lQ2mtwLRXG+DHd5oz9MiEWe3xyczMRNOmTfHee+/hzTffLHJMjx49sGLFCsNtlYrXVCAiotIJIbD8UDzm/HEReXqBGu4OWBoeiibVXaUujYzIrIJPz5490bNnzxLHqFQq+Pj4VFJFREQkB48yc/HpxtPYezEFANC7sS9m920MZzvu5ZEbswo+ZXHgwAF4eXnBzc0NnTp1wpdffomqVYu/fLhGo4FGozHcVqvVAACtVgutVmu0uvLXZcx1mhK59wfIv0dL6S//33Ls01K2obH7O5nwCGM3xuFuWg5sbawwuWcwwl+oDoWi8l9LbsPnX3dpFEIIYfRnrwQKhQJbtmxBnz59DMvWrVsHBwcH1KpVC9euXcPkyZPh6OiII0eOwNrausj1TJ8+HZGRkYWWR0VFwcHBoaLKJ6JKlpOTg7CwMACPf1fY2fFbsy2dXgB77yiw86YV9FDA005gSF0dqleRujJ6FllZWQgPD0daWhqcnZ2LHSer4PO069evo3bt2tizZw86d+5c5Jii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqZTfrlO59wfIv0e595eZmQk3t8enIaekpMDV1VXagiqA3LehMft7kJmLz36Nw8ErDwAArzbxwYzXGsBRJe1ECLfhs1Or1fDw8Cg1+MhuqutJgYGB8PDwwNWrV4sNPiqVqsgDoJVKZYW86SpqvaZC7v0B8u9Rrv092ZNce8zH/kp27PoDjF4Xg2S1BiobK0S+1hADX/A3qQsSchs+2zrLQtbBJzExEQ8ePICvr6/UpRARkcR0eoHv9l/Fwj2XoRdAbc8qWPZWM9TzMd7efTJ9ZhV8MjIycPXqVcPt+Ph4xMbGwt3dHe7u7oiMjETfvn3h4+ODa9eu4bPPPkNQUBC6d+8uYdVERCS1e+kafLI+Bv9cfTy11bdZdczs0xAOtmb1Z5CMwKy2+IkTJ9CxY0fD7XHjxgEABg8ejO+//x5nzpzBqlWrkJqaCj8/P3Tr1g0zZ87ktXyIiCzYP1fvY8y6WNzP0MBeaY2ZfRqhX/PqUpdFEjGr4NOhQweUdCz27t27K7EaIiIyZTq9wLd7r2DJvisQAgj2dsLS8FDU8XaSujSSkFkFHyIiorJIVudgzLoYHL3+EAAQ9oI/pr3aEPa2RV/ahCwHgw8REcnKX5fvYdz6WDzIzEUVW2vMerMxXg+pJnVZZCIYfIiISBbydHosiL6M7w5cAwDU93XGsvBQBHo6SlwZmRIGHyIiMnt3UrMxem0MTiQ8AgC8/WINTOndAHZKTm1RQQw+RERk1vZdTMa4DaeRmqWFo8oGc/o2xitN/KQui0wUgw8REZklrU6Pebsv4aeD1wEAjau5YGl4KAKq8su2qHgMPkREZHYSH2VhVFQMYm+lAgCGtKmJSb3qQWXDqS0qGYMPERGZlejzKZi45SzUOXlwtrPB3H5N0aORj9RlkZlg8CEiIrOQm6fH5ngr/HUkFgDQ1N8VSweFwt/dQdrCyKww+BARkcm7+SALEVEnEZdkBQAY3rYWJnSvB1sbK4krI3PD4ENERCZtZ9xdfL7pDNI1eXCwEVgwMBQ9GvOChPRsGHyIiMgk5Wh1+GrHBfxyNAEA0KyGK17zuI/O9bwkrozMGfcREhGRyYm/n4k3vztsCD0jO9TG6vdawE0lcWFk9rjHh4iITMq22NuYvDkOmbk6uFexxYIBTdEh2AtarVbq0kgGGHyIiMgk5Gh1iPz9HNYevwUAaFnLHYvDQuHjYidxZSQnDD5ERCS5qykZiFhzCpeS06FQAKM6BmFM5zqwseYRGWRcDD5ERCSpX08mYsrWs8jW6uDhqMKigSF4uY6H1GWRTDH4EBGRJLJy8zB12zlsOpkIAGhTuyoWhYXAy4lTW1RxGHyIiKjSXU5OR8SaU7iSkgErBfBJl7qI6BgEayuF1KWRzDH4EBFRpRFCYMOJW5j22znkaPXwclLh27BQtK5dVerSyEIw+BARUaXI0ORhypY4bI29AwBoW8cDCweGwMORF+ehysPgQ0REFe78HTVGRZ3C9fuZsLZSYHy3uviwXW1YcWqLKhmDDxERVRghBKKO30Tk7+eRm6eHr4sdFg8KxQs13aUujSwUgw8REVWI9BwtJm6Ow44zdwEAnep5YX7/pnCvYitxZWTJGHyIiMjo4hLTMGrtKSQ8yIKNlQKf9QjG+y8HcmqLJMfgQ0RERiOEwKrDNzBr50Xk6vSo5mqPJeGhaFbDTerSiAAw+BARkZGkZWvx+aYz2HUuCQDQrYE35vVrChcHpcSVEf3/GHyIiOi5xd5KxaioU0h8lA2ltQKTe9XHkDY1oVBwaotMC4MPERE9MyEElh+Kx5w/LiJPL1DD3QFLw0PRpLqr1KURFYnBh4iInklqVi4+3Xgaey6kAAB6NfbBnL5N4GzHqS0yXQw+RERUbicTHuLjqBjcScuBrY0VvnilAd5uVYNTW2TyrKQuoDwOHjyIV199FX5+flAoFNi6dWuB+4UQmDp1Knx9fWFvb48uXbrgypUr0hRLRCRDer3AD39dw4Afj+JOWg5qeVTBlo/a4J0XAxh6yCyYVfDJzMxE06ZNsWzZsiLvnzt3LhYvXowffvgBx44dQ5UqVdC9e3fk5ORUcqVERPLzIEOD91b9izl/XIROL/BaUz/8/vHLaOjnInVpRGVmVlNdPXv2RM+ePYu8TwiBRYsWYcqUKXj99dcBAP/73//g7e2NrVu3IiwsrDJLJSKSlWPXH2D0uhgkqzVQ2Vhh+msNEfaCP/fykNkxq+BTkvj4eCQlJaFLly6GZS4uLmjVqhWOHDlSbPDRaDTQaDSG22q1GgCg1Wqh1WqNVl/+uoy5TlMi9/4A+fdoKf3l/1uOfVbENtTpBX44GI/F+65CL4BAjypYPLAJgn2ckJeXZ7TnKQu5v0cB+fdYkf2VdZ2yCT5JSY8vmOXt7V1gube3t+G+osyePRuRkZGFlv/5559wcHAwbpEAoqOjjb5OUyL3/gD59yjX/p6c8t63bx/s7OwkrKZiGWsbqnOBX65a4XLa46MiXvDUo3+tNFw79TeuGeUZno1c36NPknuPFdFfVlZWmcbJJvg8q0mTJmHcuHGG22q1Gv7+/ujWrRucnZ2N9jxarRbR0dHo2rUrlEr5neop9/4A+fco9/4yMzMN/+7UqRNcXV2lK6aCGHMbHrn+AF9ujMO9jFzYK60w7ZX66NusmpEqfTZyf48C8u+xIvvLn7EpjWyCj4+PDwAgOTkZvr6+huXJyckICQkp9nEqlQoqlarQcqVSWSFvuopar6mQe3+A/HuUa39P9iTXHvM9T386vcC3e69gyb4rEAKo6+2IZeHNUMfbychVPju5bz9A/j1WRH9lXZ9ZndVVklq1asHHxwd79+41LFOr1Th27Bhat24tYWVEROYhWZ2Dt/57FIv3Pg49A1v4Y1vEyyYVeoiel1nt8cnIyMDVq1cNt+Pj4xEbGwt3d3fUqFEDn3zyCb788kvUqVMHtWrVwhdffAE/Pz/06dNHuqKJiMzAwcv3MHZ9LB5k5sLB1hqz3miMPqHSTm0RVQSzCj4nTpxAx44dDbfzj80ZPHgwVq5cic8++wyZmZn44IMPkJqaipdffhm7du2S9UGMRETPI0+nx8I9l/HdgWsQAqjv64xl4aEI9HSUujSiCmFWwadDhw4QQhR7v0KhwIwZMzBjxoxKrIqIyDzdTcvG6LUx+PfGIwDAW61q4ItXGsBOaS1xZUQVx6yCDxERGcf+iykYtyEWj7K0cFTZYE7fxniliZ/UZRFVOAYfIiILotXpMX/3Jfx48DoAoFE1Zywd1Aw1PapIXBlR5WDwISKyEImPsvDx2hjE3EwFAAxpUxOTetWDyoZTW2Q5GHyIiCzAn+eSMGHTGaRla+FkZ4N5/ZqgRyPf0h9IJDMMPkREMpabp8fsPy5gxT83AABN/V2xdFAo/N2N/5U8ROaAwYeISKZuPsjCqLWncCYxDQDw/su18FmPerC1kc21a4nKjcGHiEiG/oi7i882nUG6Jg8u9kp8078pujTwLv2BRDLH4ENEJCNaPRC5/QJWH7sFAGge4IbFg0JRzdVe4sqITAODDxGRTNx4kIlFZ62RmPk49HzYvjbGd6sLpTWntojyMfgQEcnAb6fvYNLmM8jUKODmoMSCgSHoGOwldVlEJofBh4jIjOVodYj8/TzWHr8JAKjtJLDyw9bwr8pvVCcqCoMPEZGZupqSgVFRp3AxKR0KBTCyXSCCNJfh48wvZiYqDid+iYjM0OZTiXht6SFcTEqHh6Mt/vdeS4ztEgRrhdSVEZk27vEhIjIjWbl5mLbtHDaeTAQAtKldFYsGhsDL2Q5arVbi6ohMH4MPEZGZuJycjog1p3AlJQNWCmBM57oY1SkI1lbczUNUVgw+REQmTgiBjScSMfW3s8jR6uHlpMK3YaFoXbuq1KURmR0GHyIiE5apycOUrWexJeY2AKBtHQ8sHBgCD0eVxJURmScGHyIiE3XhrhoRa07h+v1MWFspMK5rXYxsXxtWnNoiemYMPkREJkYIgajjNxH5+3nk5unh42yHJeGheKGmu9SlEZk9Bh8iIhOSnqPFpM1x2H7mLgCgY7AnvhkQAvcqthJXRiQPDD5ERCbi7O00jIo6hRsPsmBjpcBnPYLx/suBnNoiMiIGHyIiiQkh8L8jCfhqxwXk6vSo5mqPxYNC0TzATerSiGSHwYeISEJp2VpM/PUM/jibBADo2sAb8/o1gasDp7aIKgKDDxGRRGJvpWJU1CkkPsqG0lqBST3rY+hLNaFQcGqLqKIw+BARVTIhBJYfisfXuy5CqxPwd7fH0kHN0NTfVerSiGSPwYeIqBKlZuXi041nsOdCMgCgZyMfzOnbBC72SokrI7IMDD5ERJXkZMIjfBx1CnfScmBrbYUvXqmPt18M4NQWUSVi8CEiqmB6vcBPf1/HvN2XoNML1KzqgKXhzdComovUpRFZHAYfIqIK9DAzF+M2xOLApXsAgFeb+mHWG43gZMepLSIpMPgQEVWQ4/EPMXptDJLUOVDZWGH6aw0R9oI/p7aIJMTgQ0RkZHq9wHcHrmJB9GXoBRDoWQXLwpuhvq+z1KURWTwrqQswpunTp0OhUBT4qVevntRlEZEFuZeuweAVxzH/z8eh583Qavh91MsMPUQmQnZ7fBo2bIg9e/YYbtvYyK5FIjJRh6/dx5h1sbiXroGd0gozX2+E/i38pS6LiJ4gu1RgY2MDHx8fqcsgIgui0wss2XcFi/degV4Adb0dsSy8Gep4O0ldGhE9RXbB58qVK/Dz84OdnR1at26N2bNno0aNGsWO12g00Gg0httqtRoAoNVqodVqjVZX/rqMuU5TIvf+APn3aCn95f/bWH2mpGswfuMZHI1/BADo16wapvauB3tb60p/LS1lG8q1P0D+PVZkf2Vdp0IIIYz+7BL5448/kJGRgeDgYNy9exeRkZG4ffs2zp49Cyenov/nNX36dERGRhZaHhUVBQcHh4oumYgqSU5ODsLCwgAA69atg52d3XOv82KqAr9ctUKGVgFbK4EBgXq84CmbX6lEZiUrKwvh4eFIS0uDs3Pxx9TJKvg8LTU1FQEBAViwYAGGDRtW5Jii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqZTf9Tvk3h8g/x7l3l9mZibc3NwAACkpKXB1dX3mdeXp9Fi8/xp+OBgPIYB63o74dmBTBHpWMVK1z0bu21Du/QHy77Ei+1Or1fDw8Cg1+MhuqutJrq6uqFu3Lq5evVrsGJVKBZVKVWi5UqmskDddRa3XVMi9P0D+Pcq1vyd7ep4e76ZlY8zaWBy/8RAAEN6qBqa+0gB2Smuj1GkMct2G+eTeHyD/Hiuiv7KuT1ansz8tIyMD165dg6+vr9SlEJEM7L+Ygl7f/o3jNx7CUWWDJYNCMeuNxiYVeoioZLLa4/Ppp5/i1VdfRUBAAO7cuYNp06bB2toagwYNkro0IjJjWp0e83dfwo8HrwMAGlVzxtJBzVDTQ9qpLSIqP1kFn8TERAwaNAgPHjyAp6cnXn75ZRw9ehSenp5Sl0ZEZup2ajY+jjqFUzdTAQBD2tTEpF71oLLhXh4icySr4LNu3TqpSyAiGYk+n4xPN55GWrYWTnY2mNevCXo04tQ5kTmTVfAhIjKG3Dw9vt51EcsPxQMAmlZ3wdLwZvB35yUuiMwdgw8R0RNuPczCqKhTOJ2YBgAY9nItfN6jHmxtZH0uCJHFYPAhIvp/dp29iwmbziA9Jw8u9krM798UXRt4S10WERkRgw8RWbwcrQ6zd17AqiMJAIBmNVyxJLwZqrnaS1wZERkbgw8RWbQb9zMREXUK5+48/p6+Ee0D8Wm3YCitObVFJEcMPkRksX4/fQeTNschQ5MHNwclFgwIQcd6XlKXRUQViMGHiCxOjlaHyVviEHXsJgCgZU13fDsoBL4unNoikrty78sdPHgwDh48WBG1EBFVireX/4uoYzehUAAfdwpC1PBWDD1EFqLcwSctLQ1dunRBnTp1MGvWLNy+fbsi6iIiqjCXUzLh4WiL/73XEuO7BcOGx/MQWYxyf9q3bt2K27dvY+TIkVi/fj1q1qyJnj17YtOmTdBqtRVRIxHRc8nO1eE/W+IMt1vWdMXO0W3Rtg6/zobI0jzTf3M8PT0xbtw4nD59GseOHUNQUBDeeecd+Pn5YezYsbhy5Yqx6yQieiZXktPx2tJD2Hzq/987/ePbzeDlbCdhVUQklefav3v37l1ER0cjOjoa1tbW6NWrF+Li4tCgQQMsXLjQWDUSEZWbEAIbTtzCq0sP4UpKBjycbA33WVspJKyMiKRU7uCj1Wrx66+/4pVXXkFAQAA2btyITz75BHfu3MGqVauwZ88ebNiwATNmzKiIeomISpWpycP4Dafx2aYzyNHq0baOB7Z89JLUZRGRCSj36ey+vr7Q6/UYNGgQjh8/jpCQkEJjOnbsCFdXVyOUR0RUPhfuqjEq6hSu3cuElQIY3y0YI9vXRnZ2ltSlEZEJKHfwWbhwIfr37w87u+Lnx11dXREfH/9chRERlYcQAmuP30Lk7+egydPDx9kOiweFomUtd6lLIyITUu7g884771REHUREzyw9R4vJW87i99N3AAAdgj2xYEAI3KvYlvJIIrI0vHIzEZm1s7fTMCrqFG48yIKNlQITugdjeNtAWPEAZiIqAoMPEZklIQR+OZqAL7dfQK5Oj2qu9lg8KBTNA9ykLo2ITBiDDxGZnbRsLSZtPoOdcUkAgC71vTG/fxO4OnBqi4hKxuBDRGbl9K1UjFp7CrceZkNprcDEnvXx3ks1oVBwaouISsfgQ0RmQQiBn/+5gTl/XIBWJ+Dvbo+lg5qhqb+r1KURkRlh8CEik5ealYsJm84g+nwyAKBnIx/M6dsELvZKiSsjInPD4ENEJu3UzUf4OCoGt1OzYWtthSmv1Mc7LwZwaouIngmDDxGZJL1e4P/+vo55uy8hTy8QUNUBy8KboVE1F6lLIyIzxuBDRCbnYWYuxm+Ixf5L9wAArzTxxew3G8PJjlNbRPR8GHyIyKQcj3+I0WtjkKTOgcrGCtNebYhBLf05tUVERsHgQ0QmQa8X+P6va1gQfRk6vUCgZxUsC2+G+r7OUpdGRDLC4ENEkrufocHY9bH4+8p9AMCbodUws08jVFHxVxQRGRd/qxCRpI5ce4Ax62KQkq6BndIKM15vhP7Nq3Nqi4gqBIMPEUlCpxdYsu8KFu+9Ar0A6ng5YtlbzVDX20nq0ohIxhh8iKjSpaTn4JN1sTh87QEAYECL6oh8rRHsba0lroyI5M5K6gIqwrJly1CzZk3Y2dmhVatWOH78uNQlEdH/c+jKffT69m8cvvYADrbWWDCgKeb2a8rQQ0SVQnbBZ/369Rg3bhymTZuGU6dOoWnTpujevTtSUlKkLo3IouXp9Ji/+xLe+fkY7mfkop6PE34b9TLebFZd6tKIyILIbqprwYIFGD58OIYOHQoA+OGHH7Bjxw78/PPPmDhxYpnXk5mZCWtr4/0PVKvVIicnB5mZmVAq5XcRNrn3B8i/x4rsLzktB59uOo0TNx4BAAa8UB2TetaHnVKBzMxMoz5XcZ58Hm5D8yT3/gD591iR/ZX1d4lCCCGM+swSys3NhYODAzZt2oQ+ffoYlg8ePBipqanYtm1bocdoNBpoNBrDbbVaDX9//8ool4iIiIwsLS0Nzs7FX/9LVlNd9+/fh06ng7e3d4Hl3t7eSEpKKvIxs2fPhouLi+GHoYeIiEi+ZDfVVV6TJk3CuHHjDLfz9/gkJCSUmBjLS6vVYt++fejUqZNsd1/KuT9A/j0as7+7qdn4fMs5xN5KAwAMeqEaxnWpA5VSugOYMzMzUb364+OJ4uPj4erqKlktFYXvUfMn9x4rsj+1Wo2AgIBSx8kq+Hh4eMDa2hrJyckFlicnJ8PHx6fIx6hUKqhUqkLLXV1djR587Ozs4OrqKts3s5z7A+Tfo7H623M+GeM3xiEtWwsXZ0fM7dsEPRv7GrHSZ/NkT66urrINPnyPmje591iR/VlZlW0SS1ZTXba2tmjevDn27t1rWKbX67F37160bt1awsqI5C83T48vt5/H+/87gbRsLZpWd8GOj9uaROghIsonqz0+ADBu3DgMHjwYLVq0QMuWLbFo0SJkZmYazvIiIuO79TALo9bG4PStVADAey/VwsSe9WBrI6v/WxGRDMgu+AwcOBD37t