runbooks 0.7.0__py3-none-any.whl → 0.7.6__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (132) hide show
  1. runbooks/__init__.py +87 -37
  2. runbooks/cfat/README.md +300 -49
  3. runbooks/cfat/__init__.py +2 -2
  4. runbooks/finops/__init__.py +1 -1
  5. runbooks/finops/cli.py +1 -1
  6. runbooks/inventory/collectors/__init__.py +8 -0
  7. runbooks/inventory/collectors/aws_management.py +791 -0
  8. runbooks/inventory/collectors/aws_networking.py +3 -3
  9. runbooks/main.py +3389 -782
  10. runbooks/operate/__init__.py +207 -0
  11. runbooks/operate/base.py +311 -0
  12. runbooks/operate/cloudformation_operations.py +619 -0
  13. runbooks/operate/cloudwatch_operations.py +496 -0
  14. runbooks/operate/dynamodb_operations.py +812 -0
  15. runbooks/operate/ec2_operations.py +926 -0
  16. runbooks/operate/iam_operations.py +569 -0
  17. runbooks/operate/s3_operations.py +1211 -0
  18. runbooks/operate/tagging_operations.py +655 -0
  19. runbooks/remediation/CLAUDE.md +100 -0
  20. runbooks/remediation/DOME9.md +218 -0
  21. runbooks/remediation/README.md +26 -0
  22. runbooks/remediation/Tests/__init__.py +0 -0
  23. runbooks/remediation/Tests/update_policy.py +74 -0
  24. runbooks/remediation/__init__.py +95 -0
  25. runbooks/remediation/acm_cert_expired_unused.py +98 -0
  26. runbooks/remediation/acm_remediation.py +875 -0
  27. runbooks/remediation/api_gateway_list.py +167 -0
  28. runbooks/remediation/base.py +643 -0
  29. runbooks/remediation/cloudtrail_remediation.py +908 -0
  30. runbooks/remediation/cloudtrail_s3_modifications.py +296 -0
  31. runbooks/remediation/cognito_active_users.py +78 -0
  32. runbooks/remediation/cognito_remediation.py +856 -0
  33. runbooks/remediation/cognito_user_password_reset.py +163 -0
  34. runbooks/remediation/commons.py +455 -0
  35. runbooks/remediation/dynamodb_optimize.py +155 -0
  36. runbooks/remediation/dynamodb_remediation.py +744 -0
  37. runbooks/remediation/dynamodb_server_side_encryption.py +108 -0
  38. runbooks/remediation/ec2_public_ips.py +134 -0
  39. runbooks/remediation/ec2_remediation.py +892 -0
  40. runbooks/remediation/ec2_subnet_disable_auto_ip_assignment.py +72 -0
  41. runbooks/remediation/ec2_unattached_ebs_volumes.py +448 -0
  42. runbooks/remediation/ec2_unused_security_groups.py +202 -0
  43. runbooks/remediation/kms_enable_key_rotation.py +651 -0
  44. runbooks/remediation/kms_remediation.py +717 -0
  45. runbooks/remediation/lambda_list.py +243 -0
  46. runbooks/remediation/lambda_remediation.py +971 -0
  47. runbooks/remediation/multi_account.py +569 -0
  48. runbooks/remediation/rds_instance_list.py +199 -0
  49. runbooks/remediation/rds_remediation.py +873 -0
  50. runbooks/remediation/rds_snapshot_list.py +192 -0
  51. runbooks/remediation/requirements.txt +118 -0
  52. runbooks/remediation/s3_block_public_access.py +159 -0
  53. runbooks/remediation/s3_bucket_public_access.py +143 -0
  54. runbooks/remediation/s3_disable_static_website_hosting.py +74 -0
  55. runbooks/remediation/s3_downloader.py +215 -0
  56. runbooks/remediation/s3_enable_access_logging.py +562 -0
  57. runbooks/remediation/s3_encryption.py +526 -0
  58. runbooks/remediation/s3_force_ssl_secure_policy.py +143 -0
  59. runbooks/remediation/s3_list.py +141 -0
  60. runbooks/remediation/s3_object_search.py +201 -0
  61. runbooks/remediation/s3_remediation.py +816 -0
  62. runbooks/remediation/scan_for_phrase.py +425 -0
  63. runbooks/remediation/workspaces_list.py +220 -0
  64. runbooks/security/__init__.py +9 -10
  65. runbooks/security/security_baseline_tester.py +4 -2
  66. runbooks-0.7.6.dist-info/METADATA +608 -0
  67. {runbooks-0.7.0.dist-info → runbooks-0.7.6.dist-info}/RECORD +84 -76
  68. {runbooks-0.7.0.dist-info → runbooks-0.7.6.dist-info}/entry_points.txt +0 -1
  69. {runbooks-0.7.0.dist-info → runbooks-0.7.6.dist-info}/top_level.txt +0 -1
  70. jupyter-agent/.env +0 -2
  71. jupyter-agent/.env.template +0 -2
  72. jupyter-agent/.gitattributes +0 -35
  73. jupyter-agent/.gradio/certificate.pem +0 -31
  74. jupyter-agent/README.md +0 -16
  75. jupyter-agent/__main__.log +0 -8
  76. jupyter-agent/app.py +0 -256
  77. jupyter-agent/cloudops-agent.png +0 -0
  78. jupyter-agent/ds-system-prompt.txt +0 -154
  79. jupyter-agent/jupyter-agent.png +0 -0
  80. jupyter-agent/llama3_template.jinja +0 -123
  81. jupyter-agent/requirements.txt +0 -9
  82. jupyter-agent/tmp/4ojbs8a02ir/jupyter-agent.ipynb +0 -68
  83. jupyter-agent/tmp/cm5iasgpm3p/jupyter-agent.ipynb +0 -91
  84. jupyter-agent/tmp/crqbsseag5/jupyter-agent.ipynb +0 -91
  85. jupyter-agent/tmp/hohanq1u097/jupyter-agent.ipynb +0 -57
  86. jupyter-agent/tmp/jns1sam29wm/jupyter-agent.ipynb +0 -53
  87. jupyter-agent/tmp/jupyter-agent.ipynb +0 -27
  88. jupyter-agent/utils.py +0 -409
  89. runbooks/aws/__init__.py +0 -58
  90. runbooks/aws/dynamodb_operations.py +0 -231
  91. runbooks/aws/ec2_copy_image_cross-region.py +0 -195
  92. runbooks/aws/ec2_describe_instances.py +0 -202
  93. runbooks/aws/ec2_ebs_snapshots_delete.py +0 -186
  94. runbooks/aws/ec2_run_instances.py +0 -213
  95. runbooks/aws/ec2_start_stop_instances.py +0 -212
  96. runbooks/aws/ec2_terminate_instances.py +0 -143
  97. runbooks/aws/ec2_unused_eips.py +0 -196
  98. runbooks/aws/ec2_unused_volumes.py +0 -188
  99. runbooks/aws/s3_create_bucket.py +0 -142
  100. runbooks/aws/s3_list_buckets.py +0 -152
  101. runbooks/aws/s3_list_objects.py +0 -156
  102. runbooks/aws/s3_object_operations.py +0 -183
  103. runbooks/aws/tagging_lambda_handler.py +0 -183
  104. runbooks/inventory/FAILED_SCRIPTS_TROUBLESHOOTING.md +0 -619
  105. runbooks/inventory/PASSED_SCRIPTS_GUIDE.md +0 -738
  106. runbooks/inventory/aws_organization.png +0 -0