3D1KlTkZSUhJCQEOzatavQAc9EZBy7zt7FhE1nkJ6TBxd7Jeb3b4quDfh5IyLTJLvgAwCjRo3CqFGjpC6DSNY0eTrM2nEBq44kAABCa7hiyaBQVHdzkLgyIqLiyTL4EFHFunE/E6PWnsLZ22oAwIj2gfi0WzCU1pzaIiLTxuBDROWy/cwdTPw1DhmaPLg5KLFgQAg61vOSuiwiojJh8CGiMsnR6jBz+3msOXYTAPBCTTcsHhQKXxd7iSsjIio7Bh8iKtW1exmIWHMKF5PSoVAAER2C8EmXOrDh1BYRmRkGHyIq0daY25i8JQ5ZuTpUrWKLRWEhaFvHU+qyiIieCYMPERUpO1eH6b+dw/oTtwAArQOr4tuwEHg520lcGRHRs2PwIaJCriSnIyLqFC4nZ0ChAEZ3qoPRnevA2kohdWlERM+FwYeICvj11G1Ebr+IbK0Onk4qfDswBG2CPKQui4jIKBh8iAgAkKnJw+qrVvj3yDkAQNs6HlgwIASeToW/xJeIyFwx+BARLiap8dHqU7h+3wpWCmBc17r4qEMQrDi1RUQyw+BDZMGEEFj37y1M/+0cNHl6uCgFvnv3BbxUh9+1RUTyxOBDZKEyNHmYvDkOv52+AwBoX8cD3VyS0LKmu8SVERFVHF59jMgCnb2dhlcW/43fTt+BtZUCk3rWw09vh8JRKXVlREQVi3t8iCyIEAKrjyZg5o4LyM3Tw8/FDkvCm6F5gBu0Wq3U5RERVTgGHyILoc7RYuKvZ7AzLgkA0KW+N+b3bwJXB1uJKyMiqjwMPkQW4ExiKiKiTuHWw2worRX4vEc9DHu5FhQKnrVFRJaFwYdIxoQQWPHPDcz+4wK0OoHqbvZYGt4MIf6uUpdGRCQJBh8imUrL0mLCptP483wyAKBHQx983a8JXOx5BDMRWS4GHyIZOnXzET6OisHt1GzYWlvhP73r493WAZzaIiKLx+BDJCN6vcB/D13H3F2XkKcXCKjqgGXhzdComovUpRERmQQGHyKZeJSZi/EbT2PfxRQAwCtNfDH7zcZwsuPUFhFRPgYfIhn498ZDjF4bg7tpObC1scL0VxtiUEt/Tm0RET2FwYfIjOn1At//dQ0Loi9DpxcI9KiCZW81Q31fZ6lLIyIySQw+RGbqfoYGY9fH4u8r9wEAb4RWw5d9GqGKih9rIqLi8DckkRk6cu0BxqyLQUq6BnZKK8x4rRH6t6jOqS0iolIw+BCZEZ1eYOm+q/h272XoBVDHyxHL3mqGut5OUpdGRGQWGHyIzERKeg4+WReLw9ceAAD6N6+OyNcbwsGWH2MiorLib0wiM3Doyn18sj4W9zM0cLC1xpd9GuHNZtWlLouIyOww+BCZsDydHt/uvYKl+69CCKCejxOWhjdDkJej1KUREZklBh8iE5WUloPR62JwPP4hAGBQyxqY9moD2CmtJa6MiMh8MfgQmaADl1IwbsNpPMzMRRVba8zu2wSvNfWTuiwiIrNnJXUBxlSzZk0oFIoCP3PmzJG6LKIy0+r0+HrXRQxZ8S8eZuaioZ8zto9uy9BDRGQkstvjM2PGDAwfPtxw28mJp/mSebiTmo2P18bgZMIjAMC7rQMwuVd9Tm0RERmR7IKPk5MTfHx8pC6DqFz2XkjG+I2nkZqlhZPKBl/3a4JejX2lLouISHZkF3zmzJmDmTNnokaNGggPD8fYsWNhY1N8mxqNBhqNxnBbrVYDALRaLbRardHqyl+XMddpSuTeH1AxPebm6fFN9BX8fDgBANC4mjMWDWiCGu4Olf5ayn0bPtmXsT/fpsJStqFc+wPk32NF9lfWdSqEEMLozy6RBQsWoFmzZnB3d8fhw4cxadIkDB06FAsWLCj2MdOnT0dkZGSh5VFRUXBwcKjIcsnCPcgBVl2xRkLG46+ZaO+rx2s19LCR1ZF3piMnJwdhYWEAgHXr1sHOzk7iiojImLKyshAeHo60tDQ4Oxf/Rc0mH3wmTpyIr7/+usQxFy5cQL169Qot//nnnzFixAhkZGRApVIV+dii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqVQabb2mQu79Acbt8c/zyZi05RzUOXlwtrPB1282Qpf6Xkaq9NnIfRtmZmbCzc0NAJCSkgJXV1dpC6oAct+Gcu8PkH+PFdmfWq2Gh4dHqcHH5Ke6xo8fjyFDhpQ4JjAwsMjlrVq1Ql5eHm7cuIHg4OAix6hUqiJDkVKprJA3XUWt11TIvT/g+XrU5Okwe+dFrDx8AwAQWsMVSwaForqb6exdlOs2fLInufaYj/2ZP7n3WBH9lXV9Jh98PD094enp+UyPjY2NhZWVFby8pP2fNBEAJDzIxKioGMTdTgMAjGgXiE+7B0NpzbktIqLKYvLBp6yOHDmCY8eOoWPHjnBycsKRI0cwduxYvP3224bd20RS2XHmLib+egbpmjy4OSjxzYCm6FTPW+qyiIgsjmyCj0qlwrp16zB9+nRoNBrUqlULY8eOxbhx46QujSxYjlaHL3ecx+qjNwEAL9R0w+JBofB1sZe4MiIiyySb4NOsWTMcPXpU6jKIDK7fy0BEVAwu3FVDoQA+6lAbY7vUhQ2ntoiIJCOb4ENkSrbF3sbkzXHIzNWhahVbLBwYgnZ1n+1YNSIiMh4GHyIjys7VIfL3c1j37y0AwIuB7vg2LBTezrxmDBGRKWDwITKSqynpiFgTg0vJ6VAogNGd6mB05zqwtlJIXRoREf0/DD5ERrDpZCK+2HoW2VodPJ1U+HZgCNoEeUhdFhERPYXBh+g5ZOXmYcrWs9h86jYA4OUgDywcGAJPp6KvFE5ERNJi8CF6RheT1IhYcwrX7mXCSgGM61oXIzsEcWqLiMiEMfgQlZMQAuuO38S0385Bk6eHt7MKi8NC0SqwqtSlERFRKRh8iMohRweM3xSH388kAQDa1/XEggFNUdWRU1tEROaAwYeojM7fVWP+GWvcy0mCtZUCE7oH44O2gbDi1BYRkdlg8CEqhRACq4/dxMzt55Gbp4Cvix2WhoeieYC71KUREVE5MfgQlUCdo8WkX+OwI+4uAKCRmx4/f/givFyqSFwZERE9CwYfomKcSUzFqKgY3HyYBRsrBT7rXhdej87BzcFW6tKIiOgZ8dsSiZ4ihMCKf+LR9/vDuPkwC9Xd7LFpZBsMbRMABQ/nISIya9zjQ/SEtCwtPvv1NHafSwYAdG/ojbn9msLFXgmtVitxdURE9LwYfIj+n5ibjzAqKga3U7Nha22F//Suj3dbB0DB3TxERLLB4EMWTwiB//4dj693XUSeXiCgqgOWDmqGxtVdpC6NiIiMjMGHLNqjzFx8uvE09l5MAQD0buKLOW82hpOdUuLKiIioIjD4kMU6ceMhPl4bg7tpObC1scK0VxsgvGUNTm0REckYgw9ZHL1e4IeD1/DNn5eh0wsEelTB0vBmaODnLHVpRERUwRh8yKI8yNBg3IbT+OvyPQBAnxA/fPlGYziq+FEgIrIE/G1PFuPo9QcYsy4GyWoN7JRWmPFaI/RvUZ1TW0REFoTBh2RPpxdYtv8qFu25DL0AgrwcsSy8GYJ9nKQujYiIKhmDD8laSnoOxq6PxT9XHwAA+jWvjhmvN4SDLd/6RESWiL/9Sbb+uXofY9bF4n6GBvZKa3zZpxH6Nq8udVlERCQhBh+SHZ1e4Nu9V7Bk3xUIAdTzccLS8GYI8nKUujQiIpIYgw/JSrI6B6PXxuBY/EMAwKCW/pj2akPYKa0lroyIiEwBgw/Jxl+X72Hs+lg8zMxFFVtrzHqzMV4PqSZ1WUREZEIYfMjs5en0+Cb6Mr4/cA0A0MDXGcveaoZaHlUkroyIiEwNgw+ZtTup2Ri9NgYnEh4BAN55MQD/6V2fU1tERFQkBh8yW/suJmPchtNIzdLCSWWDr/s1Qa/GvlKXRUREJozBh8yOVqfH3F0X8X9/xwMAmlR3wdJBzVCjqoPElRERkamzkrqAsvrqq6/Qpk0bODg4wNXVtcgxN2/eRO/eveHg4AAvLy9MmDABeXl5lVsoVahbD7PQ/4cjhtAz9KWa2Phha4YeIiIqE7PZ45Obm4v+/fujdevWWL58eaH7dTodevfuDR8fHxw+fBh3797Fu+++C6VSiVmzZklQMRnb7nNJmLDxNNQ5eXC2s8G8/k3RvaGP1GUREZEZMZvgExkZCQBYuXJlkff/+eefOH/+PPbs2QNvb2+EhIRg5syZ+PzzzzF9+nTY2tpWYrVkTJo8Heb8cREr/rkBAAit4Yolg0JR3Y17eYiIqHzMJviU5siRI2jcuDG8vb0Ny7p3746RI0fi3LlzCA0NLfJxGo0GGo3GcFutVgMAtFottFqt0erLX5cx12lKKqq/hIdZ+GT9GZy983i7DHspAOO71oHS2qrSX0tuQ/P2ZF/G/nybCkvZhnLtD5B/jxXZX1nXKZvgk5SUVCD0ADDcTkpKKvZxs2fPNuxNetKff/4JBwfj71GIjo42+jpNiTH7i3mgwLprVsjRKVDFRuCtID0a6q8hevc1oz3Hs+A2NE85OTmGf+/btw92dnYSVlOx5LoN88m9P0D+PVZEf1lZWWUaJ2nwmThxIr7++usSx1y4cAH16tWrsBomTZqEcePGGW6r1Wr4+/ujW7ducHZ2NtrzaLVaREdHo2vXrlAqlUZbr6kwZn8arQ6zdl1C1OVEAEDzGq5YOKAJfF2k/UPFbWjeMjMzDf/u1KlTsSdJmDO5b0O59wfIv8eK7C9/xqY0kgaf8ePHY8iQISWOCQwMLNO6fHx8cPz48QLLkpOTDfcVR6VSQaVSFVquVCor5E1XUes1Fc/bX/z9TESsOYXzdx+/gT/qUBvjutaFjbXpnIDIbWienuxJrj3mY3/mT+49VkR/ZV2fpMHH09MTnp6eRllX69at8dVXXyElJQVeXl4AHu9Kc3Z2RoMGDYzyHFSxtsXexuTNccjM1aFqFVssGBiC9nWN8/4gIiICzOgYn5s3b+Lhw4e4efMmdDodYmNjAQBBQUFwdHREt27d0KBBA7zzzjuYO3cukpKSMGXKFERERBS5R4dMR45Wh+m/ncO6f28BAF4MdMe3YaHwdpbvMRhERCQNswk+U6dOxapVqwy388/S2r9/Pzp06ABra2ts374dI0eOROvWrVGlShUMHjwYM2bMkKpkKoOrKemIWBODS8npUCiAjzvVwZjOdWBtpZC6NCIikiGzCT4rV64s9ho++QICArBz587KKYie268nEzFl61lka3XwcFTh27AQvBTkIXVZREQkY2YTfEg+snLzMHXbOWw6+fisrZeDPLBwYAg8nTglSUREFYvBhyrVpaR0RESdwtWUDFgpgLFd6uKjjkGc2iIiokrB4EOVQgiBDSduYdpv55Cj1cPbWYVvw0LxYmBVqUsjIiILwuBDFS5Dk4cpW+KwNfYOAKB9XU8sGNAUVR05tUVERJWLwYcq1Pk7aoyKOoXr9zNhbaXAp92CMaJdIKw4tUVERBJg8KEKIYTAmmM3MWP7eeTm6eHrYoclg0LRoqa71KUREZEFY/Aho1PnaDFpcxx2nLkLAOhczwvz+zeFWxVbiSsjIiJLx+BDRnX2thqfbDyDhAdZsLFSYGLPehj2ci0oFJzaIiIi6TH4kFEIIXDwrgK/HT8GrU6gmqs9loaHIrSGm9SlERERGTD40HNLy9Li042nEX3DGoBAtwbemNevKVwc5PvNwkREZJ4YfOi5xN5KxaioU0h8lA1rhcDkXvXx3suBnNoiIiKTxOBDz0QIgeWH4jHnj4vI0wv4u9ljYPV0vPtiDYYeIiIyWVZSF0DmJzUrF8P/dwJf7riAPL1A7ya+2PbRi/B3lLoyIiKiknGPD5XLyYSH+DgqBnfScmBrY4WprzTAW61qIC8vT+rSiIiISsXgQ2Wi1wv8ePA65v95CTq9QC2PKlgaHoqGfi5Sl0ZERFRmDD5UqgcZGozbcBp/Xb4HAHg9xA9fvdEYjiq+fYiIyLzwLxeV6Nj1Bxi9LgbJag1UNlaY8XpDDGjhzwOYiYjILDH4UJF0eoHv9l/Fwj2XoRdAkJcjloU3Q7CPk9SlERERPTMGHyrkXroGY9fH4tDV+wCAvs2qY2afhnCw5duFiIjMG/+SUQGHr97H6HWxuJ+hgb3SGjP7NEK/5tWlLouIiMgoGHwIwOOprW/3XsGSfVcgBBDs7YRlb4UiyItTW0REJB8MPoRkdQ7GrIvB0esPAQCDWvpj2qsNYae0lrgyIiIi42LwsXAHL9/D2PWxeJCZiyq21pj1ZmO8HlJN6rKIiIgqBIOPhcrT6bEg+jK+O3ANAFDf1xnLwkMR6MnvnSAiIvli8LFAd9OyMXptDP698QgA8M6LAfhP7/qc2iIiItlj8LEw+y4mY/yG03iUpYWTygZz+jZB7ya+UpdFRERUKRh8LIRWp8e83Zfw08HrAIDG1VywNDwUAVWrSFwZERFR5WHwsQCJj7Lw8doYxNxMBQAMaVMTk3rVg8qGU1tERGRZGHxk7s9zSfh042moc/LgbGeDef2bontDH6nLIiIikgSDj0zl5ukx+48LWPHPDQBAiL8rlgwKhb+7g7SFERERSYjBR4ZuPsjCqLWncCYxDQAwvG0tTOheD7Y2VhJXRkREJC2z+Uv41VdfoU2bNnBwcICrq2uRYxQKRaGfdevWVW6hEtsZdxe9F/+NM4lpcHVQYvngFvhP7wYMPURERDCjPT65ubno378/WrdujeXLlxc7bsWKFejRo4fhdnEhSW5ytDp8teMCfjmaAABoEeCGxYNC4edqL3FlREREpsNsgk9kZCQAYOXKlSWOc3V1hY+PZR28G38/E6OiTuHcHTUA4KMOtTG2a10orbmXh4iI6ElmE3zKKiIiAu+//z4CAwPx4YcfYujQoVAoFMWO12g00Gg0httq9ePwoNVqodVqjVZX/rqMuU4A+P3MXXyx7Twyc3Vwc1Dim36N0baOB6DXQavXGfW5SlJR/ZkSufdoKf3l/1uOfVrKNpRrf4D8e6zI/sq6ToUQQhj92SvQypUr8cknnyA1NbXQfTNnzkSnTp3g4OCAP//8E9OmTcPcuXMxevToYtc3ffp0w96kJ0VFRcHBwXTPgMrVAZtvWOFIyuO9OkHOAu/W0cHFVuLCiExUTk4OwsLCAADr1q2DnZ2dxBURkTFlZWUhPDwcaWlpcHZ2LnacpMFn4sSJ+Prrr0scc+HCBdSrV89wu6Tg87SpU6dixYoVuHXrVrFjitrj4+/vj/v375f4wpWXVqtFdHQ0unbtCqVS+VzrunYvE2PWn8al5AwoFMBH7QMxqkMgbCSc2jJmf6ZK7j3Kvb/MzEy4ubkBAFJSUmR5/J/ct6Hc+wPk32NF9qdWq+Hh4VFq8JF0qmv8+PEYMmRIiWMCAwOfef2tWrXCzJkzodFooFKpihyjUqmKvE+pVFbIm+551/vryURM2XoW2VodPBxVWDQwBC/X8TBihc+nol43UyL3HuXa35M9ybXHfOzP/Mm9x4ror6zrkzT4eHp6wtPTs8LWHxsbCzc3t2JDjznJys3D1G3nsOlkIgDgpaCqWDgwBF5O3F1PRERUVmZzcPPNmzfx8OFD3Lx5EzqdDrGxsQCAoKAgODo64vfff0dycjJefPFF2NnZITo6GrNmzcKnn34qbeFGcDk5HRFrTuFKSgasFMAnXeoiomMQrK2KP2ibiIiICjOb4DN16lSsWrXKcDs0NBQAsH//fnTo0AFKpRLLli3D2LFjIYRAUFAQFixYgOHDh0tV8nMTQmDjiURM/e0scrR6eDur8G1YKF4MrCp1aURERGbJbILPypUrS7yGT48ePQpcuNDcZWry8J8tcdgaewcA0K6uJxYOaIqqjuY/bUdERCQVswk+luT8HTVGRZ3C9fuZsLZSYHy3uviwXW1YcWqLiIjouTD4mBAhBKKO30Tk7+eRm6eHr4sdlgwKRYua7lKXRkREJAsMPiYiPUeLSZvjsP3MXQBA53pemN+/Kdyq8IqERERExsLgYwLO3k5DRNQpJDzIgo2VAp/3qIf329Yq8as2iIiIqPwYfCQkhMD/jiTgqx0XkKvTo5qrPZaEh6JZDTepSyMiIpIlBh+JpGVr8fmmM9h1LgkA0K2BN+b1awoXB/leqZOIiEhqDD4SiL2VilFRp5D4KBtKawUm96qPIW1qcmqLiIiogjH4VCIhgBWHEzDvz8vQ6gRquDtgaXgomlR3lbo0IiIii8DgU0lSs7T47yUrnH10CQDQu7EvZvdtDGc7Tm0RERFVFgafSpDwIBNhPx3F3TQr2NpY4YtXGuDtVjU4tUVERFTJGHwqgZ+rPbydVcjTZOO/77VE0xr8ri0iIiIpWEldgCVQWlthaVhTfNpEhwa+zlKXQ0REZLEYfCqJt7Md7KylroKIiMiyMfgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMBh8iIiKyGAw+REREZDEYfIiIiMhiMPgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMG6kLMDVCCACAWq026nq1Wi2ysrKgVquhVCqNum5TIPf+APn3KPf+MjMzDf9Wq9WwspLf//vkvg3l3h8g/x4rsr/8v9v5f8eLw+DzlPT0dACAv7+/xJUQUUUJCAiQugQiqiDp6elwcXEp9n6FKC0aWRi9Xo87d+7AyckJCoXCaOtVq9Xw9/fHrVu34OzsbLT1mgq59wfIv0e59wfIv0f2Z/7k3mNF9ieEQHp6Ovz8/Erco8s9Pk+xsrJC9erVK2z9zs7Osnwz55N7f4D8e5R7f4D8e2R/5k/uPVZUfyXt6cknv0luIiIiomIw+BAREZHFYPCpJCqVCtOmTYNKpZK6lAoh9/4A+fco9/4A+ffI/syf3Hs0hf54cDMRERFZDO7xISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMBh8j+eqrr9CmTRs4ODjA1dW1yDE3b95E79694eDgAC8vL0yYMAF5eXklrvfhw4d466234OzsDFdXVwwbNgwZGRkV0EH5HDhwAAqFosiff//9t9jHdejQodD4Dz/8sBIrL5+aNWsWqnfOnDklPiYnJwcRERGoWrUqHB0d0bdvXyQnJ1dSxWV348YNDBs2DLVq1YK9vT1q166NadOmITc3t8THmfI2XLZsGWrWrAk7Ozu0atUKx48fL3H8xo0bUa9ePdjZ2aFx48bYuXNnJVVafrNnz8YLL7wAJycneHl5oU+fPrh06VKJj1m5cmWhbWVnZ1dJFZfP9OnTC9Var169Eh9jTtsPKPr3iUKhQERERJHjTX37HTx4EK+++ir8/PygUCiwdevWAvcLITB16lT4+vrC3t4eXbp0wZUrV0pdb3k/x+XF4GMkubm56N+/P0aOHFnk/TqdDr1790Zubi4OHz6MVatWYeXKlZg6dWqJ633rrbdw7tw5REdHY/v27Th48CA++OCDimihXNq0aYO7d+8W+Hn//fdRq1YttGjRosTHDh8+vMDj5s6dW0lVP5sZM2YUqPfjjz8ucfzYsWPx+++/Y+PGjfjrr79w584dvPnmm5VUbdldvHgRer0eP/74I86dO4eFCxfihx9+wOTJk0t9rCluw/Xr12PcuHGYNm0aTp06haZNm6J79+5ISUkpcvzhw4cxaNAgDBs2DDExMejTpw/69OmDs2fPVnLlZfPXX38hIiICR48eRXR0NLRaLbp161bgy1eL4uzsXGBbJSQkVFLF5dewYcMCtR46dKjYsea2/QDg33//LdBfdHQ0AKB///7FPsaUt19mZiaaNm2KZcuWFXn/3LlzsXjxYvzwww84duwYqlSpgu7duyMnJ6fYdZb3c/xMBBnVihUrhIuLS6HlO3fuFFZWViIpKcmw7PvvvxfOzs5Co9EUua7z588LAOLff/81LPvjjz+EQqEQt2/fNnrtzyM3N1d4enqKGTNmlDiuffv2YsyYMZVTlBEEBASIhQsXlnl8amqqUCqVYuPGjYZlFy5cEADEkSNHKqBC45o7d66oVatWiWNMdRu2bNlSREREGG7rdDrh5+cnZs+eXeT4AQMGiN69exdY1qpVKzFixIgKrdNYUlJSBADx119/FTumuN9HpmjatGmiadOmZR5v7ttPCCHGjBkjateuLfR6fZH3m9P2AyC2bNliuK3X64WPj4+YN2+eYVlqaqpQqVRi7dq1xa6nvJ/jZ8E9PpXkyJEjaNy4Mby9vQ3LunfvDrVajXPnzhX7GFdX1wJ7ULp06QIrKyscO3aswmsuj99++w0PHjzA0KFDSx27Zs0aeHh4oFGjRpg0aRKysrIqocJnN2fOHFStWhWhoaGYN29eidOTJ0+ehFarRZcuXQzL6tWrhxo1auDIkSOVUe5zSUtLg7u7e6njTG0b5ubm4uTJkwVedysrK3Tp0qXY1/3IkSMFxgOPP5PmsJ2Ax9sKQKnbKyMjAwEBAfD398frr79e7O8bU3DlyhX4+fkhMDAQb731Fm7evFnsWHPffrm5uVi9ejXee++9Er8Q25y235Pi4+ORlJRUYBu5uLigVatWxW6jZ/kcPwt+SWklSUpKKhB6ABhuJyUlFfsYLy+vAstsbGzg7u5e7GOksnz5cnTv3r3UL3gNDw9HQEAA/Pz8cObMGXz++ee4dOkSNm/eXEmVls/o0aPRrFkzuLu74/Dhw5g0aRLu3r2LBQsWFDk+KSkJtra2hY7z8vb2Nrlt9rSrV69iyZIlmD9/fonjTHEb3r9/HzqdrsjP2MWLF4t8THGfSVPfTgCg1+vxySef4KWXXkKjRo2KHRccHIyff/4ZTZo0QVpaGubPn482bdrg3LlzFfplzM+iVatWWLlyJYKDg3H37l1ERkaibdu2OHv2LJycnAqNN+ftBwBbt25FamoqhgwZUuwYc9p+T8vfDuXZRs/yOX4WDD4lmDhxIr7++usSx1y4cKHUA/DMybP0nJiYiN27d2PDhg2lrv/J45MaN24MX19fdO7cGdeuXUPt2rWfvfByKE+P48aNMyxr0qQJbG1tMWLECMyePdtkLyn/LNvw9u3b6NGjB/r374/hw4eX+FhT2IaWLiIiAmfPni3xGBgAaN26NVq3bm243aZNG9SvXx8//vgjZs6cWdFllkvPnj0N/27SpAlatWqFgIAAbNiwAcOGDZOwsoqxfPly9OzZE35+fsWOMaftZ04YfEowfvz4EtM4AAQGBpZpXT4+PoWOTM8/08fHx6fYxzx9QFdeXh4ePnxY7GOe17P0vGLFClStWhWvvfZauZ+vVatWAB7vbaisP5rPs11btWqFvLw83LhxA8HBwYXu9/HxQW5uLlJTUwvs9UlOTq6wbfa08vZ3584ddOzYEW3atMFPP/1U7ueTYhs+zcPDA9bW1oXOnivpdffx8SnXeFMxatQow4kO5f1fv1KpRGhoKK5evVpB1RmPq6sr6tatW2yt5rr9ACAhIQF79uwp915Sc9p++dshOTkZvr6+huXJyckICQkp8jHP8jl+JkY7WoiEEKUf3JycnGxY9uOPPwpnZ2eRk5NT5LryD24+ceKEYdnu3btN6uBmvV4vatWqJcaPH/9Mjz906JAAIE6fPm3kyirG6tWrhZWVlXj48GGR9+cf3Lxp0ybDsosXL5rswc2JiYmiTp06IiwsTOTl5T3TOkxlG7Zs2VKMGjXKcFun04lq1aqVeHDzK6+8UmBZ69atTfbgWL1eLyIiIoSfn5+4fPnyM60jLy9PBAcHi7Fjxxq5OuNLT08Xbm5u4ttvvy3yfnPbfk+aNm2a8PHxEVqttlyPM+Xth2IObp4/f75hWVpaWpkObi7P5/iZajXamixcQkKCiImJEZGRkcLR0VHExMSImJgYkZ6eLoR4/IZt1KiR6Natm4iNjRW7du0Snp6eYtKkSYZ1HDt2TAQHB4vExETDsh49eojQ0FBx7NgxcejQIVGnTh0xaNCgSu+vOHv27BEAxIULFwrdl5iYKIKDg8WxY8eEEEJcvXpVzJgxQ5w4cULEx8eLbdu2icDAQNGuXbvKLrtMDh8+LBYuXChiY2PFtWvXxOrVq4Wnp6d49913DWOe7lEIIT788ENRo0YNsW/fPnHixAnRunVr0bp1aylaKFFiYqIICgoSnTt3FomJieLu3buGnyfHmMs2XLdunVCpVGLlypXi/Pnz4oMPPhCurq6GMynfeecdMXHiRMP4f/75R9jY2Ij58+eLCxcuiGnTpgmlUini4uKkaqFEI0eOFC4uLuLAgQMFtlVWVpZhzNM9RkZGit27d4tr166JkydPirCwMGFnZyfOnTsnRQslGj9+vDhw4ICIj48X//zzj+jSpYvw8PAQKSkpQgjz3375dDqdqFGjhvj8888L3Wdu2y89Pd3wtw6AWLBggYiJiREJCQlCCCHmzJkjXF1dxbZt28SZM2fE66+/LmrVqiWys7MN6+jUqZNYsmSJ4XZpn2NjYPAxksGDBwsAhX72799vGHPjxg3Rs2dPYW9vLzw8PMT48eMLJP79+/cLACI+Pt6w7MGDB2LQoEHC0dFRODs7i6FDhxrClCkYNGiQaNOmTZH3xcfHF3gNbt68Kdq1ayfc3d2FSqUSQUFBYsKECSItLa0SKy67kydPilatWgkXFxdhZ2cn6tevL2bNmlVgD93TPQohRHZ2tvjoo4+Em5ubcHBwEG+88UaBMGEqVqxYUeR79skdwea2DZcsWSJq1KghbG1tRcuWLcXRo0cN97Vv314MHjy4wPgNGzaIunXrCltbW9GwYUOxY8eOSq647IrbVitWrDCMebrHTz75xPB6eHt7i169eolTp05VfvFlMHDgQOHr6ytsbW1FtWrVxMCBA8XVq1cN95v79su3e/duAUBcunSp0H3mtv3y/2Y9/ZPfg16vF1988YXw9vYWKpVKdO7cuVDfAQEBYtq0aQWWlfQ5NgaFEEIYb+KMiIiIyHTxOj5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BCRrN27dw8+Pj6YNWuWYdnhw4dha2uLvXv3SlgZEUmB39VFRLK3c+dO9OnTB4cPH0ZwcDBCQkLw+uuvY8GCBVKXRkSVjMGHiCxCREQE9uzZgxYtWiAuLg7//vsvVCqV1GURUSVj8CEii5CdnY1GjRrh1q1bOHnyJBo3bix1SUQkAR7jQ0QW4dq1a7hz5w70ej1u3LghdTlEJBHu8SEi2cvNzUXLli0REhKC4OBgLFq0CHFxcfDy8pK6NCKqZAw+RCR7EyZMwKZNm3D69Gk4Ojqiffv2cHFxwfbt26UujYgqGae6iEjWDhw4gEWLFuGXX36Bs7MzrKys8Msvv+Dvv//G999/L3V5RFTJuMeHiIiILAb3+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsxv8HIGLLDQ8ifpoAAAAASUVORK5CYII="
|
48
|
-
}
|
49
|
-
}
|
50
|
-
]
|
51
|
-
},
|
52
|
-
{
|
53
|
-
"cell_type": "markdown",
|
54
|
-
"metadata": {},
|
55
|
-
"source": "This script first defines the coefficients of the line (slope and intercept), then generates x values over a range from -10 to 10. It calculates the corresponding y values using the equation of the line, prints out the equation of the line, and finally plots the line using matplotlib. The resulting plot shows the linear relationship between x and y according to the given equation."
|
56
|
-
},
|
57
|
-
{
|
58
|
-
"cell_type": "markdown",
|
59
|
-
"metadata": {},
|
60
|
-
"source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the bayes theorem equation and plot the results.\n</div>\n"
|
61
|
-
},
|
62
|
-
{
|
63
|
-
"cell_type": "code",
|
64
|
-
"execution_count": 2,
|
65
|
-
"metadata": {},
|
66
|
-
"source": "import numpy as np\nimport matplotlib.pyplot as plt\n\n# Define the probabilities\nP_A = 0.01 # Probability of having the disease\nP_B_given_A = 0.99 # Probability of testing positive given that you have the disease\nP_B_given_not_A = 0.02 # Probability of testing positive given that you don't have the disease\n\n# Calculate P(not A)\nP_not_A = 1 - P_A\n\n# Calculate P(B) using the law of total probability\nP_B = P_B_given_A * P_A + P_B_given_not_A * P_not_A\n\n# Apply Bayes' theorem to find P(A|B)\nP_A_given_B = (P_B_given_A * P_A) / P_B\n\nprint(\"The probability of having the disease given a positive test result is: {:.2%}\".format(P_A_given_B))\n\n# Create an array of different prior probabilities\nprior_probabilities = np.linspace(0, 1, 100)\n\n# Calculate the posterior probabilities for each prior probability\nposterior_probabilities = (P_B_given_A * prior_probabilities) / (P_B_given_A * prior_probabilities + P_B_given_not_A * (1 - prior_probabilities))\n\n# Plot the results\nplt.plot(prior_probabilities, posterior_probabilities)\nplt.xlabel('Prior Probability of Having the Disease')\nplt.ylabel('Posterior Probability of Having the Disease Given a Positive Test Result')\nplt.title('Bayes\\' Theorem Applied to Medical Testing')\nplt.grid(True)\nplt.show()",
|
67
|
-
"outputs": [
|
68
|
-
{
|
69
|
-
"output_type": "stream",
|
70
|
-
"name": "stdout",
|
71
|
-
"text": "The probability of having the disease given a positive test result is: 33.33%\n"
|
72
|
-
},
|
73
|
-
{
|
74
|
-
"output_type": "display_data",
|
75
|
-
"metadata": {},
|
76
|
-
"data": {
|
77
|
-
"text/plain": [
|
78
|
-
"<Figure size 640x480 with 1 Axes>"
|
79
|
-
],
|
80
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDC0lEQVR4nO3dd3zM9x8H8NddciM7MbIIETvELj+xZ9SuPYpqUa3USFWpPVp0EFvRGi21q4OSSKldNUttEjsRInvffX5/xB0nwX3jhsTr+XjkkdznvuN9n8Td22fKhBACEmzZsgX9+vVD37598cMPP+DcuXPw8/PDwoULsWPHDuzYsUPK5YiIiIhMSi71hBkzZmDp0qVYvnw5FAqFvrxBgwY4ceKESYMjIiIikkpycnPx4kU0btw4V7mLiwvi4+NNERMRERFRvklObjw9PXHlypVc5QcOHICfn59JgiIiIiLKL8nJzeDBgzFixAj8/fffkMlkuHPnDtauXYvRo0fjgw8+MEeMREREREazlXrC2LFjodVq0aJFC6SmpqJx48ZQqVQYPXo0PvroI3PESERERGQ0mdTZUjqZmZm4cuUKkpOT4e/vD0dHR6SlpcHOzs7UMRIREREZTXK3lI5SqYS/vz/q1q0LhUKBOXPmoEyZMqaMjYiIiEgyo5ObjIwMjBs3DnXq1EFgYCC2bdsGAFi5ciXKlCmDuXPnYtSoUeaKk4iIiMgoRndLffrpp/j222/RsmVLHDp0CLGxsRg4cCCOHDmCzz77DN27d4eNjY254yUiIiJ6LqNbbjZt2oQ1a9Zg8+bNCAsLg0ajQXZ2Nk6fPo1evXoxsaFCTyaTITg42Nph0BNWrVoFmUyGqKgofVnTpk3RtGlTk95HJpNhypQpJr1mQfB0XUZFRUEmk2HVqlVmud/evXshk8mwd+9es1zflKZMmQKZTGbtMOgZjE5ubt26hdq1awMAqlatCpVKhVGjRvGXW8joPiye/HJ3d0ezZs3wxx9/WDs8SV70Jty0adNcrzWvr9fxQy0/6tatC5lMhiVLllg7FKu4c+cOpkyZglOnTpn0uroPfJlMhh9//DHPYxo0aACZTIaqVaua9N6vImP+zZoqQUpNTcWUKVMKRLJFhoyeCq7RaKBUKh+faGsLR0dHswRF1jdt2jSUKVMGQgjExMRg1apVaNu2LX777Te0b9/e2uGZxPjx4zFo0CD943/++Qfz58/HZ599hsqVK+vLq1WrZo3wCpTLly/jn3/+ga+vL9auXWvVNa/CwsKsct87d+5g6tSp8PX1RY0aNUx+fbVajXXr1uHtt982KI+KisKhQ4egVqtNfs+nlS5dGmlpaQZb71jaDz/8YPB4zZo1CA8Pz1X+5L/h/EpNTcXUqVMBIFdr4IQJEzB27NiXvgeZh9HJjRAC77zzDlQqFQAgPT0dQ4cOhYODg8FxW7duNW2EZBVvvvkm6tSpo3/83nvvwcPDAz/99FOhSW5atWpl8FitVmP+/Plo1aqVybs1TC07OxtardbgPxzW9OOPP8Ld3R3ffPMNunXrhqioKPj6+lolllelTkytbdu2+PXXX3H//n0UK1ZMX75u3Tp4eHigfPnyePjwoVljkMlkFkminufp5O7IkSMIDw/PVW5utra