  107. runbooks/inventory/cfn_move_stack_instances.py +0 -1526
  108. runbooks/inventory/delete_s3_buckets_objects.py +0 -169
  109. runbooks/inventory/lockdown_cfn_stackset_role.py +0 -224
  110. runbooks/inventory/update_aws_actions.py +0 -173
  111. runbooks/inventory/update_cfn_stacksets.py +0 -1215
  112. runbooks/inventory/update_cloudwatch_logs_retention_policy.py +0 -294
  113. runbooks/inventory/update_iam_roles_cross_accounts.py +0 -478
  114. runbooks/inventory/update_s3_public_access_block.py +0 -539
  115. runbooks/organizations/__init__.py +0 -12
  116. runbooks/organizations/manager.py +0 -374
  117. runbooks-0.7.0.dist-info/METADATA +0 -375
  118. /runbooks/inventory/{tests → Tests}/common_test_data.py +0 -0
  119. /runbooks/inventory/{tests → Tests}/common_test_functions.py +0 -0
  120. /runbooks/inventory/{tests → Tests}/script_test_data.py +0 -0
  121. /runbooks/inventory/{tests → Tests}/setup.py +0 -0
  122. /runbooks/inventory/{tests → Tests}/src.py +0 -0
  123. /runbooks/inventory/{tests/test_inventory_modules.py → Tests/test_Inventory_Modules.py} +0 -0
  124. /runbooks/inventory/{tests → Tests}/test_cfn_describe_stacks.py +0 -0
  125. /runbooks/inventory/{tests → Tests}/test_ec2_describe_instances.py +0 -0
  126. /runbooks/inventory/{tests → Tests}/test_lambda_list_functions.py +0 -0
  127. /runbooks/inventory/{tests → Tests}/test_moto_integration_example.py +0 -0
  128. /runbooks/inventory/{tests → Tests}/test_org_list_accounts.py +0 -0
  129. /runbooks/inventory/{Inventory_Modules.py → inventory_modules.py} +0 -0
  130. /runbooks/{aws → operate}/tags.json +0 -0
  131. {runbooks-0.7.0.dist-info → runbooks-0.7.6.dist-info}/WHEEL +0 -0
  132. {runbooks-0.7.0.dist-info → runbooks-0.7.6.dist-info}/licenses/LICENSE +0 -0
@@ -1,91 +0,0 @@
1
- {
2
- "metadata": {
3
- "kernel_info": {
4
- "name": "python3"
5
- },
6
- "language_info": {
7
- "name": "python",
8
- "version": "3.12"
9
- }
10
- },
11
- "nbformat": 4,
12
- "nbformat_minor": 0,
13
- "cells": [
14
- {
15
- "cell_type": "markdown",
16
- "metadata": {},
17
- "source": "<p align=\"center\">\n <img src=\"cloudops-agent.png\" alt=\"Jupyter Agent\" />\n</p>\n\n\n<p style=\"text-align:center;\">Let a LLM agent write and execute code inside a notebook!</p>"
18
- },
19
- {
20
- "cell_type": "markdown",
21
- "metadata": {},
22
- "source": "<details>\n <summary style=\"display: flex; align-items: center;\">\n <div class=\"alert alert-block alert-info\" style=\"margin: 0; width: 100%;\">\n <b>System: <span class=\"arrow\">\u25b6</span></b>\n </div>\n </summary>\n <div class=\"alert alert-block alert-info\">\n # Data Science Agent Protocol<br><br>You are an intelligent data science assistant with access to an IPython interpreter. Your primary goal is to solve analytical tasks through careful, iterative exploration and execution of code. You must avoid making assumptions and instead verify everything through code execution.<br><br>## Core Principles<br>1. Always execute code to verify assumptions<br>2. Break down complex problems into smaller steps<br>3. Learn from execution results<br>4. Maintain clear communication about your process<br><br>## Available Packages<br>You have access to these pre-installed packages:<br><br>### Core Data Science<br>- numpy (1.26.4)<br>- pandas (1.5.3)<br>- scipy (1.12.0)<br>- scikit-learn (1.4.1.post1)<br><br>### Visualization<br>- matplotlib (3.9.2)<br>- seaborn (0.13.2)<br>- plotly (5.19.0)<br>- bokeh (3.3.4)<br>- e2b_charts (latest)<br><br>### Image & Signal Processing<br>- opencv-python (4.9.0.80)<br>- pillow (9.5.0)<br>- scikit-image (0.22.0)<br>- imageio (2.34.0)<br><br>### Text & NLP<br>- nltk (3.8.1)<br>- spacy (3.7.4)<br>- gensim (4.3.2)<br>- textblob (0.18.0)<br><br>### Audio Processing<br>- librosa (0.10.1)<br>- soundfile (0.12.1)<br><br>### File Handling<br>- python-docx (1.1.0)<br>- openpyxl (3.1.2)<br>- xlrd (2.0.1)<br><br>### Other Utilities<br>- requests (2.26.0)<br>- beautifulsoup4 (4.12.3)<br>- sympy (1.12)<br>- xarray (2024.2.0)<br>- joblib (1.3.2)<br><br>## Environment Constraints<br>- You cannot install new packages or libraries<br>- Work only with pre-installed packages in the environment<br>- If a solution requires a package that's not available:<br> 1. Check if the task can be solved with base libraries<br> 2. Propose alternative approaches using available packages<br> 3. Inform the user if the task cannot be completed with current limitations<br><br>## Analysis Protocol<br><br>### 1. Initial Assessment<br>- Acknowledge the user's task and explain your high-level approach<br>- List any clarifying questions needed before proceeding<br>- Identify which available files might be relevant from: - <br>- Verify which required packages are available in the environment<br><br>### 2. Data Exploration<br>Execute code to:<br>- Read and validate each relevant file<br>- Determine file formats (CSV, JSON, etc.)<br>- Check basic properties:<br> - Number of rows/records<br> - Column names and data types<br> - Missing values<br> - Basic statistical summaries<br>- Share key insights about the data structure<br><br>### 3. Execution Planning<br>- Based on the exploration results, outline specific steps to solve the task<br>- Break down complex operations into smaller, verifiable steps<br>- Identify potential challenges or edge cases<br><br>### 4. Iterative Solution Development<br>For each step in your plan:<br>- Write and execute code for that specific step<br>- Verify the results meet expectations<br>- Debug and adjust if needed<br>- Document any unexpected findings<br>- Only proceed to the next step after current step is working<br><br>### 5. Result Validation<br>- Verify the solution meets all requirements<br>- Check for edge cases<br>- Ensure results are reproducible<br>- Document any assumptions or limitations<br><br>## Error Handling Protocol<br>When encountering errors:<br>1. Show the error message<br>2. Analyze potential causes<br>3. Propose specific fixes<br>4. Execute modified code<br>5. Verify the fix worked<br>6. Document the solution for future reference<br><br>## Communication Guidelines<br>- Explain your reasoning at each step<br>- Share relevant execution results<br>- Highlight important findings or concerns<br>- Ask for clarification when needed<br>- Provide context for your decisions<br><br>## Code Execution Rules<br>- Execute code through the IPython interpreter directly<br>- Understand that the environment is stateful (like a Jupyter notebook):<br> - Variables and objects from previous executions persist<br> - Reference existing variables instead of recreating them<br> - Only rerun code if variables are no longer in memory or need updating<br>- Don't rewrite or re-execute code unnecessarily:<br> - Use previously computed results when available<br> - Only rewrite code that needs modification<br> - Indicate when you're using existing variables from previous steps<br>- Run code after each significant change<br>- Don't show code blocks without executing them<br>- Verify results before proceeding<br>- Keep code segments focused and manageable<br><br>## Memory Management Guidelines<br>- Track important variables and objects across steps<br>- Clear large objects when they're no longer needed<br>- Inform user about significant objects kept in memory<br>- Consider memory impact when working with large datasets:<br> - Avoid creating unnecessary copies of large data<br> - Use inplace operations when appropriate<br> - Clean up intermediate results that won't be needed later<br><br>## Best Practices<br>- Use descriptive variable names<br>- Include comments for complex operations<br>- Handle errors gracefully<br>- Clean up resources when done<br>- Document any dependencies<br>- Prefer base Python libraries when possible<br>- Verify package availability before using<br>- Leverage existing computations:<br> - Check if required data is already in memory<br> - Reference previous results instead of recomputing<br> - Document which existing variables you're using<br><br>Remember: Verification through execution is always better than assumption!\n </div>\n</details>\n\n<style>\ndetails > summary .arrow {\n display: inline-block;\n transition: transform 0.2s;\n}\ndetails[open] > summary .arrow {\n transform: rotate(90deg);\n}\n</style>\n"
23
- },
24
- {
25
- "cell_type": "markdown",
26
- "metadata": {},
27
- "source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the linear equation and plot the results.\n</div>\n"
28
- },
29
- {
30
- "cell_type": "code",
31
- "execution_count": 1,
32
- "metadata": {},
33
- "source": "import numpy as np\n\n# Define the coefficients of the line\nm = 2 # slope\nc = 3 # intercept\n\n# Generate x values\nx = np.linspace(-10, 10, 400)\n\n# Calculate y values\ny = m * x + c\n\nprint(\"The equation of the line is: y = {:.2f}x + {:.2f}\".format(m, c))\n\n# Plot the line\nimport matplotlib.pyplot as plt\nplt.plot(x, y)\nplt.xlabel('x')\nplt.ylabel('y')\nplt.title('Linear Equation y = {:.2f}x + {:.2f}'.format(m, c))\nplt.grid(True)\nplt.axhline(0, color='black')\nplt.axvline(0, color='black')\nplt.show()",
34
- "outputs": [
35
- {
36
- "output_type": "stream",
37
- "name": "stdout",
38
- "text": "The equation of the line is: y = 2.00x + 3.00\n"
39
- },
40
- {
41
- "output_type": "display_data",
42
- "metadata": {},
43
- "data": {
44
- "text/plain": [
45
- "<Figure size 640x480 with 1 Axes>"
46
- ],
47
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAj4AAAHHCAYAAAC/R1LgAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAABiDElEQVR4nO3deXhMd/8//uckmUwS2WUnQoTYJSilte900doiXVBV1ShFtbgVoUVR1NLtcyvuEmstLUpjq6qtSIh9ixAksSWTdTKZef/+8M38RHYmOTNnno/rynWZM+8583rNmUmezvucMwohhAARERGRBbCSugAiIiKiysLgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQxblxo0bUCgUWLlypdSlWKTp06dDoVBIXQYRWTAGH5KNlStXQqFQ4MSJE1KXUmHyg0NxP0lJSVKXiKysLEyfPh0HDhyQuhSTo9frsXLlSrz22mvw9/dHlSpV0KhRI3z55ZfIyckp83oOHz6Ml19+GQ4ODvDx8cHo0aORkZFRaJxGo8Hnn38OPz8/2Nvbo1WrVoiOjjZmS0a1ZcsWdO/eHX5+flCpVKhevTr69euHs2fPlnkdFy5cQI8ePeDo6Ah3d3e88847uHfvXqFxer0ec+fORa1atWBnZ4cmTZpg7dq1xmyHTJSN1AUQVaaAgABkZ2dDqVRKXcpz+f777+Ho6Fhouaura+UX85SsrCxERkYCADp06FDgvilTpmDixIkSVGUasrKyMHToULz44ov48MMP4eXlhSNHjmDatGnYu3cv9u3bV+oesdjYWHTu3Bn169fHggULkJiYiPnz5+PKlSv4448/CowdMmQINm3ahE8++QR16tTBypUr0atXL+zfvx8vv/xyRbb6TOLi4uDm5oYxY8bAw8MDSUlJ+Pnnn9GyZUscOXIETZs2LfHxiYmJaNeuHVxcXDBr1ixkZGRg/vz5iIuLw/Hjx2Fra2sY+5///Adz5szB8OHD8cILL2Dbtm0IDw+HQqFAWFhYRbdKUhJEMrFixQoBQPz7779Sl/JcMjMzi71v2rRpAoC4d+9eJVZUPvfu3RMAxLRp06QuxeRoNBrxzz//FFoeGRkpAIjo6OhS19GzZ0/h6+sr0tLSDMv+7//+TwAQu3fvNiw7duyYACDmzZtnWJadnS1q164tWrdu/ZydFC8+Pl4AEPv37zfK+pKSkoSNjY0YMWJEqWNHjhwp7O3tRUJCgmFZdHS0ACB+/PFHw7LExEShVCpFRESEYZlerxdt27YV1atXF3l5eUapnUwTp7rIohR1jM+QIUPg6OiI27dvo0+fPnB0dISnpyc+/fRT6HS6Ao/X6/VYtGgRGjZsCDs7O3h7e2PEiBF49OhRgXHbtm1D7969Dbvsa9eujZkzZxZaX4cOHdCoUSOcPHkS7dq1g4ODAyZPnmyUXhMTE9GnTx9UqVIFXl5eGDt2LHbv3g2FQlFgGqpmzZoYMmRIocd36NChwB6b3NxcTJ06Fc2bN4eLiwuqVKmCtm3bYv/+/YYxN27cgKenJwAgMjLSMAU3ffp0AEUf45OXl4eZM2eidu3aUKlUqFmzJiZPngyNRlNgXM2aNfHKK6/g0KFDaNmyJezs7BAYGIj//e9/Jb4OQgjUrFkTr7/+eqH7cnJy4OLighEjRpS4DmOxtbVFmzZtCi1/4403ADyepimJWq1GdHQ03n77bTg7OxuWv/vuu3B0dMSGDRsMyzZt2gRra2t88MEHhmV2dnYYNmwYjhw5glu3bgEAVqxYAYVCgZ9//rnAc82aNQsKhQI7d+4sf6NG5OXlBQcHB6SmppY69tdff8Urr7yCGjVqGJZ16dIFdevWLfDabNu2DVqtFh999JFhmUKhwMiRI5GYmIgjR44YtQcyLZzqIgKg0+nQvXt3tGrVCvPnz8eePXvwzTffoHbt2hg5cqRh3IgRI7By5UoMHToUo0ePRnx8PJYuXYqYmBj8888/him