2sLWVvFQcWYjR3VIDBgyAu7s7XFxc4OLigrfffhve3t76x7ovKpxcXV1hZ2eX6x/z119/jcDAQBQtWhR2dnaoXbs2Nm/ebHBMkyZNUL169TyvW7FiRQQFBekfa7VahIaGokqVKlCr1fDw8MD777+f60372LFjCAoKQrFixWBnZ4cyZcrg3XffNdGrfb5t27bpu2arVKmCnTt35jrm9u3bePfdd+Hh4aE/7vvvv8913L179/SJo1qtRvXq1bF69WqDY3TjHL7++muEhoaibNmyUKlUOHfuHADgwoUL6NatG4oUKQK1Wo06derg119/NbiGrrvxwIEDGD58OIoXLw5XV1e8//77yMzMRHx8PPr37w83Nze4ublhzJgxkLIE1rp169CtWze0b98eLi4uWLduXa5jdGMULly4gB49esDZ2RlFixbFiBEjkJ6ebnCsbnzT2rVrUbFiRajVatSuXRv79u17YSx5jbnJyMjA5MmTUa5cOahUKvj4+GDMmDHIyMjIddyoUaNQvHhxODk5oWPHjrh169YL77l371688cYbAICBAwfqu0ae7BbdtGkTateuDTs7OxQrVgxvv/02bt++/cJr63Tq1AkqlQqbNm0yKF+3bh169OjxzHGPP/74o/6+RYoUQa9evXDz5s1cxy1btgxly5aFnZ0d6tati/379+c65lljbnS/0+LFi8POzg4VK1bE+PHj9c9fv34dH374ISpWrAg7OzsULVoU3bt3NxgrZUqmeB+JiopC8eLFAQBTp07N1U2d15gb3d+tMe8Re/fuRZ06daBWq1G2bFl8++23HMdjSoLoCStXrhQAxO7du0VsbKy4d++eOHv2rHj//feFXC4XYWFhBseXLFlSfPjhh2LhwoVizpw5om7dugKA+P333/XHLF++XAAQZ86cMTj36NGjAoBYs2aNvmzQoEHC1tZWDB48WCxdulR8+umnwsHBQbzxxhsiMzNTCCFETEyMcHNzExUqVBBfffWVWL58uRg/fryoXLmywfUBiJUrVxr92jdt2iQAiD179uT5PABRvXp14eXlJaZPny5CQ0OFn5+fsLe3F/fv39cfFx0dLUqWLCl8fHzEtGnTxJIlS0THjh0FADF37lz9campqaJy5cpCoVCIUaNGifnz54tGjRoJACI0NFR/XGRkpAAg/P39hZ+fn5g1a5aYO3euuH79ujh79qxwcXER/v7+Yvbs2WLhwoWicePGQiaTia1bt+qvofu91qhRQ7Rp00YsWrRI9OvXTwAQY8aMEQ0bNhR9+vQRixcvFu3btxcAxOrVq42qtyNHjggAYv/+/UIIId59913h7++f67jJkycLACIgIEB06NBBLFy4ULz99tsCgOjXr1+uuq5ataooVqyYmDZtmpg9e7YoXbq0sLOzM/g70r2uyMhIfVmTJk1EkyZN9I81Go1o3bq1sLe3FyNHjhTffvutCA4OFra2tqJTp04G99XF06dPH7Fw4ULRpUsXUa1aNQFATJ48+Zl1EB0dLaZNmyYAiCFDhogffvhB/PDDD+Lq1asGcb7xxhti7ty5YuzYscLOzk74+vqKhw8fPrd+9+zZIwCITZs2iT59+ohGjRrpnzt16pQAIA4fPiyaNGkiqlSpYnDujBkzhEwmEz179hSLFy8WU6dOFcWKFct13xUrVggAIjAwUMyfP1+MHDlSuLq6Cj8/P4O61P0tPvnv6vTp08LZ2VkULVpUjBs3Tnz77bdizJgxIiAgQH/Mpk2bRPXq1cWkSZPEsmXLxGeffSbc3NxE6dKlRUpKSq7X+qx/g3kZNmyYePqjzBTvI8nJyWLJkiUCgHjrrbf0v9PTp08LIR7/PT/J2PeIEydOCJVKJXx9fcWsWbPE559/Lry9vUX16tVzXZPyh7VIBnRvwk9/qVQqsWrVqlzHp6amGjzOzMwUVatWFc2bN9eXxcfHC7VaLT799FODY4cPHy4cHBxEcnKyEEKI/fv3CwBi7dq1Bsft3LnToPznn38WAMQ///xjktesY0xyo1QqxZUrV/Rlp0+fFgDEggUL9GXvvfee8PLyMngzE0KIXr16CRcXF32dhYaGCgDixx9/1B+TmZkp6tevLxwdHUViYqIQ4vEHirOzs7h3757BNVu0aCECAgJEenq6vkyr1YrAwEBRvnx5fZnu9xoUFCS0Wq2+vH79+kImk4mhQ4fqy7Kzs0XJkiUNPtSeJzg4WPj4+OivGxYWJgCIkydPGhyn+zDo2LGjQfmHH34oAOg/NIQQ+r+7Y8eO6cuuX78u1Gq1eOutt3K9ruclNz/88IOQy+X65Etn6dKlAoA4ePCgEOJxovDhhx8aHNenT58XJjdCCPHPP//kmVBnZmYKd3d3UbVqVZGWlqYv//333wUAMWnSpOde98nk5vfffxcymUzcuHFDCCHEJ598Ivz8/PSv+8nkJioqStjY2IjPP//c4HpnzpwRtra2+nJdfDVq1BAZGRn645YtWyYAvDC5ady4sXBychLXr183uM+Tf2dPv08IIcThw4dz/efGFMmNKd9HYmNjn/m7f1ZyY8x7RIcOHYS9vb24ffu2vuzy5cvC1taWyY2J5HuFYircFi1ahPDwcISHh+PHH39Es2bNMGjQoFxjqp7cbuPhw4dISEhAo0aNcOLECX25i4sLOnXqhJ9++knf1aHRaLBhwwZ07txZP25r06ZNcHFxQatWrXD//n39V+3ateHo6Ig9e/YAyOkiA4Dff/8dWVlZ5qyGXFq2bImyZcvqH1erVg3Ozs64du0agJyxaVu2bEGHDh0ghDB4HUFBQUhISNDXzY4dO+Dp6YnevXvrr6dQKDB8+HAkJyfjr7/+Mrh3165d9c3kABAXF4c///wTPXr0QFJSkv4+Dx48QFBQEC5fvpyr2+O9994zaPauV68ehBB477339GU2NjaoU6eO/jU9T3Z2NjZs2ICePXvqr9u8eXO4u7tj7dq1eZ4zbNgwg8e6Pel27NhhUF6/fn39DE0AKFWqFDp16oRdu3ZBo9G8MDadTZs2oXLlyqhUqZLB76N58+YAoP+70t1/+PDhBuePHDnS6Hvl5dixY7h37x4+/PBDg/Eq7dq1Q6VKlbB9+3ajr9W6dWsUKVIE69evhxAC69evN/j7edLWrVuh1WrRo0cPg9ft6emJ8uXL61+3Lr6hQ4cajFd65513XjjUIDY2Fvv27cO7776LUqVKGTz35N/Zk+8TWVlZePDgAcqVKwdXV1eD9wpTsPb7yIveIzQaDXbv3o3OnTvD29tbf1y5cuXw5ptvmiyO1x1HQ1Ge6tatazCguHfv3qhZsyaCg4PRvn17/Zvg77//jhkzZuDUqVMG4xee7jfu378/NmzYgP3796Nx48bYvXs3YmJi0K9fP/0xly9fRkJCAtzd3fOM6d69ewByxvB07doVU6dOxdy5c9G0aVN07twZffr00Q94N5en38ABwM3NTd+XHxsbi/j4eCxbtgzLli3L8xq613H9+nWUL18ecrnh/zF0szyuX79uUP709iZXrlyBEAITJ07ExIkTn3mvEiVKPDN+3YeXj49PrnJjBqeGhYUhNjYWdevWxZUrV/TlzZo1w08//YTZs2fnen3ly5c3eFy2bFnI5fJc4y+ePg4AKlSogNTUVMTGxsLT0/OF8QE5f1fnz583SAyf9OTvQy6XG3wwATnjwl6G7veY13UqVaqEAwcOGH0thUKB7t27Y926dahbty5u3ryJPn365Hns5cuXIYTIsx5113oyvqePUygU8PPze248ug/sF01BT0tLw8yZM7Fy5Urcvn3bYDxXQkLCc8+VytrvIy96j7h37x7S0tJQrly5XMflVUb5w+SGjCKXy9GsWTPMmzcPly9fRpUqVbB//3507NgRjRs3xuLFi+Hl5QWFQoGVK1fmGlAaFBQEDw8P/Pjjj2jcuDF+/PFHeHp6omXLlvpjtFrtc//Hr/twkslk2Lx5M44cOYLffvsNu3btwrvvvotvvvkGR44cMesSBc8atKl7s9ZqtQByZnQMGDAgz2PzO7X86U1pdfcaPXq0waDsJz39Zvms+PMqf/ID6Fl0v6sePXrk+fxff/2FZs2aPfca5h5AqdVqERAQgDlz5uT5/NOJ3auuT58+WLp0KaZMmYLq1avD398/z+O0Wi1kMhn++OOPPH+/llzK46OPPsLKlSsxcuRI1K9fHy4uLpDJZOjVq5f+79hUrP0+8qL3CLIMycnNvn37EBgYmGvWTHZ2Ng4dOoTGjRubLDh6tWRnZwMAkpOTAQBbtmyBWq3Grl27DP6ns3Llylzn2tjYoE+fPli1ahVmz56Nbdu2YfDgwQZvBGXLlsXu3bvRoEEDo3aX/9///of//e9/+Pzzz7Fu3Tr07dsX69evN1i7xtJ0s2w0Go1B4paX0qVL499//4VWqzVo3bhw4YL++efR/a9aoVC88F7mkJKSgl9++QU9e/ZEt27dcj0/fPhwrF27Nldyc/nyZYNWqCtXrkCr1eaaOn758uVc17x06RLs7e2f2QqTl7Jly+L06dNo0aLFcxOp0qVLQ6vV4urVqwatLBcvXjTqPs+6tu73ePHiRX1X2JPXftHv+WkNGzZEqVKlsHfvXsyePfuZx5UtWxZCCJQpUwYVKlR45nG6+1++fNkgvqysLERGRj5zpiPw+G/w7Nmzz4158+bNGDBgAL755ht9WXp6OuLj4597Xn6Y8n3EHIm3u7s71Gq1QUunTl5llD+Sx9w0a9YMcXFxucoTEhJe+D80KriysrIQFhYGpVKp7zaxsbGBTCYzGP8QFRWl31T1af369cPDhw/x/vvvIzk5Ode6FD169IBGo8H06dNznZudna1/I3z48GGu/wXpFk17emqvpdnY2KBr167YsmVLnm/4sbGx+p/btm2L6OhobNiwQV+WnZ2NBQsWwNHREU2aNHnuvdzd3dG0aVN8++23uHv37nPvZQ4///wzUlJSMGzYMHTr1i3XV/v27bFly5Zcv5NFixYZPF6wYAEA5BpvcPjwYYPxGDdv3sQvv/yC1q1bS9rupUePHrh9+zaWL1+e67m0tDSkpKQY3H/+/PkGx4SGhhp1H93Ysac/sOvUqQN3d3csXbrUoC7++OMPnD9/Hu3atTP2pQDISaLmz5+PyZMnG3TrPq1Lly6wsbHB1KlTc/17EULgwYMH+viKFy+OpUuXIjMzU3/MqlWrXph8FC9eHI0bN8b333+PGzdu5LqHjo2NTa4YFixYIGnslLFM+T5ib28PIPfv9GXY2NigZcuW2LZtG+7cuaMvv3LlSoFbBf5VJrnlRgiRZzb74MGDXAv6UcH1xx9/6FsQ7t27h3Xr1uHy5csYO3YsnJ2dAeQMiJwzZw7atGmDPn364N69e1i0aBHKlSuHf//9N9c1a9asiapVq+oHeNaqVcvg+SZNmuD999/HzJkzcerUKbRu3RoKhQKXL1/Gpk2bMG/ePHTr1g2rV6/G4sWL8dZbb6Fs2bJISkrC8uXL4ezsjLZt25q/cl5g1qxZ2LNnD+rVq4fBgwfD398fcXFxOHHiBHbv3q3/z8GQIUPw7bff4p133sHx48fh6+uLzZs34+DBgwgNDYWTk9ML77Vo0SI0bNgQAQEBGDx4MPz8/BATE4PDhw/j1q1bOH36tNle59q1a1G0aFEEBgbm+XzHjh2xfPlybN++HV26dNGXR0ZGomPHjmjTpg0OHz6MH3/8EX369MnVQlC1alUEBQVh+PDhUKlUWLx4MQDoV4w1Vr9+/bBx40YMHToUe/bsQYMGDaDRaHDhwgVs3LgRu3btQp06dVCjRg307t0bixcvRkJCAgIDAxEREWH0/6bLli0LV1dXLF26FE5OTnBwcEC9evVQpkwZzJ49GwMHDkSTJk3Qu3dvxMTEYN68efD19cWoUaMkvR4gZ82bTp06vTCeGTNmYNy4cYiKikLnzp3h5OSEyMhI/PzzzxgyZAhGjx4NhUKBGTNm4P3330fz5s3Rs2dPREZGYuXKlS8ccwPkJIMNGzZErVq1MGTIEJQpUwZRUVHYvn27fiuK9u3b44cffoCLiwv8/f1x+PBh7N69G0WLFpX82l/ElO8jdnZ28Pf3x4YNG1ChQgUUKVIEVatWfeltLqZMmYKwsDA0aNAAH3zwATQaDRYuXIiqVauafPuO15ax06reeust8dZbbwm5XC7atm2rf/zWW2+Jjh07Cl9fXxEUFGSyaVxkHXlNBVer1aJGjRpiyZIlBtM7hRDiu+++E+XLlxcqlUpUqlRJrFy5Ms8pkjpffvmlACC++OKLZ8awbNkyUbt2bWFnZyecnJxEQECAGDNmjLhz544QImeNiN69e4tSpUoJlUol3N3dRfv27Q2mDeeHMVPBhw0blqu8dOnSYsCAAQZlMTExYtiwYcLHx0coFArh6ekpWrRoIZYtW5bruIEDB4pixYoJpVIpAgICck0l1k2//eqrr/KM6+rVq6J///7C09NTKBQKUaJECdG+fXuxefNm/TG63+vT0151v6vY2FiD8gEDBggHB4c876eL29bWNtf6NE9KTU0V9vb2+qnbunudO3dOdOvWTTg5OQk3NzcRHBxsMEVaiMd1/eOPP+r/vmrWrJnrd2PMVHAhcqY7z549W1SpUkWoVCrh5uYmateuLaZOnSoSEhL0x6WlpYnhw4eLokWLCgcHB9GhQwdx8+ZNo6aCCyHEL7/8Ivz9/fVTep/8XW7YsEHUrFlTqFQqUaRIEdG3b19x69atF17zyangz5PXOjdCCLFlyxbRsGFD4eDgIBwcHESlSpXEsGHDxMWLFw2OW7x4sShTpoxQqVSiTp06Yt++fbnqMq+p4EIIcfbsWfHWW28JV1dXoVarRcWKFcXEiRP1zz98+FD/d+7o6CiCgoLEhQsXcv3bMdU6N0KY7n3k0KFDonbt2kKpVBr8HTxrKrix7xERERGiZs2aQqlUirJly4oVK1aIjz/+WKjVaqNfOz2bTAjjRjkNHDgQALB69Wr06NHDoC9TqVTC19cXgwcPNlgWnOhp8+bNw6hRoxAVFZXnrAIqvKZMmYKpU6ciNjb2he8TMpkMw4YNw8KFCy0UHZH1de7cGf/991+e481IGqO7pXSDRH19fTF69Gh2QZFkQgh89913aNKkCRMbInqtpaWlGTQSXL58GTt27HjmLEuSRvKYm6f3nLl+/Tp+/vln+Pv7o3Xr1iYNjgqHlJQU/Prrr9izZw/OnDmDX375xdohERFZlZ+fH9555x34+fnh+vXrWLJkCZRKJcaMGWPt0AoFyclNp06d0KVLFwwdOhTx8fGoW7culEol7t+/jzlz5uCDDz4wR5xUgMXGxqJPnz5wdXXFZ599ho4dO1o7JCIiq2rTpg1++uknREdHQ6VSoX79+vjiiy+euegiSWP0mBudYsWK4a+//kKVKlWwYsUKLFiwACdPnsSWLVswadIknD9/3lyxEhEREb2Q5HVuUlNT9VNUw8LC0KVLF8jlcvzvf//LtVw8ERERkaVJTm7KlSuHbdu24ebNm9i1a5d+nM29e/f0658QERERWYvkbqnNmzejT58+0Gg0aN68OcLDwwEAM2fOxL59+175FRa1Wi3u3LkDJycns+9pQ0RERKYhhEBSUhK8vb1zbcj7NMnJDQBER0fj7t27qF69uv4GR48ehbOzMypVqpS/qC3k1q1bBW6jPCIiIspx8+ZNlCxZ8rnH5Cu5AXL2wbh69SoaN24MOzu7Z27L8KpJSEiAq6srbt68afJuNN3+S7rlvsk8WM+WwXq2DNaz5bCuLcNc9ZyYmAgfHx/Ex8fDxcXlucdKngr+4MED9OjRA3v27IFMJsPly5fh5+eH9957D25ubga7vr6KdAmYs7OzWZIbe3t7ODs78x+OGbGeLYP1bBmsZ8thXVuGuevZmIYUyQOKR40aBYVCgRs3buh3TAWAnj17YufOnVIvR0RERGRSkltuwsLCsGvXrlz9XeXLl+dUcCIiIrI6yS03KSkpBi02OnFxcVCpVCYJioiIiCi/JCc3jRo1wpo1a/SPZTIZtFotvvzySzRr1sykwRERERFJZXS3lJ+fH/755x98+eWXaNGiBY4dO4bMzEyMGTMG//33H+Li4nDw4EFzxkpERET0Qka33ERFRUGj0aBq1aq4dOkSGjZsiE6dOiElJQVdunTByZMnUbZsWXPGSkRERPRCkgcUA4CLiwvGjx9v6liIiIiIXpqk5GbXrl0vXDinY8eOLxUQERER0cuQlNwMGDDguc/LZDJoNJqXCoiIiIjoZUiaLRUdHQ2tVvvMLyY2REREZG1GJzfm2Ddq37596NChA7y9vSGTybBt27YXnrN3717UqlULKpUK5cqVw6pVq0weFxERERVcRic3+dxf87lSUlJQvXp1LFq0yKjjIyMj0a5dOzRr1gynTp3CyJEjMWjQIOzatcvksREREVHBZPSYmwEDBsDOzs6kN3/zzTfx5ptvGn380qVLUaZMGf3mnJUrV8aBAwcwd+5cBAUFmTQ2IiIiyk0IAa0AsrVaaLQC2VoBjebRd61AemYmEjKtG6PRyc3KlSvNGYdRDh8+jJYtWxqUBQUFYeTIkc88JyMjAxkZGfrHiYmJAHJ2Lc3KyjJpfLrrmfq6ZIj1bBmsZ8tgPVuOpepaiJwP+myNQLZWi0yNQLZGqy/LevJnrVZ/nP6cR4+zNOJR8vDkz4+O1R8n9ElGlsbwZ/3xmieSEP01Hl9b8yg5yXriec0Tz2drRK7zX6SMkw26mekz1hj5WufGWqKjo+Hh4WFQ5uHhgcTERKSlpeXZsjRz5kxMnTo1V3lYWFiee2SZQnh4uFmuS4ZYz5bBerYM1vOzCYGclgIBZGsBzdM/P1Gm0cpyvgtAo819jkYrQ9jK3cgWMv0xj597dJ4wvG7Ol8zg+exHMT19ju7Y15VcJmADwEYmTP43nZqaavSxBSq5yY9x48YhJCRE/zgxMRE+Pj5o3bo1nJ2dTXqvrKwshIeHo1WrVlAoFCa9Nj3GerYM1rNlvKr1rGt9yMjWIiNLk/Pd4EuDzGzx6LsWmY/KMzWPvj9Vlvnkd/3PIldZlsbw+SxNzs9mGPZpUXIZYGsjh0Iug62NDLZyOWxtZI8ey2H76LvCRgZbuQw2chkUNnLYyHMeK/THPHG87uuJxzZPn/vE9WzlT1zj0WObJ563kT31nFwGGzkMjpPLZFDYyPRx2crlkMt1z+VMPjLX37Su58UYBSq58fT0RExMjEFZTEwMnJ2dnzkeSKVS5blbuUKhMNsbiTmvTY+xni2D9WwZL6rnbI0WaVkapGVpkJ6pRXq2BmmZGqTryrJyEo70Rz/rvz9RlpGtQcaj5zKyH3/POe/R89laZDz62YjeB6uQyQCljTznyzYnSVDayqF4skxuWJbzYQ/ci76DMqV8oFLYPj5PnvO8rY0MqkfnKh6dq7DRJRZyKG0fJyVKG7k+qTA47lHiotT9bCOD4lEC8Lox9XuHlGvlO7m5cuUKrl69isaNG8POzg5CCLNMF39S/fr1sWPHDoOy8PBw1K9f36z3JSJ6kSyNFqmZGqRmZud8z3j0c1ZOEpKaqUHao+fSnihLycjCtRty/PzgBNKztUjL0iJdd0yWLjHRIEtj3UxDaSuHylYOla3No+9yfZnyifKny558rLTN+dA3fGyj/1nxKLl4ukxpK4fKxgYK25ykwkYuy9fnTVZWFnbsuIW2baswYS/kJCc3Dx48QM+ePfHnn39CJpPh8uXL8PPzw3vvvQc3Nzf9TCZjJCcn48qVK/rHkZGROHXqFIoUKYJSpUph3LhxuH37NtasWQMAGDp0KBYuXIgxY8bg3XffxZ9//omNGzdi+/btUl8GEb3GhMjpbklKz0ZyRjZSMp7+rkFKRjZSMrMffdcgNSMbyY8SFt3j1EwNUjKzkZqhQaZG+xIRyYEH9406UiYD1LY2sFPaQG0rh1ppA7WtDdQKOdQKm0dfcqhtbaBSPFH+xDEq29zfVYrHSYtaYQOV4omExeb1bHmggktycjNq1CjY2trixo0bqFy5sr68Z8+eCAkJkZTcHDt2DM2aNdM/1o2NGTBgAFatWoW7d+/ixo0b+ufLlCmD7du3Y9SoUZg3bx5KliyJFStWcBo40WtEoxVITs9GYnpWzldaNpLSs5CU/vh7ckY2Eh99T07PQnJG9qPnHycxxsz4yA9buQz2ShvYK21hr8xJQnK+28JeYaMvs3v0s9JGhsjLF1C7RjU42in15WpFzjFqhVx/vC4RMXcrOVFBJzm5CQsLw65du1CyZEmD8vLly+P69euSrtW0adPnLg6Y1+rDTZs2xcmTJyXdh4heLdkaLRLSshCfloX41CwkpmXlPE7NREJaNhIePU5I0yUwOUlLYloWkjKyTRqLg9IGjmpbOKhs4aiyhYNS97MN7A3KchKWJ7/ryu2UtnBU2sJOmdOdIkVWVhZ2JJ9H29ol2FVCZCKSk5uUlJQ8p1DHxcXlOXCXiAq3jGwN4lIyEZeSiYcpWYhLzcTDR4/jUzPxMDULD1MzEZ+ahfi0nO9J6S+foKhs5XC2U8BJbQtn9ePvjipbOKlt4fSozFFtC2e1LRxVCjiobHLKVAo4qnNaUtjdQlT4SE5uGjVqhDVr1mD69OkAcqZ9abVafPnllwZdTERUMGVrtIhLzUT0w1RciJch69QdxKdrcD85Ew+SMxCXkon7KZmIS8lAXHImUjLzv2Guk8oWLvYKuNor4GL3+Mv5yZ/Vj8uc1bb6hEZla2PCV01EhYnk5ObLL79EixYtcOzYMWRmZmLMmDH477//EBcXh4MHD5ojRiIygbRMDWIS0xGTmI57SRmPvtIRm5Sh/7qfnIEHKZlPrCliA5w/+8Jr28plcHNQooi9Em4OChRxUMLVXgk3ewXc7B//7GqvgKu9Eq6PEhdbG2ldOERExpCc3FStWhWXLl3CwoUL4eTkhOTkZHTp0gXDhg2Dl5eXOWIkoucQQiA+NQt3EtIQnZCOuwnp+u+6ZCY6MV1SV5BMBrjZK6DSZqKMV1EUdVKjmKMSxRxVKOKgRBEHJYo5KlHEIeexs9qWg1yJ6JWRr3VuXFxcMH78eFPHQkR5yNZocTchHbcepuF2fBpuP0zD7fhU3IlPx52ENNyJT0N6lnHTkO0UNvBwVsHdSY3iziq4Oz362UmV8+WoQjEnJYo6qKDVZGPHjh1o27YOB7oSUYEiObkpV64c3n77bfTt2xfly5c3R0xErxUhBB6mZuH6gxTciEvF9QepuBmXipsPU3EzLg3RienQGDFtuZijEl4udvBwVsPLRQ1PFzU8nXO+ezir4O6shpPK+BYWbf6H0hARWZXk5GbYsGFYt24dpk2bhtq1a+Ptt99Gz5494enpaY74iAqNhNQsXL2fjKj7KYh89BX1IAXX76e+cHqz0laOEq52j7/ccr57uapRwjUnoVErOMCWiAjI5yJ+o0aNwqVLl7B27VosWrQIo0ePRrNmzfD222+jf//+5oiTqEAQQuBOQjouxyThyr1kXLmXjGuxKbgam4wHKZnPPdfTWY1SRe1RqkjOl08RO/i42cOniD2KO6o4ZZmIyEj53luqQoUKmDp1KqZOnYojR47ggw8+wMCBA5nc0GvjfnIGLkYn4UJ0Ei5GJ+JiTDKuxCQ9d2q0p7MaZYo5wLeYA8oUs4dvUQeUKeYAnyL2bHkhIjKRl9oV/OjRo1i3bh02bNiAxMREdO/e3VRxEb0yNFqByPspOHc3EefuJOq/30/OyPN4W7kMZYo5oLyHI8oVd0RZd0eULe6IMsUc4KB6qX9yRERkBMnvtLruqJ9++gmRkZFo3rw5Zs+ejS5dusDR0dEcMRJZjBA5icyZ2wn491YCztxOwH+3E/JsjZHJgNJF7FHR0wkVPZ1R0cMJFT0dUbqoAxRcv4WIyGokJzeVKlXCG2+8gWHDhqFXr17w8PAwR1xEFpGYnoVTN+Jx8kY8Tt58iFM34xGfmpXrOLVCjkqezqji7Qx/b2f4ezmjoqcT7JVsiSEietVIfme+ePEip4BTgRWdkI5/ouIefT3EhehEPL13q9JWjirezqhWwgUBJV1RraQLyhZ3hA0H9BIRFQiSkxsmNlSQxCZl4PC1Bzh89QEOX72PqAepuY4pVcQetUq5omYpN9Qs5YpKns6Sd3YmIqJXh1HJTZEiRXDp0iUUK1YMbm5uz10ELC4uzmTBEUmVnqXB0cg47LsUi/2X7+NiTJLB83IZ4O/tjDqli6BumSKoU9oN7s5qK0VLRETmYFRyM3fuXDg5Oel/5h4y9Cq59TAVEefvIeLCPfx97QEysh9vRSCTAZU9nVG/bFEEli2KN8oUgbOaWwkQERVmRiU3AwYM0P/8zjvvmCsWIqMIIXA9GZi7+wr+vBiLC9GGrTOezmo0rlAMjSsUR4OyxeDmoLRSpEREZA2Sx9zY2Njg7t27cHd3Nyh/8OAB3N3dodFwQxoyPSEETt2Mx44zd7HjzF3cjrcFcA1ATldTHd8iaFHJHc0quaO8uyNbF4mIXmOSkxvx9NSSRzIyMqBU8n/IZFoXo5Ow9eQt/H76Lm7Hp+nLlXKB5pU9EVTVE00ruLN1hoiI9IxObubPnw8AkMlkWLFihcGCfRqNBvv27UOlSpVMHyG9du4lpePXU3ew9cRtnLubqC93UNqgRWUPtK5cHGnXjqNzh+pQKDh+hoiIDBmd3MydOxdATsvN0qVLYWPzeB8cpVIJX19fLF261PQR0mtBqxXYf+U+1v19HbvP34NGm9NCqLCRoVlFd3SpVQJNK7pDrbBBVlYWdly3csBERPTKMjq5iYyMBAA0a9YMW7duhZubm9mCotfH/eQMbPjnJtb/cwM34x53O9XwcUXXWiXQvpo3u5yIiEgSyWNu9uzZY4446DVzOSYJ3x2IxNaTt5H5aOq2k9oWXWuVRJ96pVDBw8nKERIRUUFlVHITEhKC6dOnw8HBASEhIc89ds6cOSYJjAofIQQOXX2A5fuvYe/FWH159ZIuePt/pdG+mjfslDbPuQIREdGLGZXcnDx5EllZWfqfn4XTbykvQgjsv3wfobsv4cSNeAA5i+u19vfA4EZ+qF36+ateExERSWFUcvNkVxS7pchYeSU1Kls5er3hg3cblkHpog7WDZCIiAolyWNunpaYmIg///wTlSpV4lRw0jt9Mx6fbz+Po1E5e42pbOV4+3+l8X4TP7g7cS8nIiIyH8nJTY8ePdC4cWMEBwcjLS0NderUQVRUFIQQWL9+Pbp27WqOOKmAuB2fhq92XsC2U3cAMKkhIiLLk5zc7Nu3D+PHjwcA/PzzzxBCID4+HqtXr8aMGTOY3LymUjOzsXjPVSzff02/cWXXWiUxOqgCvFzsrBwdERG9TiQnNwkJCShSpAgAYOfOnejatSvs7e3Rrl07fPLJJyYPkF59ey/ew/ifz+q3R6hbpggmtvNHQEkXK0dGRESvI8nJjY+PDw4fPowiRYpg586dWL9+PQDg4cOHUKvZ7fA6eZCcgem/n9N3QZVwtcPE9pURVMWTs5+IiMhqJCc3I0eORN++feHo6IjSpUujadOmAHK6qwICAkwdH72ChBD45dQdTP3tPzxMzYJcBrwTWAYft64AB9VLj1EnIiJ6KZI/iT788EPUrVsXN2/eRKtWrSCXywEAfn5+mDFjhskDpFdLUnoWJmw7i18etdZU8nTC7K7VUN3H1bqBERERPZKv/2bXqVMHderUgRACQgjIZDK0a9fO1LHRK+bUzXgM/+kkbsSlwkYuw4gW5fFB07JQ2MitHRoREZFevj6V1qxZg4CAANjZ2cHOzg7VqlXDDz/8YOrY6BWh1Qos/esqui05hBtxqSjhaoeN7/8Pw1uUZ2JDRESvHMktN3PmzMHEiRMRHByMBg0aAAAOHDiAoUOH4v79+xg1apTJgyTrScnIxsgNpxB+LgYA0C7AC190CYCLncLKkREREeVNcnKzYMECLFmyBP3799eXdezYEVWqVMGUKVOY3BQid+LT8N7qYzh/NxFKWzmmdqyCXm/4cCYUERG90iQnN3fv3kVgYGCu8sDAQNy9e9ckQZH1nboZj8FrjiE2KQPFHJX4tl8d1C7tZu2wiIiIXkjygIly5cph48aNuco3bNiA8uXLmyQosq7fTt9Bz28PIzYpA5U8nbBtWAMmNkREVGBIbrmZOnUqevbsiX379unH3Bw8eBARERF5Jj1UsKz9+zrG/3wWANCikjvm9a4JR65dQ0REBYjkT62uXbvi6NGjmDNnDrZt2wYAqFy5Mo4ePYqaNWuaOj6yoNWHojD51/8AAAPql8akDlVgI+f4GiIiKlgkJTeJiYn4+++/kZmZiblz56J48eLmiossbMX+a5ix/TwA4P3Gfhj7ZiUOHCYiogLJ6OTm1KlTaNu2LWJiYiCEgJOTEzZu3IigoCBzxkcWsGTvVczeeQEAMKxZWYxuXZGJDRERFVhGDyj+9NNPUaZMGRw4cADHjx9HixYtEBwcbM7YyAK+/etxYjOiRXkmNkREVOAZ3XJz/PhxhIWFoVatWgCA77//HkWKFEFiYiKcnZ3NFiCZz2+n72DmHzmJzcetKuCjFpztRkREBZ/RLTdxcXEoWbKk/rGrqyscHBzw4MEDswRG5nUsKg4fbzoNAHi3QRkmNkREVGhIGlB87tw5REdH6x8LIXD+/HkkJSXpy6pVq2a66MgsIu+nYPCaY8jM1qKVvwfGt6ts7ZCIiIhMRlJy06JFCwghDMrat28PmUym3x1co9GYNEAyrbiUTAxceRQPU7NQvaQL5vWqweneRERUqBid3ERGRpozDrKAjGwNhqw5hqgHOTt7rxjwBuyVXKCPiIgKF6M/2UqXLm3OOMgCvtp5EceuP4ST2harBr6B4k4qa4dERERkcpL3lqKCae/Fe1hxIKf1bU6PGijv4WTliIiIiMyDyc1rIDYpA6MfzYzqX780Wvl7WDkiIiIi82FyU8hptQKfbD6N+8mZqOjhhM/acmYUEREVbkxuCrmVh6Kw92IsVLZyzO9dE2qFjbVDIiIiMismN4XYf3cSMPvRCsQT2lVGRU+OsyEiosIvX/OAN2/ejI0bN+LGjRvIzMw0eO7EiRMmCYxeTrZGi483nkamRouWlT3w9v84242IiF4Pkltu5s+fj4EDB8LDwwMnT55E3bp1UbRoUVy7dg1vvvmm5AAWLVoEX19fqNVq1KtXD0ePHn3u8aGhoahYsSLs7Ozg4+ODUaNGIT09XfJ9C7u1f9/AhegkuNorMLtrADfDJCKi14bk5Gbx4sVYtmwZFixYAKVSiTFjxiA8PBzDhw9HQkKCpGtt2LABISEhmDx5Mk6cOIHq1asjKCgI9+7dy/P4devWYezYsZg8eTLOnz+P7777Dhs2bMBnn30m9WUUag+SM/BN2EUAwMetK6KoI9ezISKi14fk5ObGjRsIDAwEANjZ2en3lerXrx9++uknSdeaM2cOBg8ejIEDB8Lf3x9Lly6Fvb09vv/++zyPP3ToEBo0aIA+ffrA19cXrVu3Ru/evV/Y2vO6+WrXRSSmZ8Pfyxl96paydjhEREQWJXnMjaenJ+Li4lC6dGmUKlUKR44cQfXq1REZGZlr36nnyczMxPHjxzFu3Dh9mVwuR8uWLXH48OE8zwkMDMSPP/6Io0ePom7durh27Rp27NiBfv36PfM+GRkZyMjI0D9OTEwEAGRlZSErK8voeI2hu56pryvFmdsJ2HDsJgBgUruK0GqyoS1k2329CvX8OmA9Wwbr2XJY15ZhrnqWcj3JyU3z5s3x66+/ombNmhg4cCBGjRqFzZs349ixY+jSpYvR17l//z40Gg08PAwXlPPw8MCFCxfyPKdPnz64f/8+GjZsCCEEsrOzMXTo0Od2S82cORNTp07NVR4WFgZ7e3uj45UiPDzcLNd9Ea0AQs/aQAgZ6hTTIua/w9jxn1VCsQhr1fPrhvVsGaxny2FdW4ap6zk1NdXoYyUnN8uWLYNWqwUADBs2DEWLFsWhQ4fQsWNHvP/++1IvJ8nevXvxxRdfYPHixahXrx6uXLmCESNGYPr06Zg4cWKe54wbNw4hISH6x4mJifDx8UHr1q3h7Oxs0viysrIQHh6OVq1aQaFQmPTaxthy4jauH/kPDkobzHu3CdwL6d5R1q7n1wXr2TJYz5bDurYMc9WzrufFGJKTG7lcDrn88VCdXr16oVevXlIvg2LFisHGxgYxMTEG5TExMfD09MzznIkTJ6Jfv34YNGgQACAgIAApKSkYMmQIxo8fbxCXjkqlgkqV+0NeoVCY7Y/bnNd+lsT0LHwdfhkAMLxFeZQo4mjR+1uDNer5dcR6tgzWs+Wwri3D1PUs5VpWW8RPqVSidu3aiIiI0JdptVpERESgfv36eZ6TmpqaK4GxsclZcVfKeJ/CaNXBKNxPzoRfcQcMbFDG2uEQERFZTb4W8TOVkJAQDBgwAHXq1EHdunURGhqKlJQUDBw4EADQv39/lChRAjNnzgQAdOjQAXPmzEHNmjX13VITJ05Ehw4d9EnO6yg1MxsrD+bs+D2yZQUobbnwNBERvb6smtz07NkTsbGxmDRpEqKjo1GjRg3s3LlTP8j4xo0bBi01EyZMgEwmw4QJE3D79m0UL14cHTp0wOeff26tl/BKWH/0Jh6mZqF0UXu0rZp3lx4REdHrwqrJDQAEBwcjODg4z+f27t1r8NjW1haTJ0/G5MmTLRBZwZCZrcXy/dcAAO83LgtbG7baEBHR642fhAXctlO3cTchHe5OKnStXcLa4RAREVmd5OQmJiYG/fr1g7e3N2xtbWFjY2PwRZaj0Qos/esqAGBQozJQ2bL+iYiIJHdLvfPOO7hx4wYmTpwILy8vbshoRWH/ReNabApc7BToU4+7fhMREQH5SG4OHDiA/fv3o0aNGmYIh4wlhMDivTmtNgPql4ajyurDp4iIiF4JkrulfHx8Xvs1ZV4F+y/fx5nbCbBT2OAdrmtDRESkJzm5CQ0NxdixYxEVFWWGcMhYurE2ver6oIiD0srREBERvTok92X07NkTqampKFu2LOzt7XMthxwXF2ey4Chv1x+k4NDVB5DJgEGN/KwdDhER0StFcnITGhpqhjBIiq0nbgMAGpYrhhKudlaOhoiI6NUiObkZMGCAOeIgIwkhsPXkLQBA11olrRwNERHRqydfi/hdvXoVEyZMQO/evXHv3j0AwB9//IH//vvPpMFRbseuP8TNuDQ4KG3QuoqHtcMhIiJ65UhObv766y8EBATg77//xtatW5GcnAwAOH36NLdFsICtJ3Jabd4M8IK9ktO/iYiIniY5uRk7dixmzJiB8PBwKJWPZ+k0b94cR44cMWlwZCg9S4PfT98FwC4pIiKiZ5Gc3Jw5cwZvvfVWrnJ3d3fcv3/fJEFR3sLPxSApIxslXO1Qr0wRa4dDRET0SpKc3Li6uuLu3bu5yk+ePIkSJbhxoznpuqTeqlkCcjm3vSAiIsqL5OSmV69e+PTTTxEdHQ2ZTAatVouDBw9i9OjR6N+/vzliJAD3ktKx73JOy1iXWkwiiYiInkVycvPFF1+gUqVK8PHxQXJyMvz9/dG4cWMEBgZiwoQJ5oiRAPx66g40WoGapVzhV9zR2uEQERG9siRPt1EqlVi+fDkmTpyIs2fPIjk5GTVr1kT58uXNER89suXRwn1dOJCYiIjoufK1K3jDhg1RqlQplCpVyhwx0VPO3UnE+buJUNrI0aGal7XDISIieqVJ7pZq3rw5ypQpg88++wznzp0zR0z0lD/O5gzgbl7JHa723CSTiIjoeSQnN3fu3MHHH3+Mv/76C1WrVkWNGjXw1Vdf4datW+aIjwDsuxQLAGhR2d3KkRAREb36JCc3xYoVQ3BwMA4ePIirV6+ie/fuWL16NXx9fdG8eXNzxPhai0vJxL+3EwAAjSsUt3I0REREr7587S2lU6ZMGYwdOxazZs1CQEAA/vrrL1PFRY8cuHIfQgCVPJ3g4ay2djhERESvvHwnNwcPHsSHH34ILy8v9OnTB1WrVsX27dtNGRvhcZcUW22IiIiMI3m21Lhx47B+/XrcuXMHrVq1wrx589CpUyfY29ubI77XmhAC+y/nJDeNyhezcjREREQFg+TkZt++ffjkk0/Qo0cPFCvGD1xzuhSTjJjEDKgVcrzhy72kiIiIjCE5uTl48KA54qA86Lqk6pUpCrXCxsrREBERFQxGJTe//vor3nzzTSgUCvz666/PPbZjx44mCYyAfZc53oaIiEgqo5Kbzp07Izo6Gu7u7ujcufMzj5PJZNBoNKaK7bWWlqnB35FxAIAmFdj9R0REZCyjkhutVpvnz2Q+f0c+QGa2Ft4uapTlRplERERGe6l1bsh89l26DyCnS0omk1k5GiIiooLD6AHFaWlpiIiIQPv27QHkTAnPyMjQP29jY4Pp06dDreZCc6bA8TZERET5Y3Rys3r1amzfvl2f3CxcuBBVqlSBnZ0dAODChQvw9vbGqFGjzBPpa+ROfBqu3EuGXAY0KMvxNkRERFIY3S21du1aDBkyxKBs3bp12LNnD/bs2YOvvvoKGzduNHmAryPdwn3VfVzhYq+wcjREREQFi9HJzZUrVxAQEKB/rFarIZc/Pr1u3bo4d+6caaN7TenH25RnlxQREZFURndLxcfHG4yxiY2NNXheq9UaPE/5o9UKHLjyeDAxERERSWN0y03JkiVx9uzZZz7/77//omTJkiYJ6nUW9SAFCWlZUCvkqF7SxdrhEBERFThGJzdt27bFpEmTkJ6enuu5tLQ0TJ06Fe3atTNpcK+jM7cTAACVvZxha8OZ+kRERFIZ3S312WefYePGjahYsSKCg4NRoUIFAMDFixexcOFCZGdn47PPPjNboK+Ls4+Sm4ASbLUhIiLKD6OTGw8PDxw6dAgffPABxo4dCyEEgJwtF1q1aoXFixfDw8PDbIG+LnQtN1W9mdwQERHlh6RdwcuUKYOdO3ciLi4OV65cAQCUK1cORYoUMUtwrxutVuC/24kAgKpsuSEiIsoXScmNTpEiRVC3bl1Tx/LauxGXiqSMbCht5Sjvwf2kiIiI8oMjVl8h+sHEnk5QcDAxERFRvvAT9BWiG0zMLikiIqL8Y3LzCjl7hzOliIiIXhaTm1eEEAJnOZiYiIjopeUrufnhhx/QoEEDeHt74/r16wCA0NBQ/PLLLyYN7nVyMy4NCWlZUNrIUcHDydrhEBERFViSk5slS5YgJCQEbdu2RXx8PDQaDQDA1dUVoaGhpo7vtaEbTFzR0wlKWzaoERER5ZfkT9EFCxZg+fLlGD9+PGxsbPTlderUwZkzZ0wa3OtEN96GXVJEREQvR3JyExkZiZo1a+YqV6lUSElJMUlQr6PHM6WcrRwJERFRwSY5uSlTpgxOnTqVq3znzp2oXLmyKWJ67Qgh9N1SnClFRET0ciSvUBwSEoJhw4YhPT0dQggcPXoUP/30E2bOnIkVK1aYI8ZC79bDNMSnZkFhI0NFTw4mJiIiehmSk5tBgwbBzs4OEyZMQGpqKvr06QNvb2/MmzcPvXr1MkeMhd5/j8bbVPBwgsrW5gVHExER0fPka2+pvn37om/fvkhNTUVycjLc3d1NHddrhTuBExERmY7kMTdpaWlITU0FANjb2yMtLQ2hoaEICwszeXCvizO6xftKMrkhIiJ6WZKTm06dOmHNmjUAgPj4eNStWxfffPMNOnXqhCVLlpg8wMIuZ2ViDiYmIiIyFcnJzYkTJ9CoUSMAwObNm+Hp6Ynr169jzZo1mD9/vskDLOzuJqQjLiUTNnIZKnEwMRER0UuTnNykpqbCySnnQzgsLAxdunSBXC7H//73P/1WDFIsWrQIvr6+UKvVqFevHo4ePfrc4+Pj4zFs2DB4eXlBpVKhQoUK2LFjh+T7vip0423KuztCreBgYiIiopclObkpV64ctm3bhps3b2LXrl1o3bo1AODevXtwdpa2AN2GDRsQEhKCyZMn48SJE6hevTqCgoJw7969PI/PzMxEq1atEBUVhc2bN+PixYtYvnw5SpQoIfVlvDL+Y5cUERGRSUlObiZNmoTRo0fD19cX9erVQ/369QHktOLktXLx88yZMweDBw/GwIED4e/vj6VLl8Le3h7ff/99nsd///33iIuLw7Zt29CgQQP4+vqiSZMmqF69utSX8cqIfJAzOLu8h6OVIyEiIiocJE8F79atGxo2bIi7d+8aJBUtWrTAW2+9ZfR1MjMzcfz4cYwbN05fJpfL0bJlSxw+fDjPc3799VfUr18fw4YNwy+//ILixYujT58++PTTTw32uXpSRkYGMjIy9I8TE3NmJmVlZSErK8voeI2hu56U615/kAwAKOGiMnk8hVV+6pmkYz1bBuvZcljXlmGuepZyvXytc+Pp6QlPT0+Dsrp160q6xv3796HRaODh4WFQ7uHhgQsXLuR5zrVr1/Dnn3+ib9++2LFjB65cuYIPP/wQWVlZmDx5cp7nzJw5E1OnTs1VHhYWBnt7e0kxGys8PNzoY69G2wCQ4fp/x7EjyizhFFpS6pnyj/VsGaxny2FdW4ap61m3DI0x8pXcHDt2DBs3bsSNGzeQmZlp8NzWrVvzc0mjaLVauLu7Y9myZbCxsUHt2rVx+/ZtfPXVV89MbsaNG4eQkBD948TERPj4+KB169aSxwi9SFZWFsLDw9GqVSsoFIoXHp+Uno2Uw38CAHp1aA0ndb5+Ha8dqfVM+cN6tgzWs+Wwri3DXPWs63kxhuRP0/Xr16N///4ICgpCWFgYWrdujUuXLiEmJkZSt1SxYsVgY2ODmJgYg/KYmJhcrUI6Xl5eUCgUBl1QlStXRnR0NDIzM6FUKnOdo1KpoFKpcpUrFAqz/XEbe+3o2DQAQBEHJYo42ZkllsLMnL9Deoz1bBmsZ8thXVuGqetZyrUkDyj+4osvMHfuXPz2229QKpWYN28eLly4gB49eqBUqVJGX0epVKJ27dqIiIjQl2m1WkREROgHKT+tQYMGuHLlCrRarb7s0qVL8PLyyjOxedXdiMtpYvNxY2JDRERkKpKTm6tXr6Jdu3YAchKUlJQUyGQyjBo1CsuWLZN0rZCQECxfvhyrV6/G+fPn8cEHHyAlJQUDBw4EAPTv399gwPEHH3yAuLg4jBgxApcuXcL27dvxxRdfYNiwYVJfxivhpi65KWKesT9ERESvI8ndUm5ubkhKSgIAlChRAmfPnkVAQADi4+MlDfYBgJ49eyI2NhaTJk1CdHQ0atSogZ07d+oHGd+4cQNy+eP8y8fHB7t27cKoUaNQrVo1lChRAiNGjMCnn34q9WW8EnQtN6WY3BAREZmM5OSmcePGCA8PR0BAALp3744RI0bgzz//RHh4OFq0aCE5gODgYAQHB+f53N69e3OV1a9fH0eOHJF8n1cRkxsiIiLTk5zcLFy4EOnp6QCA8ePHQ6FQ4NChQ+jatSsmTJhg8gALs5tMboiIiExOcnJTpEgR/c9yuRxjx441aUCvC41W4NbDnNlSHHNDRERkOpIHFAM5g4onTJiA3r176/eB+uOPP/Dff/+ZNLjCLCYxHZkaLWzlMni5qK0dDhERUaEhObn566+/EBAQgL///htbt25FcnLO9gGnT59+5kJ6lJtuvE0JNzvY2uQrxyQiIqI8SP5UHTt2LGbMmIHw8HCDtWWaN29eaAb6WgIHExMREZmH5OTmzJkzea5E7O7ujvv375skqNfBLa5xQ0REZBaSkxtXV1fcvXs3V/nJkydRokQJkwT1OmDLDRERkXlITm569eqFTz/9FNHR0ZDJZNBqtTh48CBGjx6N/v37myPGQonJDRERkXnka2+pSpUqwcfHB8nJyfD390fjxo0RGBjIdW4kuBGXMw2cyQ0REZFpSV7nRqlUYvny5Zg0aRLOnDmD5ORk1KxZE+XLlzdHfIVSamY27idnAOCYGyIiIlOTnNzo+Pj4wMfHBxqNBmfOnMHDhw/h5uZmytgKrZuPWm1c7BRwsTPddvBERESUj26pkSNH4rvvvgMAaDQaNGnSBLVq1YKPj0+ee0FRbhxvQ0REZD6Sk5vNmzejevXqAIDffvsN165dw4ULFzBq1CiMHz/e5AEWRjf008DtrBwJERFR4SM5ubl//z48PT0BADt27ECPHj1QoUIFvPvuuzhz5ozJAyyMbnKNGyIiIrORnNx4eHjg3Llz0Gg02LlzJ1q1agUASE1NhY2NjckDLIzYLUVERGQ+kgcUDxw4ED169ICXlxdkMhlatmwJAPj7779RqVIlkwdYGDG5ISIiMh/Jyc2UKVNQtWpV3Lx5E927d4dKpQIA2NjYYOzYsSYPsLDRaoW+W4rJDRERkenlayp4t27dcpUNGDDgpYN5HcQmZyAjWwu5DPB25YBiIiIiUzMquZk/fz6GDBkCtVqN+fPnP/fY4cOHmySwwkrXJeXtageFjeQhT0RERPQCRiU3c+fORd++faFWqzF37txnHieTyZjcvMCNB+ySIiIiMiejkpvIyMg8fybpOJiYiIjIvNgvYmE3H3KNGyIiInOSlNykpKRg0qRJqFq1KhwdHeHk5IRq1aph2rRpSE1NNVeMhQpnShEREZmX0bOlMjMz0aRJE5w9exZvvvkmOnToACEEzp8/j88//xx//PEH9u3bB4WCG0E+D7uliIiIzMvo5GbJkiW4desWTp8+jYoVKxo8d+HCBTRt2hRLly7FRx99ZPIgC4v0LA1iEjMAMLkhIiIyF6O7pbZu3YqJEyfmSmwAoFKlShg/fjw2b95s0uAKm+iEdACAncIGrvZs4SIiIjIHo5Obc+fOoWnTps98vlmzZjh37pwpYiq04lIzAQBFHJSQyWRWjoaIiKhwMjq5iY+PR9GiRZ/5fNGiRZGQkGCSoAqruOSc5Kaoo9LKkRARERVeRic3Wq32ubt+y+VyaDQakwRVWOlabtzsmdwQERGZi9EDioUQaNGiBWxt8z4lOzvbZEEVVnEpj1puHJjcEBERmYvRyc3kyZNfeEzXrl1fKpjC7uGj5MaNyQ0REZHZmDS5oed7kPJ4QDERERGZB7dfsKCHTG6IiIjMjsmNBbHlhoiIyPyY3FjQw1QmN0RERObG5MaCdOvcMLkhIiIyn5dKbtLT000VR6GXma1FUkbOdPkiXOeGiIjIbCQnN1qtFtOnT0eJEiXg6OiIa9euAQAmTpyI7777zuQBFha6Lim5DHCx475SRERE5iI5uZkxYwZWrVqFL7/8Ekrl4xaIqlWrYsWKFSYNrjDRLeDnZq+EXM59pYiIiMxFcnKzZs0aLFu2DH379jXYjqF69eq4cOGCSYMrTOI4U4qIiMgiJCc3t2/fRrly5XKVa7VaZGVlmSSowiiOqxMTERFZhOTkxt/fH/v3789VvnnzZtSsWdMkQRVG3FeKiIjIMozefkFn0qRJGDBgAG7fvg2tVoutW7fi4sWLWLNmDX7//XdzxFgosOWGiIjIMiS33HTq1Am//fYbdu/eDQcHB0yaNAnnz5/Hb7/9hlatWpkjxkJBv4Afp4ETERGZleSWGwBo1KgRwsPDTR1LocatF4iIiCwjX8kNAGRmZuLevXvQarUG5aVKlXrpoAojbppJRERkGZKTm8uXL+Pdd9/FoUOHDMqFEJDJZNBoNCYLrjDhVHAiIiLLkJzcvPPOO7C1tcXvv/8OLy8vyGRckM4YTG6IiIgsQ3Jyc+rUKRw/fhyVKlUyRzyFkhCCO4ITERFZSL7Wubl//745Yim0kjKykaURAJjcEBERmZtRyU1iYqL+a/bs2RgzZgz27t2LBw8eGDyXmJho7ngLpLjknFYbe6UN1AqbFxxNREREL8OobilXV1eDsTVCCLRo0cLgGA4ofra41MebZhIREZF5GZXc7Nmzx9xxFGq6lpuijkxuiIiIzM2o5KZJkyb6n2/cuAEfH59cs6SEELh586Zpoysk2HJDRERkOZIHFJcpUwaxsbG5yuPi4lCmTBmTBFXYcNNMIiIiy5Gc3OjG1jwtOTkZarXaJEEVNg+5aSYREZHFGL3OTUhICABAJpNh4sSJsLe31z+n0Wjw999/o0aNGvkKYtGiRfjqq68QHR2N6tWrY8GCBahbt+4Lz1u/fj169+6NTp06Ydu2bfm6tyVwXykiIiLLMTq5OXnyJICclpszZ85AqXz8Qa1UKlG9enWMHj1acgAbNmxASEgIli5dinr16iE0NBRBQUG4ePEi3N3dn3leVFQURo8ejUaNGkm+p6VxXykiIiLLMTq50c2YGjhwIObNmwdnZ2eTBDBnzhwMHjwYAwcOBAAsXboU27dvx/fff4+xY8fmeY5Go0Hfvn0xdepU7N+/H/Hx8SaJxVzYckNERGQ5ksfcrFy50mSJTWZmJo4fP46WLVs+DkguR8uWLXH48OFnnjdt2jS4u7vjvffeM0kc5satF4iIiCxH8t5SpnT//n1oNBp4eHgYlHt4eODChQt5nnPgwAF89913OHXqlFH3yMjIQEZGhv6xbhXlrKwsZGVl5S/wZ9Bd7+nrPni0zo2zUm7ye76OnlXPZFqsZ8tgPVsO69oyzFXPUq5n1eRGqqSkJPTr1w/Lly9HsWLFjDpn5syZmDp1aq7ysLAwg0HRphQeHq7/OVsLJGfkVPPxQ3/hgsIst3wtPVnPZD6sZ8tgPVsO69oyTF3PqampRh9r1eSmWLFisLGxQUxMjEF5TEwMPD09cx1/9epVREVFoUOHDvoyrVYLALC1tcXFixdRtmxZg3PGjRunn+kF5LTc+Pj4oHXr1ibrXtPJyspCeHg4WrVqBYUiJ4u5l5QB/P0X5DKga4c3IZfnnkZP0uRVz2R6rGfLYD1bDuvaMsxVz1L2r7RqcqNUKlG7dm1ERESgc+fOAHKSlYiICAQHB+c6vlKlSjhz5oxB2YQJE5CUlIR58+bBx8cn1zkqlQoqlSpXuUKhMNsf95PXTsxIA5CzOrFKxTE3pmTO3yE9xnq2DNaz5bCuLcPU9SzlWpKTm19//TXPcplMBrVajXLlyklaqTgkJAQDBgxAnTp1ULduXYSGhiIlJUU/e6p///4oUaIEZs6cCbVajapVqxqc7+rqCgC5yl8VXMCPiIjIsiQnN507d4ZMJoMQwqBcVyaTydCwYUNs27YNbm5uL7xez549ERsbi0mTJiE6Oho1atTAzp079YOMb9y4Ablc8qSuVwangRMREVmW5KwhPDwcb7zxBsLDw5GQkICEhASEh4ejXr16+P3337Fv3z48ePBA0oJ+wcHBuH79OjIyMvD333+jXr16+uf27t2LVatWPfPcVatWvdKrE+ungXPTTCIiIouQ3HIzYsQILFu2DIGBgfqyFi1aQK1WY8iQIfjvv/8QGhqKd99916SBFlS6aeBFHJncEBERWYLklpurV6/mOcvI2dkZ165dAwCUL18e9+/ff/noCgG23BAREVmW5OSmdu3a+OSTTxAbG6svi42NxZgxY/DGG28AAC5fvpznzKXXEcfcEBERWZbkbqnvvvsOnTp1QsmSJfUJzM2bN+Hn54dffvkFAJCcnIwJEyaYNtICiptmEhERWZbk5KZixYo4d+4cwsLCcOnSJX1Zq1at9LOadGvWEBDH5IaIiMii8rWIn1wuR5s2bdCmTRtTx1PoMLkhIiKyrHwlNxEREYiIiMC9e/f02x/ofP/99yYJrDAQQnBHcCIiIguTnNxMnToV06ZNQ506deDl5QWZjHslPUtSRjayNDmLHTK5ISIisgzJyc3SpUuxatUq9OvXzxzxFCpxj9a4sVfaQK2wsXI0RERErwfJU8EzMzMNFvCjZ4t71CXlxjVuiIiILEZycjNo0CCsW7fOHLEUOrqWm6JcnZiIiMhiJHdLpaenY9myZdi9ezeqVauWawvyOXPmmCy4go4tN0RERJYnObn5999/UaNGDQDA2bNnDZ7j4GJDXMCPiIjI8iQnN3v27DFHHIUS17ghIiKyPMljbsh4TG6IiIgsz6iWmy5dumDVqlVwdnZGly5dnnvs1q1bTRJYYZCQlgUAcLFTvOBIIiIiMhWjkhsXFxf9eBoXFxezBlSYpGVpAOSsc0NERESWYVRys3Llyjx/pudLf5Tc2HEBPyIiIouRPOZmxowZiIyMNEcshU5qZk5yo2bLDRERkcVITm42bdqEcuXKITAwEIsXL8b9+/fNEVehoO+WYssNERGRxUhObk6fPo1///0XTZs2xddffw1vb2+0a9cO69atQ2pqqjliLLDSH7Xc2LHlhoiIyGLyNRW8SpUq+OKLL3Dt2jXs2bMHvr6+GDlyJDw9PU0dX4GWyjE3REREFvfS69w4ODjAzs4OSqUSWVlZpoip0Ehjyw0REZHF5Su5iYyMxOeff44qVaqgTp06OHnyJKZOnYro6GhTx1dgabUCGdlaAGy5ISIisiTJ2y/873//wz///INq1aph4MCB6N27N0qUKGGO2Ao03WBigC03REREliQ5uWnRogW+//57+Pv7myOeQuPJ5EZty+SGiIjIUiQnN59//rk54ih0dONt1Ao55HLulk5ERGQpkpMbALh16xZ+/fVX3LhxA5mZmQbPzZkzxySBFXRpnClFRERkFZKTm4iICHTs2BF+fn64cOECqlatiqioKAghUKtWLXPEWCDpWm7slfnKH4mIiCifJM+WGjduHEaPHo0zZ85ArVZjy5YtuHnzJpo0aYLu3bubI8YCSddyo1a89Gx7IiIikkDyJ+/58+fRv39/AICtrS3S0tLg6OiIadOmYfbs2SYPsKDiGjdERETWITm5cXBw0I+z8fLywtWrV/XPcZ+pxx7vK8VuKSIiIkvK1zo3Bw4cQOXKldG2bVt8/PHHOHPmDLZu3Yr//e9/5oixQErjjuBERERWITm5mTNnDpKTkwEAU6dORXJyMjZs2IDy5ctzptQTHu8rxTE3REREliQ5ufHz89P/7ODggKVLl5o0oMIinbOliIiIrILNCmbyeLYUu6WIiIgsyehmBTc3N8hkL15pNy4u7qUCKixSM7mIHxERkTUYndyEhobqfxZC4IMPPsC0adPg7u5ujrgKvHTdbCkOKCYiIrIoo5ObAQMGGDz+6KOP0LVrV4MxOPQY17khIiKyDo65MZNUjrkhIiKyCiY3ZvJ4bykmN0RERJbE5MZM0rkrOBERkVUYPeYmJCTE4HFmZiY+//xzuLi4GJRzIb8cqZnZANgtRUREZGlGJzcnT540eBwYGIhr164ZlBkzVfx1kZalBcBuKSIiIkszOrnZs2ePOeModPTdUkxuiIiILIpjbsxE1y3FMTdERESWxeTGTLjODRERkXUwuTGT9EdjbthyQ0REZFlMbswgW6NFpoYDiomIiKzBqOSmS5cuSExMBACsWbMGGRkZZg2qoNPNlAI4FZyIiMjSjEpufv/9d6SkpAAABg4ciISEBLMGVdDpZkrJZIDKlo1jRERElmTUVPBKlSph3LhxaNasGYQQ2LhxI5ydnfM8tn///iYNsCDS7Stlr7Dh2j9EREQWZlRys3TpUoSEhGD79u2QyWSYMGFCnh/aMpmMyQ2AdM6UIiIishqjkpvAwEAcOXIEACCXy3Hp0iW4u7ubNbCCLI07ghMREVmN5AEhkZGRKF68uDliKTR0yQ1nShEREVme0dsv6JQuXRrx8fH47rvvcP78eQCAv78/3nvvvVybaL6u0rjGDRERkdVIbrk5duwYypYti7lz5yIuLg5xcXGYO3cuypYtixMnTuQriEWLFsHX1xdqtRr16tXD0aNHn3ns8uXL0ahRI7i5ucHNzQ0tW7Z87vHWoBtzw24pIiIiy5Oc3IwaNQodO3ZEVFQUtm7diq1btyIyMhLt27fHyJEjJQewYcMGhISEYPLkyThx4gSqV6+OoKAg3Lt3L8/j9+7di969e2PPnj04fPgwfHx80Lp1a9y+fVvyvc0lld1SREREVpOvlptPP/0UtraPe7RsbW0xZswYHDt2THIAc+bMweDBgzFw4ED4+/tj6dKlsLe3x/fff5/n8WvXrsWHH36IGjVqoFKlSlixYgW0Wi0iIiIk39tcuCM4ERGR9UhObpydnXHjxo1c5Tdv3oSTk5Oka2VmZuL48eNo2bLl44DkcrRs2RKHDx826hqpqanIyspCkSJFJN3bnDhbioiIyHokDyju2bMn3nvvPXz99dcIDAwEABw8eBCffPIJevfuLela9+/fh0ajgYeHh0G5h4cHLly4YNQ1Pv30U3h7exskSE/KyMgw2C5Ct41EVlYWsrKyJMX7IrrrJaflfFfbykx+D3pcz6xb82I9Wwbr2XJY15ZhrnqWcj3Jyc3XX3+tX6wvOzsbAKBQKPDBBx9g1qxZUi/3UmbNmoX169dj7969UKvVeR4zc+ZMTJ06NVd5WFgY7O3tzRLXhSvXAMhx9+YN7NgRZZZ7EBAeHm7tEF4LrGfLYD1bDuvaMkxdz6mpqUYfKxNCiPze5OrVqwCAsmXL5itRyMzMhL29PTZv3ozOnTvrywcMGID4+Hj88ssvzzz366+/xowZM7B7927UqVPnmcfl1XLj4+OD+/fvP3MLifzKyspCeHg4/s4ujXX/3Mawpn4Y2aKcSe9Bj+u5VatWUCgU1g6n0GI9Wwbr2XJY15ZhrnpOTExEsWLFkJCQ8MLPb8ktNzr29vYICAjI7+kAAKVSidq1ayMiIkKf3OgGBwcHBz/zvC+//BKff/45du3a9dzEBgBUKhVUKlWucoVCYbY/7vTsnHzRUa3kPyAzMufvkB5jPVsG69lyWNeWYep6lnKtfCc3phISEoIBAwagTp06qFu3LkJDQ5GSkoKBAwcCyNmIs0SJEpg5cyYAYPbs2Zg0aRLWrVsHX19fREdHAwAcHR3h6OhotdfxJP1sKQV3BCciIrI0qyc3PXv2RGxsLCZNmoTo6GjUqFEDO3fu1A8yvnHjBuTyx0nCkiVLkJmZiW7duhlcZ/LkyZgyZYolQ3+mNE4FJyIishqrJzcAEBwc/MxuqL179xo8joqKMn9ALylNvyv4K1G9RERErxXJ/SYpKSnmiKNQ4d5SRERE1iM5ufHw8MC7776LAwcOmCOeQuHxmBsmN0RERJYmObn58ccfERcXh+bNm6NChQqYNWsW7ty5Y47YCqzUTI65ISIishbJyU3nzp2xbds23L59G0OHDsW6detQunRptG/fHlu3btUv7Pc6Y8sNERGR9eR7rnLx4sUREhKCf//9F3PmzMHu3bvRrVs3eHt7Y9KkSZJWEixs9GNu2HJDRERkcfmezhMTE4PVq1dj1apVuH79Orp164b33nsPt27dwuzZs3HkyBGEhYWZMtYCQYjHU8HtmdwQERFZnOTkZuvWrVi5ciV27doFf39/fPjhh3j77bfh6uqqPyYwMBCVK1c2ZZwFhkYAGm3OCsXcFZyIiMjyJCc3AwcORK9evXDw4EG88cYbeR7j7e2N8ePHv3RwBVGm9vHPHHNDRERkeZKTm7t3775wk0w7OztMnjw530EVZI8mSsFWLoPSltsvEBERWZrkT18nJyfcu3cvV/mDBw9gY8OWCl3LDVttiIiIrENyciOEyLM8IyMDSqXypQMq6LJ0yQ0HExMREVmF0d1S8+fPBwDIZDKsWLHCYAdujUaDffv2oVKlSqaPsIDJZHJDRERkVUYnN3PnzgWQ03KzdOlSgy4opVIJX19fLF261PQRFjCZGhkAdksRERFZi9HJTWRkJACgWbNm2Lp1K9zc3MwWVEHGlhsiIiLrkjxbas+ePeaIo9DggGIiIiLrMiq5CQkJwfTp0+Hg4ICQkJDnHjtnzhyTBFZQ6aaCM7khIiKyDqOSm5MnTyIrK0v/87PIZDLTRFWAcbYUERGRdRmV3DzZFcVuqefLYLcUERGRVXEJXRPL0s2WYssNERGRVRjVctOlSxejL7h169Z8B1MYcLYUERGRdRmV3Li4uJg7jkKDs6WIiIisy6jkZuXKleaOo9BgckNERGRdHHNjYlmPpoLbs1uKiIjIKoxqualVqxYiIiLg5uaGmjVrPnfK94kTJ0wWXEGkmy2lZssNERGRVRiV3HTq1AkqlQoA0LlzZ3PGU+BlaTlbioiIyJqMSm4mT56c58+UWya7pYiIiKxK8t5SOseOHcP58+cBAP7+/qhdu7bJgirIMtktRUREZFWSk5tbt26hd+/eOHjwIFxdXQEA8fHxCAwMxPr161GyZElTx1igcLYUERGRdUmeLTVo0CBkZWXh/PnziIuLQ1xcHM6fPw+tVotBgwaZI8YCRZfc2Cvz3ShGREREL0HyJ/Bff/2FQ4cOoWLFivqyihUrYsGCBWjUqJFJgyuIuCs4ERGRdUluufHx8dHvEP4kjUYDb29vkwRVUAkh9LuCq5VcQoiIiMgaJH8Cf/XVV/joo49w7NgxfdmxY8cwYsQIfP311yYNrqDJzNZCIGcqOLuliIiIrMOoT2A3NzeDhftSUlJQr1492NrmnJ6dnQ1bW1u8++67r/U6OKm65YkBqG3ZckNERGQNRiU3oaGhZg6jcEh/1CelsJHB1obJDRERkTUYldwMGDDA3HEUCmmPRhNzAT8iIiLreamBIenp6cjMzDQoc3Z2fqmACrK0R91SXMCPiIjIeiT3naSkpCA4OBju7u5wcHCAm5ubwdfrTJfccBo4ERGR9UhObsaMGYM///wTS5YsgUqlwooVKzB16lR4e3tjzZo15oixwGByQ0REZH2Su6V+++03rFmzBk2bNsXAgQPRqFEjlCtXDqVLl8batWvRt29fc8RZIOjG3HBHcCIiIuuR3HITFxcHPz8/ADnja+Li4gAADRs2xL59+0wbXQGT9mi2FFtuiIiIrEdycuPn54fIyEgAQKVKlbBx40YAOS06uo00X1fp+m4pTgMnIiKyFsmfwgMHDsTp06cBAGPHjsWiRYugVqsxatQofPLJJyYPsCBJzeRsKSIiImuTPOZm1KhR+p9btmyJ8+fP48SJEyhXrhyqVatm0uAKGl3LDde5ISIisp6X3gDJ19cXvr6+Jgil4OM6N0RERNaXr8EhERERaN++PcqWLYuyZcuiffv22L17t6ljK3D0s6WY3BAREVmN5ORm8eLFaNOmDZycnDBixAiMGDECzs7OaNu2LRYtWmSOGAsM/WwpdksRERFZjeRuqS+++AJz585FcHCwvmz48OFo0KABvvjiCwwbNsykARYknC1FRERkfZI/hePj49GmTZtc5a1bt0ZCQoJJgiqoOFuKiIjI+iQnNx07dsTPP/+cq/yXX35B+/btTRJUQcXZUkRERNZnVLfU/Pnz9T/7+/vj888/x969e1G/fn0AwJEjR3Dw4EF8/PHH5omygOBsKSIiIuszKrmZO3euwWM3NzecO3cO586d05e5urri+++/x4QJE0wbYQGSxjE3REREVmdUcqPbboGeLy2Ts6WIiIis7aWaGIQQEEKYKpYC7/FsKSY3RERE1pKv5GbNmjUICAiAnZ0d7OzsUK1aNfzwww+mjq3A4ZgbIiIi65O8zs2cOXMwceJEBAcHo0GDBgCAAwcOYOjQobh//77B3lOvmzTOliIiIrI6ycnNggULsGTJEvTv319f1rFjR1SpUgVTpkx5bZMbrVYg/dEKxWy5ISIish7J3VJ3795FYGBgrvLAwEDcvXvXJEEVROnZGv3PnC1FRERkPZI/hcuVK4eNGzfmKt+wYQPKly+fryAWLVoEX19fqNVq1KtXD0ePHn3u8Zs2bUKlSpWgVqsREBCAHTt25Ou+pqTbNBMA1LZsuSEiIrIWyd1SU6dORc+ePbFv3z79mJuDBw8iIiIiz6TnRTZs2ICQkBAsXboU9erVQ2hoKIKCgnDx4kW4u7vnOv7QoUPo3bs3Zs6cifbt22PdunXo3LkzTpw4gapVq0q+v6noxtso5AJyucxqcRAREb3uJLfcdO3aFUePHkWxYsWwbds2bNu2DcWKFcPRo0fx1ltvSQ5gzpw5GDx4MAYOHAh/f38sXboU9vb2+P777/M8ft68eWjTpg0++eQTVK5cGdOnT0etWrWwcOFCyfc2JV3LjZI9UkRERFYlqeUmKysL77//PiZOnIgff/zxpW+emZmJ48ePY9y4cfoyuVyOli1b4vDhw3mec/jwYYSEhBiUBQUFYdu2bXken5GRgYyMDP3jxMREADmvJSsr6yVfwWNJaTn3UMph0utSbrr6ZT2bF+vZMljPlsO6tgxz1bOU60lKbhQKBbZs2YKJEydKDiov9+/fh0ajgYeHh0G5h4cHLly4kOc50dHReR4fHR2d5/EzZ87E1KlTc5WHhYXB3t4+n5HnFpkEqOQ2UNkA4eHhJrsuPRvr2TJYz5bBerYc1rVlmLqeU1NTjT5W8pibzp07Y9u2bQVmyve4ceMMWnoSExPh4+OD1q1bw9nZ2aT3GpKVhbCwcLRq1QoKhcKk16bHsrKyEB7OejY31rNlsJ4th3VtGeaqZ13PizEkJzfly5fHtGnTcPDgQdSuXRsODg4Gzw8fPtzoaxUrVgw2NjaIiYkxKI+JiYGnp2ee53h6eko6XqVSQaVS5SpXKBRm+eOWycx3bTLEerYM1rNlsJ4th3VtGaauZynXkpzcfPfdd3B1dcXx48dx/Phxg+dkMpmk5EapVKJ27dqIiIhA586dAQBarRYREREIDg7O85z69esjIiICI0eO1JeFh4ejfv36Ul8KERERFUKSkxtT7xAeEhKCAQMGoE6dOqhbty5CQ0ORkpKCgQMHAgD69++PEiVKYObMmQCAESNGoEmTJvjmm2/Qrl07rF+/HseOHcOyZctMGhcREREVTJKSmyNHjuC3335DZmYmWrRogTZt2rx0AD179kRsbCwmTZqE6Oho1KhRAzt37tQPGr5x4wbk8sfzqwMDA7Fu3TpMmDABn332GcqXL49t27ZZdY0bIiIienUYndxs3rwZPXv2hJ2dHRQKBebMmYPZs2dj9OjRLx1EcHDwM7uh9u7dm6use/fu6N69+0vfl4iIiAofo5ecmzlzJgYPHoyEhAQ8fPgQM2bMwBdffGHO2IiIiIgkMzq5uXjxIkaPHg0bm5x9kz7++GMkJSXh3r17ZguOiIiISCqjk5vU1FSDdWGUSiXUajWSk5PNEhgRERFRfkgaULxixQo4OjrqH2dnZ2PVqlUoVqyYvkzKVHAiIiIiUzM6uSlVqhSWL19uUObp6YkffvhB/1jqOjdEREREpmZ0chMVFWXGMIiIiIhMw+gxN0REREQFAZMbIiIiKlSY3BAREVGhInlvqYJOCAFA2tbpxsrKykJqaioSExO546wZsZ4tg/VsGaxny2FdW4a56ln3ua37HH8eSclNdnY21q1bh6CgIP3eTwVNUlISAMDHx8fKkRAREZFUSUlJcHFxee4xMmFMCvQEe3t7nD9/HqVLl36p4KxFq9Xizp07cHJygkwmM+m1ExMT4ePjg5s3bxoseEimxXq2DNazZbCeLYd1bRnmqmchBJKSkuDt7W2woXZeJHdL1a1bF6dOnSqwyY1cLkfJkiXNeg9nZ2f+w7EA1rNlsJ4tg/VsOaxryzBHPb+oxUZHcnLz4YcfIiQkBDdv3kTt2rXh4OBg8Hy1atWkXpKIiIjIZCQnN7169QJguM2CTCaDEAIymQwajcZ00RERERFJJDm5iYyMNEcchYJKpcLkyZOhUqmsHUqhxnq2DNazZbCeLYd1bRmvQj1LHlBMRERE9CrL1zo3V69eRWhoKM6fPw8A8Pf3x4gRI1C2bFmTBkdEREQkleQVinft2gV/f38cPXoU1apVQ7Vq1fD333+jSpUqCA8PN0eMREREREaT3C1Vs2ZNBAUFYdasWQblY8eORVhYGE6cOGHSAImIiIikkJzcqNVqnDlzBuXLlzcov3TpEqpVq4b09HSTBkhEREQkheRuqeLFi+PUqVO5yk+dOgV3d3dTxPRKW7RoEXx9faFWq1GvXj0cPXr0ucdv2rQJlSpVglqtRkBAAHbs2GGhSAs2KfW8fPlyNGrUCG5ubnBzc0PLli1f+HuhHFL/nnXWr18PmUyGzp07mzfAQkJqPcfHx2PYsGHw8vKCSqVChQoV+N5hBKn1HBoaiooVK8LOzg4+Pj4YNWoU/4P+Avv27UOHDh3g7e0NmUyGbdu2vfCcvXv3olatWlCpVChXrhxWrVpl9jghJJo6dapwdXUVs2bNEvv27RP79u0TM2fOFK6urmLatGlSL1egrF+/XiiVSvH999+L//77TwwePFi4urqKmJiYPI8/ePCgsLGxEV9++aU4d+6cmDBhglAoFOLMmTMWjrxgkVrPffr0EYsWLRInT54U58+fF++8845wcXERt27dsnDkBYvUetaJjIwUJUqUEI0aNRKdOnWyTLAFmNR6zsjIEHXq1BFt27YVBw4cEJGRkWLv3r3i1KlTFo68YJFaz2vXrhUqlUqsXbtWREZGil27dgkvLy8xatQoC0desOzYsUOMHz9ebN26VQAQP//883OPv3btmrC3txchISHi3LlzYsGCBcLGxkbs3LnTrHFKTm60Wq2YM2eOKFGihJDJZEImk4kSJUqI0NBQodVqzRHjK6Nu3bpi2LBh+scajUZ4e3uLmTNn5nl8jx49RLt27QzK6tWrJ95//32zxlnQSa3np2VnZwsnJyexevVqc4VYKOSnnrOzs0VgYKBYsWKFGDBgAJMbI0it5yVLlgg/Pz+RmZlpqRALBan1PGzYMNG8eXODspCQENGgQQOzxlmYGJPcjBkzRlSpUsWgrGfPniIoKMiMkQkhuVtKJpNh1KhRuHXrFhISEpCQkIBbt25hxIgRJt+I8lWSmZmJ48ePo2XLlvoyuVyOli1b4vDhw3mec/jwYYPjASAoKOiZx1P+6vlpqampyMrKQpEiRcwVZoGX33qeNm0a3N3d8d5771kizAIvP/X866+/on79+hg2bBg8PDxQtWpVfPHFF1z9/TnyU8+BgYE4fvy4vuvq2rVr2LFjB9q2bWuRmF8X1voczNc6NzpOTk6miuOVd//+fWg0Gnh4eBiUe3h44MKFC3meEx0dnefx0dHRZouzoMtPPT/t008/hbe3d65/UPRYfur5wIED+O677/Icc0d5y089X7t2DX/++Sf69u2LHTt24MqVK/jwww+RlZWFyZMnWyLsAic/9dynTx/cv38fDRs2hBAC2dnZGDp0KD777DNLhPzaeNbnYGJiItLS0mBnZ2eW+xqV3NSqVQsRERFwc3NDzZo1n9tCw6ngZE2zZs3C+vXrsXfvXqjVamuHU2gkJSWhX79+WL58OYoVK2btcAo1rVYLd3d3LFu2DDY2NqhduzZu376Nr776ismNCe3duxdffPEFFi9ejHr16uHKlSsYMWIEpk+fjokTJ1o7PHpJRiU3nTp10u8R8brOjihWrBhsbGwQExNjUB4TEwNPT888z/H09JR0POWvnnW+/vprzJo1C7t37+bu9C8gtZ6vXr2KqKgodOjQQV+m1WoBALa2trh48SJXKM9Dfv6evby8oFAoYGNjoy+rXLkyoqOjkZmZCaVSadaYC6L81PPEiRPRr18/DBo0CAAQEBCAlJQUDBkyBOPHj4dcLnnUBuXhWZ+Dzs7OZmu1AYxMbnT/W9BoNGjWrBmqVasGV1dXswX1KlIqlahduzYiIiL0CZ5Wq0VERASCg4PzPKd+/fqIiIjAyJEj9WXh4eGoX7++BSIumPJTzwDw5Zdf4vPPP8euXbtQp04dC0VbcEmt50qVKuHMmTMGZRMmTEBSUhLmzZsHHx8fS4Rd4OTn77lBgwZYt24dtFqt/gP20qVL8PLyYmLzDPmp59TU1FwJjC6hFNxy0WTq16+faxkDi3wOSh2BrFKpxLVr10w/tLkAWL9+vVCpVGLVqlXi3LlzYsiQIcLV1VVER0cLIYTo16+fGDt2rP74gwcPCltbW/H111+L8+fPi8mTJ3MquBGk1vOsWbOEUqkUmzdvFnfv3tV/JSUlWeslFAhS6/lpnC1lHKn1fOPGDeHk5CSCg4PFxYsXxe+//y7c3d3FjBkzrPUSCgSp9Tx58mTh5OQkfvrpJ3Ht2jURFhYmypYtK3r06GGtl1AgJCUliZMnT4qTJ08KAGLOnDni5MmT4vr160IIIcaOHSv69eunP143FfyTTz4R58+fF4sWLXo1p4LXrl1b7N692xyxFAgLFiwQpUqVEkqlUtStW1ccOXJE/1yTJk3EgAEDDI7fuHGjqFChglAqlaJKlSpi+/btFo64YJJSz6VLlxYAcn1NnjzZ8oEXMFL/np/E5MZ4Uuv50KFDol69ekKlUgk/Pz/x+eefi+zsbAtHXfBIqeesrCwxZcoUUbZsWaFWq4WPj4/48MMPxcOHDy0feAGyZ8+ePN9vdXU7YMAA0aRJk1zn1KhRQyiVSuHn5ydWrlxp9jglb7+wc+dOjBs3DtOnT0ft2rXh4OBg8Lyzs/PLNycRERER5ZPk5ObJPsonZ00JISCTybgWAxEREVmV5HVu9uzZY444iIiIiExCcssNERER0assXxP59+/fj7fffhuBgYG4ffs2AOCHH37AgQMHTBocERERkVSSk5stW7YgKCgIdnZ2OHHiBDIyMgAACQkJ+OKLL0weIBEREZEUkpObGTNmYOnSpVi+fDkUCoW+vEGDBtx6gYiIiKxOcnJz8eJFNG7cOFe5i4sL4uPjTRETERERUb5JTm48PT1x5cqVXOUHDhyAn5+fSYIisgRfX1+EhoZaOwyj7d27FzKZ7KX/E9G0aVODLUHy8nTdyGQybNu2DQAQFRUFmUxmtd3Bp0yZAg8PD4OYrMmacbzzzjtW3e/PVH+TRKYmObkZPHgwRowYgb///hsymQx37tzB2rVrMXr0aHzwwQfmiJHoud555x3IZDLIZDIolUqUK1cO06ZNQ3Z29nPP++effzBkyBCTx6N7w9d9eXh4oGvXrrh27ZrJ72Uuz6sbHx8f3L17F1WrVgVg2Q+48+fPY+rUqfj2229x9+5dvPnmm7mOeV7yZUxiJ9Wz4jAlSyeUvr6++r9fOzs7+Pr6okePHvjzzz8NjgsMDMTdu3fh4uJikbiIjCV5nZuxY8dCq9WiRYsWSE1NRePGjaFSqTB69Gh89NFH5oiR6IXatGmDlStXIiMjAzt27MCwYcOgUCgwbty4XMfqdlYuXrz4S93zRTs0X7x4EU5OTrh8+TKGDBmCDh064N9//zXY7RnIWQBTo9HA1lbyP0ezeV7d2NjYWG1n+6tXrwIAOnXqZLCIqDVZqy7Mbdq0aRg8eDAyMzMRFRWFH3/8ES1btsT06dMxfvx4ADkbVhbW108Fm+SWG5lMhvHjxyMuLg5nz57FkSNHEBsbi+nTp5sjPiKjqFQqeHp6onTp0vjggw/QsmVL/PrrrwAeN91//vnn8Pb2RsWKFQHk7nq5ceMGOnXqBEdHRzg7O6NHjx6IiYnRPz9lyhTUqFEDK1asQJkyZaBWq58bk7u7O7y8vNC4cWNMmjQJ586dw5UrV/QtHX/88Qdq164NlUqFAwcOICMjA8OHD4e7uzvUajUaNmyIf/75J9d1Dx48iGrVqkGtVuN///sfzp49q3/uwYMH6N27N0qUKAF7e3sEBATgp59+ynWN7OxsBAcHw8XFBcWKFcPEiRMNdkJ+Xpfdk60IUVFRaNasGQDAzc0NMpkM77zzDtasWYOiRYvqZ1PqdO7cGf369XtmnZ05cwbNmzeHnZ0dihYtiiFDhiA5ORlATv136NABQM5K6aZIbn744QfUqVMHTk5O8PT0RJ8+fXDv3j0AObtKlyxZEkuWLDE45+TJk5DL5bh+/TqAvLvstm7dimbNmsHe3h7Vq1fH4cOHDa6xfPly+Pj4wN7eHm+99RbmzJkDV1fXZ8ZZpkwZAEDNmjUhk8nQtGlTg+e//vpreHl5oWjRohg2bBiysrL0z2VkZGD06NEoUaIEHBwcUK9ePezdu/eFdaOrk1KlSqFx48ZYtmwZJk6ciEmTJuHixYsAcrfaXb9+HR06dICbmxscHBxQpUoVgx2hz549izfffBOOjo7w8PBAv379cP/+ff3zO3fuRMOGDeHq6oqiRYuiffv2+oQWyPkPRXBwMLy8vKBWq1G6dGnMnDlT/3x8fDwGDRqE4sWLw9nZGc2bN8fp06df+Fqp8JGc3Lz77rtISkqCUqmEv78/6tatC0dHR6SkpODdd981R4xEktnZ2SEzM1P/OCIiAhcvXkR4eDh+//33XMdrtVp06tQJcXFx+OuvvxAeHo5r166hZ8+eBsdduXIFW7ZswdatWyV1EdjZ2QGAQUxjx47FrFmzcP78eVSrVg1jxozBli1bsHr1apw4cQLlypVDUFAQ4uLiDK71ySef4JtvvsE///yD4sWLo0OHDvoPs/T0dNSuXRvbt2/H2bNnMWTIEPTr1w9Hjx41uMbq1atha2uLo0ePYt68eZgzZw5WrFhh9OvR8fHxwZYtWwDktFTdvXsX8+bNQ/fu3aHRaPQJJgDcu3cP27dvf+b7REpKCoKCguDm5oZ//vkHmzZtwu7duxEcHAwAGD16NFauXAkgpyvo7t27kuN9WlZWFqZPn47Tp09j27ZtiIqKwjvvvAMgJ4Hq3bs31q1bZ3DO2rVr0aBBA5QuXfqZ1x0/fjxGjx6NU6dOoUKFCujdu7e+m/TgwYMYOnQoRowYgVOnTqFVq1b4/PPPnxun7ve3e/du3L17F1u3btU/t2fPHly9ehV79uzB6tWrsWrVKqxatUr/fHBwMA4fPoz169fj33//Rffu3dGmTRtcvnxZSlUBAEaMGAEhBH755Zc8nx82bBgyMjKwb98+nDlzBrNnz4ajoyOAnMSjefPmqFmzJo4dO4adO3ciJiYGPXr00J+fkpKCkJAQHDt2DBEREZDL5Xjrrbeg1WoBAPPnz8evv/6KjRs34uLFi1i7di18fX3153fv3h337t3DH3/8gePHj6NWrVpo0aJFrn9D9BqQutOmXC4XMTExucpjY2OFjY3NS+zhSZQ/T+5OrdVqRXh4uFCpVGL06NH65z08PERGRobBeaVLlxZz584VQggRFhYmbGxsxI0bN/TP//fffwKAOHr0qBBCiMmTJwuFQiHu3bv33Hh0u+bqdhe+c+eOCAwMFCVKlBAZGRn657dt26Y/Jzk5WSgUCrF27Vp9WWZmpvD29hZffvmlwXXXr1+vP+bBgwfCzs5ObNiw4ZnxtGvXTnz88cf6x02aNBGVK1cWWq1WX/bpp5+KypUr51k3QggBQPz8889CCCEiIyMFAHHy5Mk8X6/OBx98IN58803942+++Ub4+fkZ3PdJy5YtE25ubiI5OVlftn37diGXy0V0dLQQQoiff/5ZvOhtSxefnZ2dcHBwMPiSy+VixIgRzzz3n3/+EQBEUlKSEEKIkydPCplMJq5fvy6EEEKj0YgSJUqIJUuWPLduVqxYoX9e93d0/vx5IYQQPXv2FO3atTO4b9++fYWLi8sLX5OuznUGDBggSpcubbBjePfu3UXPnj2FEEJcv35d2NjYiNu3bxuc16JFCzFu3Lhn3u/p3/+TPDw8xAcffCCEyP27DwgIEFOmTMnzvOnTp4vWrVsblN28eVMAEBcvXszznNjYWAFAnDlzRgghxEcffSSaN2+e59/Q/v37hbOzs0hPTzcoL1u2rPj222+f+VqpcDK65SYxMREJCQkQQiApKQmJiYn6r4cPH2LHjh1wd3c3YdpFZLzff/8djo6OUKvVePPNN9GzZ09MmTJF/3xAQMBzx8ecP38ePj4+8PHx0Zf5+/vD1dUV58+f15eVLl3a6LE6JUuWhIODA7y9vZGSkoItW7YYxFCnTh39z1evXkVWVhYaNGigL1MoFKhbt67B/QGgfv36+p+LFCmCihUr6o/RaDSYPn06AgICUKRIETg6OmLXrl24ceOGwTX+97//GXTr1K9fH5cvXzbpxreDBw9GWFiYfhXzVatW6Qd/5+X8+fOoXr06HBwc9GUNGjSAVqvVd4NIsWHDBpw6dcrg68k6B4Djx4+jQ4cOKFWqFJycnNCkSRMA0NdXjRo1ULlyZX3rzV9//YV79+6he/fuz713tWrV9D97eXkBgL676+LFi6hbt67B8U8/lqJKlSoG47i8vLz09zpz5gw0Gg0qVKgAR0dH/ddff/1l0N0jhXi0SXJehg8fjhkzZqBBgwaYPHky/v33X/1zp0+fxp49ewziqFSpEoDHY6kuX76M3r17w8/PD87OzvpWGd3v45133sGpU6dQsWJFDB8+HGFhYQbXT05ORtGiRQ3uERkZme/XSgWX0SMYXV1d9aPnK1SokOt5mUyGqVOnmjQ4ImM1a9YMS5YsgVKphLe3d67BuU9+YL4MKdfZv38/nJ2d4e7uDicnp5e6lrG++uorzJs3D6GhoQgICICDgwNGjhxp0B1mKTVr1kT16tWxZs0atG7dGv/99x+2b99usfv7+PigXLlyBmW67kHgcTdYUFAQ1q5di+LFi+PGjRsICgoyqK++ffti3bp1GDt2LNatW4c2bdqgaNGiz733kwuc6hIBXdeKqT15L939dPdKTk6GjY0Njh8/nmsgu667SIoHDx4gNjZWPwboaYMGDUJQUBC2b9+OsLAwzJw5E9988w0++ugjJCcno0OHDpg9e3au83QJYIcOHVC6dGksX74c3t7e0Gq1qFq1qv73UatWLURGRuKPP/7A7t270aNHD7Rs2RKbN29GcnIyvLy88hxP9LzxTFQ4GZ3c7NmzB0IING/eHFu2bEGRIkX0zymVSpQuXRre3t5mCZLoRRwcHHJ9kElRuXJl3Lx5Ezdv3tS33pw7dw7x8fHw9/fP1zXLlClj9Jtq2bJloVQqcfDgQf1YjqysLPzzzz+5pi4fOXIEpUqVAgA8fPgQly5dQuXKlQHkjOfo1KkT3n77bQA5H6iXLl3K9Rr+/vvvXNcsX758rg9AY+hao/Jq9Rk0aBBCQ0Nx+/ZttGzZ0qBl7GmVK1fGqlWrkJKSok/8Dh48CLlcrh8EbkoXLlzAgwcPMGvWLH1cx44dy3Vcnz59MGHCBBw/fhybN2/G0qVLX+q+FStWzDVQPK+B4096Xh0/T82aNaHRaHDv3j00atRIWqB5mDdvHuRy+XPX1vHx8cHQoUMxdOhQjBs3DsuXL8dHH32EWrVqYcuWLfD19c1zZuCDBw9w8eJFLF++XB9rXvsVOjs7o2fPnujZsye6deuGNm3aIC4uDrVq1UJ0dDRsbW0NxuHQ68no5EbXXBsZGYlSpUq9MtMwiUyhZcuWCAgIQN++fREaGors7Gx8+OGHaNKkSa6uDHNwcHDABx98gE8++QRFihRBqVKl8OWXXyI1NRXvvfeewbHTpk1D0aJF4eHhgfHjx6NYsWL6D5vy5ctj8+bNOHToENzc3DBnzhzExMTkSm5u3LiBkJAQvP/++zhx4gQWLFiAb775Jl+xly5dGjKZDL///jvatm0LOzs7fatAnz59MHr0aCxfvhxr1qx57nX69u2LyZMnY8CAAZgyZQpiY2Px0UcfoV+/fvDw8MhXbM9TqlQpKJVKLFiwAEOHDsXZs2fznPXp6+uLwMBAvPfee9BoNOjYseNL3fejjz5C48aNMWfOHHTo0AF//vkn/vjjj+e+p7q7u8POzg47d+5EyZIloVarjVpbpkKFCujbty/69++Pb775BjVr1kRsbCwiIiJQrVo1tGvX7pnnJiUlITo6GllZWYiMjMSPP/6IFStWYObMmc/8j8TIkSPx5ptvokKFCnj48CH27NmjT7yHDRuG5cuXo3fv3hgzZgyKFCmCK1euYP369VixYgXc3NxQtGhRLFu2DF5eXrhx4wbGjh1rcP05c+bAy8sLNWvWhFwux6ZNm+Dp6QlXV1e0bNkS9evXR+fOnfHll1+iQoUKuHPnDrZv34633nrLIv+O6dUhebbU+fPncfDgQf3jRYsWoUaNGujTpw8ePnxo0uCILEUmk+GXX36Bm5sbGjdujJYtW8LPzw8bNmywWAyzZs1C165d0a9fP9SqVQtXrlzBrl274Obmluu4ESNGoHbt2oiOjsZvv/2m/5/9hAkTUKtWLQQFBaFp06bw9PTM83/Z/fv3R1paGurWrYthw4ZhxIgR+V7QsESJEpg6dSrGjh0LDw8P/ewmIGdblq5du8LR0fGFK+na29tj165diIuLwxtvvIFu3bqhRYsWWLhwYb7iepHixYtj1apV2LRpE/z9/TFr1ix8/fXXeR7bt29fnD59Gm+99ZZB11Z+NGjQAEuXLsWcOXNQvXp17Ny5E6NGjXru0gK2traYP38+vv32W3h7e6NTp05G32/lypXo378/Pv74Y1SsWBGdO3fGP//8o2/9e5ZJkybBy8sL5cqVQ79+/ZCQkICIiAh8+umnzzxHo9Fg2LBhqFy5Mtq0aYMKFSpg8eLFAABvb28cPHgQGo0GrVu3RkBAAEaOHAlXV1fI5XLI5XKsX78ex48fR9WqVTFq1Ch89dVXBtd3cnLCl19+iTp16uCNN95AVFQUduzYoV8aYMeOHWjcuDEGDhyIChUqoFevXrh+/bpZkmN6tcmEeGJxCyMEBARg9uzZaNu2Lc6cOYM6derg448/xp49e1CpUiX9VE0iIgBo0aIFqlSpgvnz51s7lFfW4MGDceHCBezfv9/aoRAVCpKXRI2MjNQ3cW/ZsgUdOnTAF198gRMnTqBt27YmD5CICqaHDx9i79692Lt3r/5/75Tj66+/RqtWreDg4IA//vgDq1evZh0RmZDk5EapVCI1NRVAzoJS/fv3B5AzJTUxMdG00RFRgVWzZk08fPgQs2fPNsuA4ILs6NGj+PLLL5GUlAQ/Pz/Mnz8fgwYNsnZYRIWG5G6pjh07IjMzEw0aNMD06dMRGRmJEiVKICwsDMHBwbh06ZK5YiUiIiJ6IckDihcuXAhbW1ts3rwZS5YsQYkSJQAAf/zxB9q0aWPyAImIiIikkNxyQ0RERPQqkzzmBsiZ7rdt2zb9ku9VqlRBx44d87UAGBEREZEpSW65uXLlCtq2bYvbt2/rBwlevHgRPj4+2L59O8qWLWuWQImIiIiMITm5adu2LYQQWLt2rX4LhgcPHuDtt9+GXC636N4xRERERE+TnNw4ODjgyJEjCAgIMCg/ffo0GjRogOTkZJMGSERERCSF5NlSKpUKSUlJucqTk5P1S8ATERERWYvk5KZ9+/YYMmQI/v77bwghIITAkSNHMHTo0JfeUI6IiIjoZUnuloqPj8eAAQPw22+/QaFQAACys7PRsWNHrFq1yqidaomIiIjM5f/yfewmgrj9sQAAAABJRU5ErkJggg=="
|
81
|
-
}
|
82
|
-
}
|
83
|
-
]
|
84
|
-
},
|
85
|
-
{
|
86
|
-
"cell_type": "markdown",
|
87
|
-
"metadata": {},
|
88
|
-
"source": "This script first defines the probabilities involved in the problem, then applies Bayes' theorem to calculate the probability of having the disease given a positive test result. It also creates an array of different prior probabilities and calculates the corresponding posterior probabilities using Bayes' theorem. Finally, it plots the relationship between the prior and posterior probabilities. The resulting plot shows how the posterior probability changes as the prior probability varies."
|
89
|
-
}
|
90
|
-
]
|
91
|
-
}
|