0lStXwtHREePGjYOjoyP27duHqVOnQq1WY968eQWe+8GDB+jZsyfCwsLw9ttvw9vbu9R6Hz58WGiZjY2NYaorOzsbnTt3xs2bNzF69Gj4+fnhl19+wb59+575NVKr1fjvf/+LQYMGYfjw4UhPT8fy5cvRvXt3HD9+HCEhIfD09MT333+PkSNH4o033sCbb74JAGjSpEmx633//fexatUq9OvXD+PHj8exY8cwe/ZsXLhwAVu2bCkw9urVq+jXrx+GDRuGwYMH4+eff8aQIUPQvHlzNGzYsMj1KxQKvP3225g7dy4ePnwId3d3w32///471Go13n777RJ7T0tLg1arLfU1srOzK3IKsjT5x2Z5eHiUOC4uLg55eXlo0aJFgeW2trYICQlBTEyMYVlMTAzq1q1bICABQMuWLQE8njLz9/fH0KFDsXnzZowbNw5du3aFv78/4uLiEBkZiWHDhqFXr17l7ud5paamQqvVIikpCYsWLYJarUbnzp1LfMzt27eRkpJS6LUBHvf8ZICLiYlBlSpVUL9+/ULj8u83xalAMhKpdzkRGUtZprryd8OvWLHCsGzw4MECgJgxY0aBsaGhoaJ58+aG23///bcAINasWVNg3K5duwotz8rKKvTcI0aMEA4ODiInJ8ewrH379gKA+OGHH8rUY/5UV1E/wcHBhnGLFi0SAMSGDRsMyzIzM0VQUFChaYiAgAAxePDgQs/Vvn170b59e8PtvLw8odFoCox59OiR8Pb2Fu+9955hWUlTXfn154uNjRUAxPvvv19g3KeffioAiH379hWoE4A4ePCgYVlKSopQqVRi/PjxhV+sJ1y6dEkAEN9//32B5a+99pqoWbOm0Ov1JT4+fzuV9lPU61gWXbp0Ec7OzuLRo0cljtu4cWOh1yBf//79hY+Pj+F2w4YNRadOnQqNO3fuXKH33N27d4W7u7vo2rWr0Gg0IjQ0VNSoUaPAdFpZGWOqKzg42PCaOjo6iilTpgidTlfiY/79918BQPzvf/8rdN+ECRMEAMNnr3fv3iIwMLDQuMzMTAFATJw48ZlrJ9PHPT5E/8+HH35Y4Hbbtm3xyy+/GG5v3LgRLi4u6Nq1K+7fv29Y3rx5czg6OmL//v0IDw8HANjb2xvuT09Ph0ajQdu2bfHjjz/i4sWLBQ7SVKlUGDp0aLlq/fXXXwv9T75KlSqGf+/cuRO+vr7o16+fYZmDgwM++OADfPbZZ+V6rnzW1tawtrYG8HjKLzU1FXq9Hi1atMCpU6eeaZ35/wsfN25cgeXjx4/H/PnzsWPHDnTs2NGwvEGDBmjbtq3htqenJ4KDg3H9+vUSn6du3bpo1aoV1qxZY9jODx8+xB9//IHPPvus1AOKv/nmm0LTmUXx8/MrdczTZs2ahT179uC7774r9eD07OxsAI/fM0+zs7Mz3J8/trhxT64LAHx8fLBs2TIMGjQIbdu2RWxsLKKjowu9x4qSkZFR4Iy0/NcpLS2twOdEqVTCxcWl1PUBj6ff1Go1rl+/jhUrViA7Oxs6nQ5WVsUfnVHaa5M/RqVSleu1Iflh8CHC4194+cem5HNzcyvwx+7KlStIS0uDl5dXketISUkx/PvcuXOYMmUK9u3bB7VaXWBcWlpagdvVqlUrcLZJWbRr167EaZGEhAQEBQUV+oMeHBxcrud52qpVq/DNN9/g4sWLBaZ+atWq9UzrS0hIgJWVFYKCggos9/HxgaurKxISEgosf/LYjXxPb6fivPvuuxg1ahQSEhIQEBCAjRs3QqvV4p133in1sc2bNy91zLNYv349pkyZgmHDhhWYUi1OfqB++vgn4PHxSk8Gbnt7+2LHPbmufGFhYVi9ejV27NiBDz74oNSppXyjRo3CqlWrCi3v06dPgdvt27cv8yUOWrduXaCu/Cmp+fPnF/uY0l6bJ8eU97UheWHwIQIMezJKotfr4eXlhTVr1hR5f35wSk1NRfv27eHs7IwZM2agdu3asLOzw6lTp/D5559Dr9cXeJzUv2SL29uh0+kKvC6rV6/GkCFD0KdPH0yYMAFeXl6wtrbG7Nmzce3atQqp4WnFbSchRKmPDQsLw9ixY7FmzRpMnjwZq1evRosWLcoUBh8+fIjc3NxSx9nb25d5r0Z0dDTeffdd9O7dGz/88EOZHuPr6wsAuHv3bqH77t69W2CPk6+vL27fvl3kOKDw3qkHDx4YroF1/vx56PX6Evew5Pvss88KHCOVnJyMt99+G/Pnzy+wZ9PNza3UdRXFzc0NnTp1wpo1a0oMPqW9Nu7u7oa9PL6+vti/fz+EEAXee8W9NiQvDD5EZVS7dm3s2bMHL730Uolh5cCBA3jw4AE2b96Mdu3aGZbHx8dXRpkAHl+v6OzZs4V+sV+6dKnQWDc3tyLPmElISEBgYKDh9qZNmxAYGIjNmzcXWOe0adMKPK48V2YOCAiAXq/HlStXChxompycjNTUVAQEBJR5XaVxd3dH7969sWbNGrz11lv4559/sGjRojI99s0338Rff/1V6rjBgweX6argx44dwxtvvIEWLVpgw4YNsLEp26/iRo0awcbGBidOnMCAAQMMy3NzcxEbG1tgWUhICPbv3w+1Wl1gyurYsWOG+58UERGB9PR0zJ49G5MmTcKiRYsKTUEWpUGDBmjQoIHh9o0bNwA83kv29HWcnlV2dnahPaVPq1atGjw9PYu8gGn+wff5QkJC8N///hcXLlwoUHtxrw3JC09nJyqjAQMGQKfTYebMmYXuy8vLM4SH/L0ST+6FyM3NxXfffVcpdQJAr169cOfOHWzatMmwLCsrCz/99FOhsbVr18bRo0cL7NHYvn274XTnfEX1dezYsUKn/jo4OABAmU4/zj9j6OkAsmDBAgBA7969S11Hebzzzjs4f/48JkyYAGtr6zJfqO6bb75BdHR0qT9lOX7qwoUL6N27N2rWrInt27eXGKIvXryImzdvGm67uLigS5cuWL16NdLT0w3Lf/nlF2RkZKB///6GZf369YNOpyuwzTUaDVasWIFWrVrB39/fsHzTpk1Yv3495syZg4kTJyIsLAxTpkzB5cuXy/T6GMuT08X5bty4gb179xY6W+vatWuF9jT27du30Ht37969uHz5coHX5vXXX4dSqSzwmRRC4IcffkC1atWKvOQAyQf3+JDs/Pzzz9i1a1eh5WPGjHmu9bZv3x4jRozA7NmzERsbi27dukGpVOLKlSvYuHEjvv32W/Tr1w9t2rSBm5sbBg8ejNGjR0OhUOCXX34p03RMWW3atKnI06a7du0Kb29vDB8+HEuXLsW7776LkydPwtfXF7/88oshlDzp/fffx6ZNm9CjRw8MGDAA165dw+rVq1G7du0C41555RVs3rwZb7zxBnr37o34+Hj88MMPaNCgQYGvS7C3t0eDBg2wfv161K1bF+7u7mjUqBEaNWpU6LmbNm2KwYMH46effjJMER4/fhyrVq1Cnz59ChzYbAy9e/dG1apVsXHjRvTs2bPY47WeZqxjfNLT09G9e3c8evQIEyZMwI4dOwrcX7t27QLHt9SvX7/QsTFfffUV2rRpg/bt2+ODDz5AYmIivvnmG3Tr1g09evQwjGvVqhX69++PSZMmISUlBUFBQVi1ahVu3LiB5cuXG8alpKRg5MiR6NixI0aNGgUAWLp0Kfbv348hQ4bg0KFDZZryMobGjRujc+fOCAkJgZubG65cuYLly5dDq9Vizpw5BcbmH4OUv4cJACZPnoyNGzeiY8eOGDNmDDIyMjBv3jw0bty4wAkE1atXxyeffIJ58+ZBq9XihRdewNatW/H3339jzZo1ZZr6JjMm4RllREaVfzp7cT+3bt0q9nT2KlWqFFrf06de5/vpp59E8+bNhb29vXBychKNGzcWn332mbhz545hzD///CNefPFFYW9vL/z8/MRnn30mdu/eXeg03/bt24uGDRuWuceSTmd/et0JCQnitddeEw4ODsLDw0OMGTPGcOr906caf/PNN6JatWpCpVKJl156SZw4caLQ6ex6vV7MmjVLBAQECJVKJUJDQ8X27dvF4MGDRUBAQIH1HT58WDRv3lzY2toWOLW9qNdUq9WKyMhIUatWLaFUKoW/v7+YNGlSgdP+hXh8Onvv3r0LvSZP11majz76SAAQUVFRZX6MseS//4r7efp0eABF9vb333+LNm3aCDs7O+Hp6SkiIiKEWq0uNC47O1t8+umnwsfHR6hUKvHCCy+IXbt2FRjz5ptvCicnJ3Hjxo0Cy7dt2yYAiK+//vqZenyW09mnTZsmWrRoIdzc3ISNjY3w8/MTYWFh4syZM4XGBgQEFHrfCSHE2bNnRbdu3YSDg4NwdXUVb731lkhKSio0TqfTGd7Ptra2omHDhmL16tXlrpnMj0III/43lIhM2oEDB9CxY0fs37/faMdfmJuxY8di+fLlSEpKKnIPGBHJG4/xISKLkZOTg9WrV6Nv374MPUQWisf4EJHspaSkYM+ePdi0aRMePHjw3Md7EZH5YvAhItk7f/483nrrLXh5eWHx4sU8XZnIgpnNMT6zZ8/G5s2bcfHiRdjb26NNmzb4+uuvC1x8rEOHDoWutTFixIgyXxyMiIiI5M1sjvH566+/EBERgaNHjyI6OhparRbdunVDZmZmgXHDhw/H3bt3DT9z586VqGIiIiIyNWYz1fX0dVlWrlwJLy8vnDx5ssDVcR0cHODj41PZ5REREZEZMJvg87T8y5e7u7sXWL5mzRqsXr0aPj4+ePXVV/HFF1+UePaGRqMp8GV1er0eDx8+RNWqVct16X0iIiKSjhAC6enp8PPzK/Gim2ZzjM+T9Ho9XnvtNaSmpuLQoUOG5T/99BMCAgLg5+eHM2fO4PPPP0fLli2xefPmYtc1ffp0REZGVkbZREREVMFu3bqF6tWrF3u/WQafkSNH4o8//sChQ4dKbG7fvn3o3Lkzrl69Wujy+/me3uOTlpaGGjVqID4+Hk5OTkarWavVYv/+/ejYsSOUSqXR1msq5N4fIP8e5d5fZmam4UtPr127VuZvUTcnct+Gcu8PkH+PFdlfeno6atWqhdTU1BI/32Y31TVq1Chs374dBw8eLDH0AI+/qwZAicFHpVJBpVIVWu7u7l7gG42fl1arhYODA6pWrSrbN7Oc+wPk36Pc+7OzszP8293dHa6urtIVU0Hkvg3l3h8g/x4rsr/89ZV2mIrZBB8hBD7++GNs2bIFBw4cQK1atUp9TGxsLADA19e3gqsjIiIic2A2wSciIgJRUVHYtm0bnJyckJSUBABwcXGBvb09rl27hqioKPTq1QtVq1bFmTNnMHbsWLRr1w5NmjSRuHoiIiIyBWYTfL7//nsAKPTFiitWrMCQIUNga2uLPXv2YNGiRcjMzIS/vz/69u2LKVOmSFAtERERmSKzCT6lHYPt7+9f6KrNRERERE8ymys3ExERET0vBh8iIiKyGAw+REREZDEYfIiIiMhiMPgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVWKJHUObmVIW4PZXLmZiIiIzNeBSykYuz4W+jxr9M/MhberNN8+z+BDREREFUar0+ObPy/jh7+uAQCqOQCZuXmS1cPgQ0RERBXiTmo2Pl4bg5MJjwAAb7X0R6giHv5uDpLVxOBDRERERrfnfDI+3XQaqVlaOKls8HW/JuhazwM7d8ZLWheDDxERERlNbp4ec3ddxH8PPQ44Taq7YOmgZqhR1QFarVbi6hh8iIiIyEhuPczCqLUxOH0rFQAw9KWamNizHlQ21tIW9gQGHyIiInpuu84mYcKm00jPyYOznQ3m9W+K7g19pC6rEAYfIiIiemaaPB1m77yIlYdvAABC/F2xNDwU1SU8gLkkDD5ERET0TBIeZGJUVAzibqcBAD5oF4gJ3YOhtDbd6yMz+BAREVG5bT9zBxN/jUOGJg9uDkp8M6ApOtXzlrqsUjH4EBERUZnlaHWYuf081hy7CQBoEeCGJeGh8HWxl7iysmHwISIiojK5fi8DEVExuHBXDQD4qENtjOtaFzYmPLX1NAYfIiIiKtXWmNuYvCUOWbk6VK1iiwUDQ9C+rqfUZZUbgw8REREVKztXh+m/ncP6E7cAAC8GuuPbsFB4O9tJXNmzYfAhIiKiIl1JTkdE1ClcTs6AQgF83KkOxnSuA2srhdSlPTMGHyIiIipk44lbmLrtHLK1Ong4qvBtWAheCvKQuqznxuBDREREBpmaPHyx7Sw2n7oNAHgpqCoWDgyBl5N5Tm09jcGHiIiIAAAXk9SIWHMK1+5lwkoBjO1SFx91DDLrqa2nMfgQERFZOCEE1v97C9N+OwdNnh7ezip8GxaKFwOrSl2a0TH4EBERWbAMTR4mb47Db6fvAADa1/XEggFNUdVRJXFlFYPBh4iIyEKdu5OGUVExiL+fCWsrBT7tFowR7QJhJaOpracx+BAREVkYIQRWH7uJmdvPIzdPD18XOywZFIoWNd2lLq3Cmc01pmfPno0XXngBTk5O8PLyQp8+fXDp0qUCY3JychAREYGqVavC0dERffv2RXJyskQVExERmR51jhajomLwxdazyM3To3M9L+wc3dYiQg9gRsHnr7/+QkREBI4ePYro6GhotVp069YNmZmZhjFjx47F77//jo0bN+Kvv/7CnTt38Oabb0pYNRERkek4k5iKVxYfwo64u7CxUmBK7/r47+AWcKtiK3VplcZsprp27dpV4PbKlSvh5eWFkydPol27dkhLS8Py5csRFRWFTp06AQBWrFiB+vXr4+jRo3jxxRelKJuIiEhyQgisPHwDs3ZegFYnUM3VHkvDQxFaw03q0iqd2QSfp6WlpQEA3N0f75o7efIktFotunTpYhhTr1491KhRA0eOHCk2+Gg0Gmg0GsNttfrxN85qtVpotVqj1Zu/LmOu05TIvT9A/j1aSn/5/5Zjn5ayDeXaH1AxPaZlazFpyzlEX0gBAHSt74XZbzSEi72y0l/LityGZV2nQgghjP7sFUyv1+O1115DamoqDh06BACIiorC0KFDC4QYAGjZsiU6duyIr7/+ush1TZ8+HZGRkYWWR0VFwcHBwfjFE5EkcnJyEBYWBgBYt24d7OzkcRVaopLcSAdWXbHGQ40C1gqBPgF6tPURUMjwpK2srCyEh4cjLS0Nzs7OxY4zyz0+EREROHv2rCH0PI9JkyZh3LhxhttqtRr+/v7o1q1biS9ceWm1WkRHR6Nr165QKpVGW6+pkHt/gPx7lHt/Tx4P2KlTJ7i6ukpXTAWR+zaUe3+A8XrU6wVWHEnAkmNXkKcX8Hezx+KBTdGomvH+rj2LityG+TM2pTG74DNq1Chs374dBw8eRPXq1Q3LfXx8kJubi9TU1AK/0JKTk+Hj41Ps+lQqFVSqwhdpUiqVFfLBqqj1mgq59wfIv0e59vdkT3LtMR/7M3/P0+OjzFyM33ga+y4+ntrq3dgXs/s2hrOd6bxmFbENy7o+szmrSwiBUaNGYcuWLdi3bx9q1apV4P7mzZtDqVRi7969hmWXLl3CzZs30bp168oul4iIqNKduPEQvRb/jX0XU2BrY4Uv+zTC0vBQkwo9UjObPT4RERGIiorCtm3b4OTkhKSkJACAi4sL7O3t4eLigmHDhmHcuHFwd3eHs7MzPv74Y7Ru3ZpndBERkazp9QI/HLyGb/68DJ1eoJZHFSwND0VDPxepSzM5ZhN8vv/+ewBAhw4dCixfsWIFhgwZAgBYuHAhrKys0LdvX2g0GnTv3h3fffddJVdKRERUee5naDBuw2kcvHwPAPB6iB++eqMxHFVm8ye+UpnNq1KWk8/s7OywbNkyLFu2rBIqIiIiktbR6w8wem0MUtI1UNlYYcbrDTGghT8Ucjxty0jMJvgQERHRYzq9wLL9V7Foz2XoBRDk5Yhl4c0Q7OMkdWkmj8GHiIjIjKSk52Ds+lj8c/UBAKBvs+qY2achHGz5J70s+CoRERGZiX+u3seYdbG4n6GBvdIaM/s0Qr/m1Ut/IBkw+BAREZm4PJ0ei/dewZL9VyEEEOzthGVvhSLIi1Nb5cXgQ0REZMKS1Tn4eG0Mjsc/BACEveCPaa82hL2ttcSVmScGHyIiIhN14FIKxm04jYeZuahia41ZbzbG6yHVpC7LrDH4EBERmZg8nR4L9l7E9weuAQDq+zpjWXgoAj0dJa7M/DH4EBERmZBHGuDtn0/g5M1UAMA7LwbgP73rw07JqS1jYPAhIiIyEfsu3cPcM9bIykuFk8oGc/o2Qe8mvlKXJSsMPkRERBLLzdNj3u6L+L+/4wEo0MjPGcveaoaAqlWkLk12GHyIiIgkdOthFj5eG4PYW6kAgHY+enw3vCUc7VXSFiZTDD5EREQS2X0uCRM2noY6Jw/OdjaY80YjaG+cgMrGSurSZIvBh4iIqJJp8nSYvfMiVh6+AQAI8XfFkkGh8HFSYucNSUuTPQYfIiKiSpTwIBOjomIQdzsNADC8bS1M6F4PtjZW0Gq1Elcnfww+RERElWTHmbuY+OsZpGvy4OqgxDf9m6JzfW+py7IoDD5EREQVLEerw5c7zmP10ZsAgBYBblg8KBR+rvYSV2Z5GHyIiIgq0PV7GYiIisGFu2oAwEcdamNs17pQWvMAZikw+BAREVWQbbG3MXlzHDJzdXCvYouFA0PQvq6n1GVZNAYfIiIiI8vO1SHy93NY9+8tAECrWu5YPCgU3s52EldGDD5ERERGdDUlHRFrYnApOR0KBfBxxyCM7lwHNpzaMgkMPkREREay6WQivth6FtlaHTwcVVg0MAQv1/GQuix6AoMPERHRc8rKzcMXW8/h11OJAICXgqpi4cAQeDlxasvUMPgQERE9h0tJ6YiIOoWrKRmwUgCfdKmLiI5BsLZSSF0aFYHBh4iI6BkIIbD+31uY9ts5aPL08HZW4duwULwYWFXq0qgEDD5ERETllKHJw3+2xGFb7B0AQLu6nlg4oCmqOvIb1U0dgw8REVE5nLuTho+jYnD9fiasrRQY360uPmxXG1ac2jILDD5ERERlIITA6mM3MXP7eeTm6eHrYoclg0LRoqa71KVROTD4EBERlUKdo8WkzXHYceYuAKBzPS/M798UblVsJa6MyovBh4iIqARxiWmIiDqFmw+zYGOlwOc96uH9trWgUHBqyxwx+BARERVBCIFVh29g1s6LyNXpUc3VHkvCQ9GshpvUpdFzYPAhIiJ6SlqWFp/9ehq7zyUDALo18Ma8fk3h4qCUuDJ6Xmb1xSEHDx7Eq6++Cj8/PygUCmzdurXA/UOGDIFCoSjw06NHD2mKJSIisxRz8xF6L/kbu88lQ2mtwLRXG+DHd5oz9MiEWe3xyczMRNOmTfHee+/hzTffLHJMjx49sGLFCsNtlYrXVCAiotIJIbD8UDzm/HEReXqBGu4OWBoeiibVXaUujYzIrIJPz5490bNnzxLHqFQq+Pj4VFJFREQkB48yc/HpxtPYezEFANC7sS9m920MZzvu5ZEbswo+ZXHgwAF4eXnBzc0NnTp1wpdffomqVYu/fLhGo4FGozHcVqvVAACtVgutVmu0uvLXZcx1mhK59wfIv0dL6S//33Ls01K2obH7O5nwCGM3xuFuWg5sbawwuWcwwl+oDoWi8l9LbsPnX3dpFEIIYfRnrwQKhQJbtmxBnz59DMvWrVsHBwcH1KpVC9euXcPkyZPh6OiII0eOwNrausj1TJ8+HZGRkYWWR0VFwcHBoaLKJ6JKlpOTg7CwMACPf1fY2fFbsy2dXgB77yiw86YV9FDA005gSF0dqleRujJ6FllZWQgPD0daWhqcnZ2LHSer4PO069evo3bt2tizZw86d+5c5Jii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqZTfrlO59wfIv0e595eZmQk3t8enIaekpMDV1VXagiqA3LehMft7kJmLz36Nw8ErDwAArzbxwYzXGsBRJe1ECLfhs1Or1fDw8Cg1+MhuqutJgYGB8PDwwNWrV4sNPiqVqsgDoJVKZYW86SpqvaZC7v0B8u9Rrv092ZNce8zH/kp27PoDjF4Xg2S1BiobK0S+1hADX/A3qQsSchs+2zrLQtbBJzExEQ8ePICvr6/UpRARkcR0eoHv9l/Fwj2XoRdAbc8qWPZWM9TzMd7efTJ9ZhV8MjIycPXqVcPt+Ph4xMbGwt3dHe7u7oiMjETfvn3h4+ODa9eu4bPPPkNQUBC6d+8uYdVERCS1e+kafLI+Bv9cfTy11bdZdczs0xAOtmb1Z5CMwKy2+IkTJ9CxY0fD7XHjxgEABg8ejO+//x5nzpzBqlWrkJqaCj8/P3Tr1g0zZ87ktXyIiCzYP1fvY8y6WNzP0MBeaY2ZfRqhX/PqUpdFEjGr4NOhQweUdCz27t27K7EaIiIyZTq9wLd7r2DJvisQAgj2dsLS8FDU8XaSujSSkFkFHyIiorJIVudgzLoYHL3+EAAQ9oI/pr3aEPa2RV/ahCwHgw8REcnKX5fvYdz6WDzIzEUVW2vMerMxXg+pJnVZZCIYfIiISBbydHosiL6M7w5cAwDU93XGsvBQBHo6SlwZmRIGHyIiMnt3UrMxem0MTiQ8AgC8/WINTOndAHZKTm1RQQw+RERk1vZdTMa4DaeRmqWFo8oGc/o2xitN/KQui0wUgw8REZklrU6Pebsv4aeD1wEAjau5YGl4KAKq8su2qHgMPkREZHYSH2VhVFQMYm+lAgCGtKmJSb3qQWXDqS0qGYMPERGZlejzKZi45SzUOXlwtrPB3H5N0aORj9RlkZlg8CEiIrOQm6fH5ngr/HUkFgDQ1N8VSweFwt/dQdrCyKww+BARkcm7+SALEVEnEZdkBQAY3rYWJnSvB1sbK4krI3PD4ENERCZtZ9xdfL7pDNI1eXCwEVgwMBQ9GvOChPRsGHyIiMgk5Wh1+GrHBfxyNAEA0KyGK17zuI/O9bwkrozMGfcREhGRyYm/n4k3vztsCD0jO9TG6vdawE0lcWFk9rjHh4iITMq22NuYvDkOmbk6uFexxYIBTdEh2AtarVbq0kgGGHyIiMgk5Gh1iPz9HNYevwUAaFnLHYvDQuHjYidxZSQnDD5ERCS5qykZiFhzCpeS06FQAKM6BmFM5zqwseYRGWRcDD5ERCSpX08mYsrWs8jW6uDhqMKigSF4uY6H1GWRTDH4EBGRJLJy8zB12zlsOpkIAGhTuyoWhYXAy4lTW1RxGHyIiKjSXU5OR8SaU7iSkgErBfBJl7qI6BgEayuF1KWRzDH4EBFRpRFCYMOJW5j22znkaPXwclLh27BQtK5dVerSyEIw+BARUaXI0ORhypY4bI29AwBoW8cDCweGwMORF+ehysPgQ0REFe78HTVGRZ3C9fuZsLZSYHy3uviwXW1YcWqLKhmDDxERVRghBKKO30Tk7+eRm6eHr4sdFg8KxQs13aUujSwUgw8REVWI9BwtJm6Ow44zdwEAnep5YX7/pnCvYitxZWTJGHyIiMjo4hLTMGrtKSQ8yIKNlQKf9QjG+y8HcmqLJMfgQ0RERiOEwKrDNzBr50Xk6vSo5mqPJeGhaFbDTerSiAAw+BARkZGkZWvx+aYz2HUuCQDQrYE35vVrChcHpcSVEf3/GHyIiOi5xd5KxaioU0h8lA2ltQKTe9XHkDY1oVBwaotMC4MPERE9MyEElh+Kx5w/LiJPL1DD3QFLw0PRpLqr1KURFYnBh4iInklqVi4+3Xgaey6kAAB6NfbBnL5N4GzHqS0yXQw+RERUbicTHuLjqBjcScuBrY0VvnilAd5uVYNTW2TyrKQuoDwOHjyIV199FX5+flAoFNi6dWuB+4UQmDp1Knx9fWFvb48uXbrgypUr0hRLRCRDer3AD39dw4Afj+JOWg5qeVTBlo/a4J0XAxh6yCyYVfDJzMxE06ZNsWzZsiLvnzt3LhYvXowffvgBx44dQ5UqVdC9e3fk5ORUcqVERPLzIEOD91b9izl/XIROL/BaUz/8/vHLaOjnInVpRGVmVlNdPXv2RM+ePYu8TwiBRYsWYcqUKXj99dcBAP/73//g7e2NrVu3IiwsrDJLJSKSlWPXH2D0uhgkqzVQ2Vhh+msNEfaCP/fykNkxq+BTkvj4eCQlJaFLly6GZS4uLmjVqhWOHDlSbPDRaDTQaDSG22q1GgCg1Wqh1WqNVl/+uoy5TlMi9/4A+fdoKf3l/1uOfVbENtTpBX44GI/F+65CL4BAjypYPLAJgn2ckJeXZ7TnKQu5v0cB+fdYkf2VdZ2yCT5JSY8vmOXt7V1gube3t+G+osyePRuRkZGFlv/5559wcHAwbpEAoqOjjb5OUyL3/gD59yjX/p6c8t63bx/s7OwkrKZiGWsbqnOBX65a4XLa46MiXvDUo3+tNFw79TeuGeUZno1c36NPknuPFdFfVlZWmcbJJvg8q0mTJmHcuHGG22q1Gv7+/ujWrRucnZ2N9jxarRbR0dHo2rUrlEr5neop9/4A+fco9/4yMzMN/+7UqRNcXV2lK6aCGHMbHrn+AF9ujMO9jFzYK60w7ZX66NusmpEqfTZyf48C8u+xIvvLn7EpjWyCj4+PDwAgOTkZvr6+huXJyckICQkp9nEqlQoqlarQcqVSWSFvuopar6mQe3+A/HuUa39P9iTXHvM9T386vcC3e69gyb4rEAKo6+2IZeHNUMfbychVPju5bz9A/j1WRH9lXZ9ZndVVklq1asHHxwd79+41LFOr1Th27Bhat24tYWVEROYhWZ2Dt/57FIv3Pg49A1v4Y1vEyyYVeoiel1nt8cnIyMDVq1cNt+Pj4xEbGwt3d3fUqFEDn3zyCb788kvUqVMHtWrVwhdffAE/Pz/06dNHuqKJiMzAwcv3MHZ9LB5k5sLB1hqz3miMPqHSTm0RVQSzCj4nTpxAx44dDbfzj80ZPHgwVq5cic8++wyZmZn44IMPkJqaipdffhm7du2S9UGMRETPI0+nx8I9l/HdgWsQAqjv64xl4aEI9HSUujSiCmFWwadDhw4QQhR7v0KhwIwZMzBjxoxKrIqIyDzdTcvG6LUx+PfGIwDAW61q4ItXGsBOaS1xZUQVx6yCDxERGcf+iykYtyEWj7K0cFTZYE7fxniliZ/UZRFVOAYfIiILotXpMX/3Jfx48DoAoFE1Zywd1Aw1PapIXBlR5WDwISKyEImPsvDx2hjE3EwFAAxpUxOTetWDyoZTW2Q5GHyIiCzAn+eSMGHTGaRla+FkZ4N5/ZqgRyPf0h9IJDMMPkREMpabp8fsPy5gxT83AABN/V2xdFAo/N2N/5U8ROaAwYeISKZuPsjCqLWncCYxDQDw/su18FmPerC1kc21a4nKjcGHiEiG/oi7i882nUG6Jg8u9kp8078pujTwLv2BRDLH4ENEJCNaPRC5/QJWH7sFAGge4IbFg0JRzdVe4sqITAODDxGRTNx4kIlFZ62RmPk49HzYvjbGd6sLpTWntojyMfgQEcnAb6fvYNLmM8jUKODmoMSCgSHoGOwldVlEJofBh4jIjOVodYj8/TzWHr8JAKjtJLDyw9bwr8pvVCcqCoMPEZGZupqSgVFRp3AxKR0KBTCyXSCCNJfh48wvZiYqDid+iYjM0OZTiXht6SFcTEqHh6Mt/vdeS4ztEgRrhdSVEZk27vEhIjIjWbl5mLbtHDaeTAQAtKldFYsGhsDL2Q5arVbi6ohMH4MPEZGZuJycjog1p3AlJQNWCmBM57oY1SkI1lbczUNUVgw+REQmTgiBjScSMfW3s8jR6uHlpMK3YaFoXbuq1KURmR0GHyIiE5apycOUrWexJeY2AKBtHQ8sHBgCD0eVxJURmScGHyIiE3XhrhoRa07h+v1MWFspMK5rXYxsXxtWnNoiemYMPkREJkYIgajjNxH5+3nk5unh42yHJeGheKGmu9SlEZk9Bh8iIhOSnqPFpM1x2H7mLgCgY7AnvhkQAvcqthJXRiQPDD5ERCbi7O00jIo6hRsPsmBjpcBnPYLx/suBnNoiMiIGHyIiiQkh8L8jCfhqxwXk6vSo5mqPxYNC0TzATerSiGSHwYeISEJp2VpM/PUM/jibBADo2sAb8/o1gasDp7aIKgKDDxGRRGJvpWJU1CkkPsqG0lqBST3rY+hLNaFQcGqLqKIw+BARVTIhBJYfisfXuy5CqxPwd7fH0kHN0NTfVerSiGSPwYeIqBKlZuXi041nsOdCMgCgZyMfzOnbBC72SokrI7IMDD5ERJXkZMIjfBx1CnfScmBrbYUvXqmPt18M4NQWUSVi8CEiqmB6vcBPf1/HvN2XoNML1KzqgKXhzdComovUpRFZHAYfIqIK9DAzF+M2xOLApXsAgFeb+mHWG43gZMepLSIpMPgQEVWQ4/EPMXptDJLUOVDZWGH6aw0R9oI/p7aIJMTgQ0RkZHq9wHcHrmJB9GXoBRDoWQXLwpuhvq+z1KURWTwrqQswpunTp0OhUBT4qVevntRlEZEFuZeuweAVxzH/z8eh583Qavh91MsMPUQmQnZ7fBo2bIg9e/YYbtvYyK5FIjJRh6/dx5h1sbiXroGd0gozX2+E/i38pS6LiJ4gu1RgY2MDHx8fqcsgIgui0wss2XcFi/degV4Adb0dsSy8Gep4O0ldGhE9RXbB58qVK/Dz84OdnR1at26N2bNno0aNGsWO12g00Gg0httqtRoAoNVqodVqjVZX/rqMuU5TIvf+APn3aCn95f/bWH2mpGswfuMZHI1/BADo16wapvauB3tb60p/LS1lG8q1P0D+PVZkf2Vdp0IIIYz+7BL5448/kJGRgeDgYNy9exeRkZG4ffs2zp49Cyenov/nNX36dERGRhZaHhUVBQcHh4oumYgqSU5ODsLCwgAA69atg52d3XOv82KqAr9ctUKGVgFbK4EBgXq84CmbX6lEZiUrKwvh4eFIS0uDs3Pxx9TJKvg8LTU1FQEBAViwYAGGDRtW5Jii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqZTf9Tvk3h8g/x7l3l9mZibc3NwAACkpKXB1dX3mdeXp9Fi8/xp+OBgPIYB63o74dmBTBHpWMVK1z0bu21Du/QHy77Ei+1Or1fDw8Cg1+MhuqutJrq6uqFu3Lq5evVrsGJVKBZVKVWi5UqmskDddRa3XVMi9P0D+Pcq1vyd7ep4e76ZlY8zaWBy/8RAAEN6qBqa+0gB2Smuj1GkMct2G+eTeHyD/Hiuiv7KuT1ansz8tIyMD165dg6+vr9SlEJEM7L+Ygl7f/o3jNx7CUWWDJYNCMeuNxiYVeoioZLLa4/Ppp5/i1VdfRUBAAO7cuYNp06bB2toagwYNkro0IjJjWp0e83dfwo8HrwMAGlVzxtJBzVDTQ9qpLSIqP1kFn8TERAwaNAgPHjyAp6cnXn75ZRw9ehSenp5Sl0ZEZup2ajY+jjqFUzdTAQBD2tTEpF71oLLhXh4icySr4LNu3TqpSyAiGYk+n4xPN55GWrYWTnY2mNevCXo04tQ5kTmTVfAhIjKG3Dw9vt51EcsPxQMAmlZ3wdLwZvB35yUuiMwdgw8R0RNuPczCqKhTOJ2YBgAY9nItfN6jHmxtZH0uCJHFYPAhIvp/dp29iwmbziA9Jw8u9krM798UXRt4S10WERkRgw8RWbwcrQ6zd17AqiMJAIBmNVyxJLwZqrnaS1wZERkbgw8RWbQb9zMREXUK5+48/p6+Ee0D8Wm3YCitObVFJEcMPkRksX4/fQeTNschQ5MHNwclFgwIQcd6XlKXRUQViMGHiCxOjlaHyVviEHXsJgCgZU13fDsoBL4unNoikrty78sdPHgwDh48WBG1EBFVireX/4uoYzehUAAfdwpC1PBWDD1EFqLcwSctLQ1dunRBnTp1MGvWLNy+fbsi6iIiqjCXUzLh4WiL/73XEuO7BcOGx/MQWYxyf9q3bt2K27dvY+TIkVi/fj1q1qyJnj17YtOmTdBqtRVRIxHRc8nO1eE/W+IMt1vWdMXO0W3Rtg6/zobI0jzTf3M8PT0xbtw4nD59GseOHUNQUBDeeecd+Pn5YezYsbhy5Yqx6yQieiZXktPx2tJD2Hzq/987/ePbzeDlbCdhVUQklefav3v37l1ER0cjOjoa1tbW6NWrF+Li4tCgQQMsXLjQWDUSEZWbEAIbTtzCq0sP4UpKBjycbA33WVspJKyMiKRU7uCj1Wrx66+/4pVXXkFAQAA2btyITz75BHfu3MGqVauwZ88ebNiwATNmzKiIeomISpWpycP4Dafx2aYzyNHq0baOB7Z89JLUZRGRCSj36ey+vr7Q6/UYNGgQjh8/jpCQkEJjOnbsCFdXVyOUR0RUPhfuqjEq6hSu3cuElQIY3y0YI9vXRnZ2ltSlEZEJKHfwWbhwIfr37w87u+Lnx11dXREfH/9chRERlYcQAmuP30Lk7+egydPDx9kOiweFomUtd6lLIyITUu7g884771REHUREzyw9R4vJW87i99N3AAAdgj2xYEAI3KvYlvJIIrI0vHIzEZm1s7fTMCrqFG48yIKNlQITugdjeNtAWPEAZiIqAoMPEZklIQR+OZqAL7dfQK5Oj2qu9lg8KBTNA9ykLo2ITBiDDxGZnbRsLSZtPoOdcUkAgC71vTG/fxO4OnBqi4hKxuBDRGbl9K1UjFp7CrceZkNprcDEnvXx3ks1oVBwaouISsfgQ0RmQQiBn/+5gTl/XIBWJ+Dvbo+lg5qhqb+r1KURkRlh8CEik5ealYsJm84g+nwyAKBnIx/M6dsELvZKiSsjInPD4ENEJu3UzUf4OCoGt1OzYWtthSmv1Mc7LwZwaouIngmDDxGZJL1e4P/+vo55uy8hTy8QUNUBy8KboVE1F6lLIyIzxuBDRCbnYWYuxm+Ixf5L9wAArzTxxew3G8PJjlNbRPR8GHyIyKQcj3+I0WtjkKTOgcrGCtNebYhBLf05tUVERsHgQ0QmQa8X+P6va1gQfRk6vUCgZxUsC2+G+r7OUpdGRDLC4ENEkrufocHY9bH4+8p9AMCbodUws08jVFHxVxQRGRd/qxCRpI5ce4Ax62KQkq6BndIKM15vhP7Nq3Nqi4gqBIMPEUlCpxdYsu8KFu+9Ar0A6ng5YtlbzVDX20nq0ohIxhh8iKjSpaTn4JN1sTh87QEAYECL6oh8rRHsba0lroyI5M5K6gIqwrJly1CzZk3Y2dmhVatWOH78uNQlEdH/c+jKffT69m8cvvYADrbWWDCgKeb2a8rQQ0SVQnbBZ/369Rg3bhymTZuGU6dOoWnTpujevTtSUlKkLo3IouXp9Ji/+xLe+fkY7mfkop6PE34b9TLebFZd6tKIyILIbqprwYIFGD58OIYOHQoA+OGHH7Bjxw78/PPPmDhxYpnXk5mZCWtr4/0PVKvVIicnB5mZmVAq5XcRNrn3B8i/x4rsLzktB59uOo0TNx4BAAa8UB2TetaHnVKBzMxMoz5XcZ58Hm5D8yT3/gD591iR/ZX1d4lCCCGM+swSys3NhYODAzZt2oQ+ffoYlg8ePBipqanYtm1bocdoNBpoNBrDbbVaDX9//8ool4iIiIwsLS0Nzs7FX/9LVlNd9+/fh06ng7e3d4Hl3t7eSEpKKvIxs2fPhouLi+GHoYeIiEi+ZDfVVV6TJk3CuHHjDLfz9/gkJCSUmBjLS6vVYt++fejUqZNsd1/KuT9A/j0as7+7qdn4fMs5xN5KAwAMeqEaxnWpA5VSugOYMzMzUb364+OJ4uPj4erqKlktFYXvUfMn9x4rsj+1Wo2AgIBSx8kq+Hh4eMDa2hrJyckFlicnJ8PHx6fIx6hUKqhUqkLLXV1djR587Ozs4OrqKts3s5z7A+Tfo7H623M+GeM3xiEtWwsXZ0fM7dsEPRv7GrHSZ/NkT66urrINPnyPmje591iR/VlZlW0SS1ZTXba2tmjevDn27t1rWKbX67F37160bt1awsqI5C83T48vt5/H+/87gbRsLZpWd8GOj9uaROghIsonqz0+ADBu3DgMHjwYLVq0QMuWLbFo0SJkZmYazvIiIuO79TALo9bG4PStVADAey/VwsSe9WBrI6v/WxGRDMgu+AwcOBD37t3D1KlTkZSUhJCQEOzatavQAc9EZBy7zt7FhE1nkJ6TBxd7Jeb3b4quDfh5IyLTJLvgAwCjRo3CqFGjpC6DSNY0eTrM2nEBq44kAABCa7hiyaBQVHdzkLgyIqLiyTL4EFHFunE/E6PWnsLZ22oAwIj2gfi0WzCU1pzaIiLTxuBDROWy/cwdTPw1DhmaPLg5KLFgQAg61vOSuiwiojJh8CGiMsnR6jBz+3msOXYTAPBCTTcsHhQKXxd7iSsjIio7Bh8iKtW1exmIWHMKF5PSoVAAER2C8EmXOrDh1BYRmRkGHyIq0daY25i8JQ5ZuTpUrWKLRWEhaFvHU+qyiIieCYMPERUpO1eH6b+dw/oTtwAArQOr4tuwEHg520lcGRHRs2PwIaJCriSnIyLqFC4nZ0ChAEZ3qoPRnevA2kohdWlERM+FwYeICvj11G1Ebr+IbK0Onk4qfDswBG2CPKQui4jIKBh8iAgAkKnJw+qrVvj3yDkAQNs6HlgwIASeToW/xJeIyFwx+BARLiap8dHqU7h+3wpWCmBc17r4qEMQrDi1RUQyw+BDZMGEEFj37y1M/+0cNHl6uCgFvnv3BbxUh9+1RUTyxOBDZKEyNHmYvDkOv52+AwBoX8cD3VyS0LKmu8SVERFVHF59jMgCnb2dhlcW/43fTt+BtZUCk3rWw09vh8JRKXVlREQVi3t8iCyIEAKrjyZg5o4LyM3Tw8/FDkvCm6F5gBu0Wq3U5RERVTgGHyILoc7RYuKvZ7AzLgkA0KW+N+b3bwJXB1uJKyMiqjwMPkQW4ExiKiKiTuHWw2worRX4vEc9DHu5FhQKnrVFRJaFwYdIxoQQWPHPDcz+4wK0OoHqbvZYGt4MIf6uUpdGRCQJBh8imUrL0mLCptP483wyAKBHQx983a8JXOx5BDMRWS4GHyIZOnXzET6OisHt1GzYWlvhP73r493WAZzaIiKLx+BDJCN6vcB/D13H3F2XkKcXCKjqgGXhzdComovUpRERmQQGHyKZeJSZi/EbT2PfxRQAwCtNfDH7zcZwsuPUFhFRPgYfIhn498ZDjF4bg7tpObC1scL0VxtiUEt/Tm0RET2FwYfIjOn1At//dQ0Loi9DpxcI9KiCZW81Q31fZ6lLIyIySQw+RGbqfoYGY9fH4u8r9wEAb4RWw5d9GqGKih9rIqLi8DckkRk6cu0BxqyLQUq6BnZKK8x4rRH6t6jOqS0iolIw+BCZEZ1eYOm+q/h272XoBVDHyxHL3mqGut5OUpdGRGQWGHyIzERKeg4+WReLw9ceAAD6N6+OyNcbwsGWH2MiorLib0wiM3Doyn18sj4W9zM0cLC1xpd9GuHNZtWlLouIyOww+BCZsDydHt/uvYKl+69CCKCejxOWhjdDkJej1KUREZklBh8iE5WUloPR62JwPP4hAGBQyxqY9moD2CmtJa6MiMh8MfgQmaADl1IwbsNpPMzMRRVba8zu2wSvNfWTuiwiIrNnJXUBxlSzZk0oFIoCP3PmzJG6LKIy0+r0+HrXRQxZ8S8eZuaioZ8zto9uy9BDRGQkstvjM2PGDAwfPtxw28mJp/mSebiTmo2P18bgZMIjAMC7rQMwuVd9Tm0RERmR7IKPk5MTfHx8pC6DqFz2XkjG+I2nkZqlhZPKBl/3a4JejX2lLouISHZkF3zmzJmDmTNnokaNGggPD8fYsWNhY1N8mxqNBhqNxnBbrVYDALRaLbRardHqyl+XMddpSuTeH1AxPebm6fFN9BX8fDgBANC4mjMWDWiCGu4Olf5ayn0bPtmXsT/fpsJStqFc+wPk32NF9lfWdSqEEMLozy6RBQsWoFmzZnB3d8fhw4cxadIkDB06FAsWLCj2MdOnT0dkZGSh5VFRUXBwcKjIcsnCPcgBVl2xRkLG46+ZaO+rx2s19LCR1ZF3piMnJwdhYWEAgHXr1sHOzk7iiojImLKyshAeHo60tDQ4Oxf/Rc0mH3wmTpyIr7/+usQxFy5cQL169Qot//nnnzFixAhkZGRApVIV+dii9vj4+/vj/v37Jb5w5aXVahEdHY2uXbtCqVQabb2mQu79Acbt8c/zyZi05RzUOXlwtrPB1282Qpf6Xkaq9NnIfRtmZmbCzc0NAJCSkgJXV1dpC6oAct+Gcu8PkH+PFdmfWq2Gh4dHqcHH5Ke6xo8fjyFDhpQ4JjAwsMjlrVq1Ql5eHm7cuIHg4OAix6hUqiJDkVKprJA3XUWt11TIvT/g+XrU5Okwe+dFrDx8AwAQWsMVSwaForqb6exdlOs2fLInufaYj/2ZP7n3WBH9lXV9Jh98PD094enp+UyPjY2NhZWVFby8pP2fNBEAJDzIxKioGMTdTgMAjGgXiE+7B0NpzbktIqLKYvLBp6yOHDmCY8eOoWPHjnBycsKRI0cwduxYvP3224bd20RS2XHmLib+egbpmjy4OSjxzYCm6FTPW+qyiIgsjmyCj0qlwrp16zB9+nRoNBrUqlULY8eOxbhx46QujSxYjlaHL3ecx+qjNwEAL9R0w+JBofB1sZe4MiIiyySb4NOsWTMcPXpU6jKIDK7fy0BEVAwu3FVDoQA+6lAbY7vUhQ2ntoiIJCOb4ENkSrbF3sbkzXHIzNWhahVbLBwYgnZ1n+1YNSIiMh4GHyIjys7VIfL3c1j37y0AwIuB7vg2LBTezrxmDBGRKWDwITKSqynpiFgTg0vJ6VAogNGd6mB05zqwtlJIXRoREf0/DD5ERrDpZCK+2HoW2VodPJ1U+HZgCNoEeUhdFhERPYXBh+g5ZOXmYcrWs9h86jYA4OUgDywcGAJPp6KvFE5ERNJi8CF6RheT1IhYcwrX7mXCSgGM61oXIzsEcWqLiMiEMfgQlZMQAuuO38S0385Bk6eHt7MKi8NC0SqwqtSlERFRKRh8iMohRweM3xSH388kAQDa1/XEggFNUdWRU1tEROaAwYeojM7fVWP+GWvcy0mCtZUCE7oH44O2gbDi1BYRkdlg8CEqhRACq4/dxMzt55Gbp4Cvix2WhoeieYC71KUREVE5MfgQlUCdo8WkX+OwI+4uAKCRmx4/f/givFyqSFwZERE9CwYfomKcSUzFqKgY3HyYBRsrBT7rXhdej87BzcFW6tKIiOgZ8dsSiZ4ihMCKf+LR9/vDuPkwC9Xd7LFpZBsMbRMABQ/nISIya9zjQ/SEtCwtPvv1NHafSwYAdG/ojbn9msLFXgmtVitxdURE9LwYfIj+n5ibjzAqKga3U7Nha22F//Suj3dbB0DB3TxERLLB4EMWTwiB//4dj693XUSeXiCgqgOWDmqGxtVdpC6NiIiMjMGHLNqjzFx8uvE09l5MAQD0buKLOW82hpOdUuLKiIioIjD4kMU6ceMhPl4bg7tpObC1scK0VxsgvGUNTm0REckYgw9ZHL1e4IeD1/DNn5eh0wsEelTB0vBmaODnLHVpRERUwRh8yKI8yNBg3IbT+OvyPQBAnxA/fPlGYziq+FEgIrIE/G1PFuPo9QcYsy4GyWoN7JRWmPFaI/RvUZ1TW0REFoTBh2RPpxdYtv8qFu25DL0AgrwcsSy8GYJ9nKQujYiIKhmDD8laSnoOxq6PxT9XHwAA+jWvjhmvN4SDLd/6RESWiL/9Sbb+uXofY9bF4n6GBvZKa3zZpxH6Nq8udVlERCQhBh+SHZ1e4Nu9V7Bk3xUIAdTzccLS8GYI8nKUujQiIpIYgw/JSrI6B6PXxuBY/EMAwKCW/pj2akPYKa0lroyIiEwBgw/Jxl+X72Hs+lg8zMxFFVtrzHqzMV4PqSZ1WUREZEIYfMjs5en0+Cb6Mr4/cA0A0MDXGcveaoZaHlUkroyIiEwNgw+ZtTup2Ri9NgYnEh4BAN55MQD/6V2fU1tERFQkBh8yW/suJmPchtNIzdLCSWWDr/s1Qa/GvlKXRUREJozBh8yOVqfH3F0X8X9/xwMAmlR3wdJBzVCjqoPElRERkamzkrqAsvrqq6/Qpk0bODg4wNXVtcgxN2/eRO/eveHg4AAvLy9MmDABeXl5lVsoVahbD7PQ/4cjhtAz9KWa2Phha4YeIiIqE7PZ45Obm4v+/fujdevWWL58eaH7dTodevfuDR8fHxw+fBh3797Fu+++C6VSiVmzZklQMRnb7nNJmLDxNNQ5eXC2s8G8/k3RvaGP1GUREZEZMZvgExkZCQBYuXJlkff/+eefOH/+PPbs2QNvb2+EhIRg5syZ+PzzzzF9+nTY2tpWYrVkTJo8Heb8cREr/rkBAAit4Yolg0JR3Y17eYiIqHzMJviU5siRI2jcuDG8vb0Ny7p3746RI0fi3LlzCA0NLfJxGo0GGo3GcFutVgMAtFottFqt0erLX5cx12lKKqq/hIdZ+GT9GZy983i7DHspAOO71oHS2qrSX0tuQ/P2ZF/G/nybCkvZhnLtD5B/jxXZX1nXKZvgk5SUVCD0ADDcTkpKKvZxs2fPNuxNetKff/4JBwfj71GIjo42+jpNiTH7i3mgwLprVsjRKVDFRuCtID0a6q8hevc1oz3Hs+A2NE85OTmGf+/btw92dnYSVlOx5LoN88m9P0D+PVZEf1lZWWUaJ2nwmThxIr7++usSx1y4cAH16tWrsBomTZqEcePGGW6r1Wr4+/ujW7ducHZ2NtrzaLVaREdHo2vXrlAqlUZbr6kwZn8arQ6zdl1C1OVEAEDzGq5YOKAJfF2k/UPFbWjeMjMzDf/u1KlTsSdJmDO5b0O59wfIv8eK7C9/xqY0kgaf8ePHY8iQISWOCQwMLNO6fHx8cPz48QLLkpOTDfcVR6VSQaVSFVquVCor5E1XUes1Fc/bX/z9TESsOYXzdx+/gT/qUBvjutaFjbXpnIDIbWienuxJrj3mY3/mT+49VkR/ZV2fpMHH09MTnp6eRllX69at8dVXXyElJQVeXl4AHu9Kc3Z2RoMGDYzyHFSxtsXexuTNccjM1aFqFVssGBiC9nWN8/4gIiICzOgYn5s3b+Lhw4e4efMmdDodYmNjAQBBQUFwdHREt27d0KBBA7zzzjuYO3cukpKSMGXKFERERBS5R4dMR45Wh+m/ncO6f28BAF4MdMe3YaHwdpbvMRhERCQNswk+U6dOxapVqwy388/S2r9/Pzp06ABra2ts374dI0eOROvWrVGlShUMHjwYM2bMkKpkKoOrKemIWBODS8npUCiAjzvVwZjOdWBtpZC6NCIikiGzCT4rV64s9ho++QICArBz587KKYie268nEzFl61lka3XwcFTh27AQvBTkIXVZREQkY2YTfEg+snLzMHXbOWw6+fisrZeDPLBwYAg8nTglSUREFYvBhyrVpaR0RESdwtWUDFgpgLFd6uKjjkGc2iIiokrB4EOVQgiBDSduYdpv55Cj1cPbWYVvw0LxYmBVqUsjIiILwuBDFS5Dk4cpW+KwNfYOAKB9XU8sGNAUVR05tUVERJWLwYcq1Pk7aoyKOoXr9zNhbaXAp92CMaJdIKw4tUVERBJg8KEKIYTAmmM3MWP7eeTm6eHrYoclg0LRoqa71KUREZEFY/Aho1PnaDFpcxx2nLkLAOhczwvz+zeFWxVbiSsjIiJLx+BDRnX2thqfbDyDhAdZsLFSYGLPehj2ci0oFJzaIiIi6TH4kFEIIXDwrgK/HT8GrU6gmqs9loaHIrSGm9SlERERGTD40HNLy9Li042nEX3DGoBAtwbemNevKVwc5PvNwkREZJ4YfOi5xN5KxaioU0h8lA1rhcDkXvXx3suBnNoiIiKTxOBDz0QIgeWH4jHnj4vI0wv4u9ljYPV0vPtiDYYeIiIyWVZSF0DmJzUrF8P/dwJf7riAPL1A7ya+2PbRi/B3lLoyIiKiknGPD5XLyYSH+DgqBnfScmBrY4WprzTAW61qIC8vT+rSiIiISsXgQ2Wi1wv8ePA65v95CTq9QC2PKlgaHoqGfi5Sl0ZERFRmDD5UqgcZGozbcBp/Xb4HAHg9xA9fvdEYjiq+fYiIyLzwLxeV6Nj1Bxi9LgbJag1UNlaY8XpDDGjhzwOYiYjILDH4UJF0eoHv9l/Fwj2XoRdAkJcjloU3Q7CPk9SlERERPTMGHyrkXroGY9fH4tDV+wCAvs2qY2afhnCw5duFiIjMG/+SUQGHr97H6HWxuJ+hgb3SGjP7NEK/5tWlLouIiMgoGHwIwOOprW/3XsGSfVcgBBDs7YRlb4UiyItTW0REJB8MPoRkdQ7GrIvB0esPAQCDWvpj2qsNYae0lrgyIiIi42LwsXAHL9/D2PWxeJCZiyq21pj1ZmO8HlJN6rKIiIgqBIOPhcrT6bEg+jK+O3ANAFDf1xnLwkMR6MnvnSAiIvli8LFAd9OyMXptDP698QgA8M6LAfhP7/qc2iIiItlj8LEw+y4mY/yG03iUpYWTygZz+jZB7ya+UpdFRERUKRh8LIRWp8e83Zfw08HrAIDG1VywNDwUAVWrSFwZERFR5WHwsQCJj7Lw8doYxNxMBQAMaVMTk3rVg8qGU1tERGRZGHxk7s9zSfh042moc/LgbGeDef2bontDH6nLIiIikgSDj0zl5ukx+48LWPHPDQBAiL8rlgwKhb+7g7SFERERSYjBR4ZuPsjCqLWncCYxDQAwvG0tTOheD7Y2VhJXRkREJC2z+Uv41VdfoU2bNnBwcICrq2uRYxQKRaGfdevWVW6hEtsZdxe9F/+NM4lpcHVQYvngFvhP7wYMPURERDCjPT65ubno378/WrdujeXLlxc7bsWKFejRo4fhdnEhSW5ytDp8teMCfjmaAABoEeCGxYNC4edqL3FlREREpsNsgk9kZCQAYOXKlSWOc3V1hY+PZR28G38/E6OiTuHcHTUA4KMOtTG2a10orbmXh4iI6ElmE3zKKiIiAu+//z4CAwPx4YcfYujQoVAoFMWO12g00Gg0httq9ePwoNVqodVqjVZX/rqMuU4A+P3MXXyx7Twyc3Vwc1Dim36N0baOB6DXQavXGfW5SlJR/ZkSufdoKf3l/1uOfVrKNpRrf4D8e6zI/sq6ToUQQhj92SvQypUr8cknnyA1NbXQfTNnzkSnTp3g4OCAP//8E9OmTcPcuXMxevToYtc3ffp0w96kJ0VFRcHBwXTPgMrVAZtvWOFIyuO9OkHOAu/W0cHFVuLCiExUTk4OwsLCAADr1q2DnZ2dxBURkTFlZWUhPDwcaWlpcHZ2LnacpMFn4sSJ+Prrr0scc+HCBdSrV89wu6Tg87SpU6dixYoVuHXrVrFjitrj4+/vj/v375f4wpWXVqtFdHQ0unbtCqVS+VzrunYvE2PWn8al5AwoFMBH7QMxqkMgbCSc2jJmf6ZK7j3Kvb/MzEy4ubkBAFJSUmR5/J/ct6Hc+wPk32NF9qdWq+Hh4VFq8JF0qmv8+PEYMmRIiWMCAwOfef2tWrXCzJkzodFooFKpihyjUqmKvE+pVFbIm+551/vryURM2XoW2VodPBxVWDQwBC/X8TBihc+nol43UyL3HuXa35M9ybXHfOzP/Mm9x4ror6zrkzT4eHp6wtPTs8LWHxsbCzc3t2JDjznJys3D1G3nsOlkIgDgpaCqWDgwBF5O3F1PRERUVmZzcPPNmzfx8OFD3Lx5EzqdDrGxsQCAoKAgODo64vfff0dycjJefPFF2NnZITo6GrNmzcKnn34qbeFGcDk5HRFrTuFKSgasFMAnXeoiomMQrK2KP2ibiIiICjOb4DN16lSsWrXKcDs0NBQAsH//fnTo0AFKpRLLli3D2LFjIYRAUFAQFixYgOHDh0tV8nMTQmDjiURM/e0scrR6eDur8G1YKF4MrCp1aURERGbJbILPypUrS7yGT48ePQpcuNDcZWry8J8tcdgaewcA0K6uJxYOaIqqjuY/bUdERCQVswk+luT8HTVGRZ3C9fuZsLZSYHy3uviwXW1YcWqLiIjouTD4mBAhBKKO30Tk7+eRm6eHr4sdlgwKRYua7lKXRkREJAsMPiYiPUeLSZvjsP3MXQBA53pemN+/Kdyq8IqERERExsLgYwLO3k5DRNQpJDzIgo2VAp/3qIf329Yq8as2iIiIqPwYfCQkhMD/jiTgqx0XkKvTo5qrPZaEh6JZDTepSyMiIpIlBh+JpGVr8fmmM9h1LgkA0K2BN+b1awoXB/leqZOIiEhqDD4SiL2VilFRp5D4KBtKawUm96qPIW1qcmqLiIiogjH4VCIhgBWHEzDvz8vQ6gRquDtgaXgomlR3lbo0IiIii8DgU0lSs7T47yUrnH10CQDQu7EvZvdtDGc7Tm0RERFVFgafSpDwIBNhPx3F3TQr2NpY4YtXGuDtVjU4tUVERFTJGHwqgZ+rPbydVcjTZOO/77VE0xr8ri0iIiIpWEldgCVQWlthaVhTfNpEhwa+zlKXQ0REZLEYfCqJt7Md7KylroKIiMiyMfgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMBh8iIiKyGAw+REREZDEYfIiIiMhiMPgQERGRxWDwISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMG6kLMDVCCACAWq026nq1Wi2ysrKgVquhVCqNum5TIPf+APn3KPf+MjMzDf9Wq9WwspLf//vkvg3l3h8g/x4rsr/8v9v5f8eLw+DzlPT0dACAv7+/xJUQUUUJCAiQugQiqiDp6elwcXEp9n6FKC0aWRi9Xo87d+7AyckJCoXCaOtVq9Xw9/fHrVu34OzsbLT1mgq59wfIv0e59wfIv0f2Z/7k3mNF9ieEQHp6Ovz8/Erco8s9Pk+xsrJC9erVK2z9zs7Osnwz55N7f4D8e5R7f4D8e2R/5k/uPVZUfyXt6cknv0luIiIiomIw+BAREZHFYPCpJCqVCtOmTYNKpZK6lAoh9/4A+fco9/4A+ffI/syf3Hs0hf54cDMRERFZDO7xISIiIovB4ENEREQWg8GHiIiILAaDDxEREVkMBh8j+eqrr9CmTRs4ODjA1dW1yDE3b95E79694eDgAC8vL0yYMAF5eXklrvfhw4d466234OzsDFdXVwwbNgwZGRkV0EH5HDhwAAqFosiff//9t9jHdejQodD4Dz/8sBIrL5+aNWsWqnfOnDklPiYnJwcRERGoWrUqHB0d0bdvXyQnJ1dSxWV348YNDBs2DLVq1YK9vT1q166NadOmITc3t8THmfI2XLZsGWrWrAk7Ozu0atUKx48fL3H8xo0bUa9ePdjZ2aFx48bYuXNnJVVafrNnz8YLL7wAJycneHl5oU+fPrh06VKJj1m5cmWhbWVnZ1dJFZfP9OnTC9Var169Eh9jTtsPKPr3iUKhQERERJHjTX37HTx4EK+++ir8/PygUCiwdevWAvcLITB16lT4+vrC3t4eXbp0wZUrV0pdb3k/x+XF4GMkubm56N+/P0aOHFnk/TqdDr1790Zubi4OHz6MVatWYeXKlZg6dWqJ633rrbdw7tw5REdHY/v27Th48CA++OCDimihXNq0aYO7d+8W+Hn//fdRq1YttGjRosTHDh8+vMDj5s6dW0lVP5sZM2YUqPfjjz8ucfzYsWPx+++/Y+PGjfjrr79w584dvPnmm5VUbdldvHgRer0eP/74I86dO4eFCxfihx9+wOTJk0t9rCluw/Xr12PcuHGYNm0aTp06haZNm6J79+5ISUkpcvzhw4cxaNAgDBs2DDExMejTpw/69OmDs2fPVnLlZfPXX38hIiICR48eRXR0NLRaLbp161bgy1eL4uzsXGBbJSQkVFLF5dewYcMCtR46dKjYsea2/QDg33//LdBfdHQ0AKB///7FPsaUt19mZiaaNm2KZcuWFXn/3LlzsXjxYvzwww84duwYqlSpgu7duyMnJ6fYdZb3c/xMBBnVihUrhIuLS6HlO3fuFFZWViIpKcmw7PvvvxfOzs5Co9EUua7z588LAOLff/81LPvjjz+EQqEQt2/fNnrtzyM3N1d4enqKGTNmlDiuffv2YsyYMZVTlBEEBASIhQsXlnl8amqqUCqVYuPGjYZlFy5cEADEkSNHKqBC45o7d66oVatWiWNMdRu2bNlSREREGG7rdDrh5+cnZs+eXeT4AQMGiN69exdY1qpVKzFixIgKrdNYUlJSBADx119/FTumuN9HpmjatGmiadOmZR5v7ttPCCHGjBkjateuLfR6fZH3m9P2AyC2bNliuK3X64WPj4+YN2+eYVlqaqpQqVRi7dq1xa6nvJ/jZ8E9PpXkyJEjaNy4Mby9vQ3LunfvDrVajXPnzhX7GFdX1wJ7ULp06QIrKyscO3aswmsuj99++w0PHjzA0KFDSx27Zs0aeHh4oFGjRpg0aRKysrIqocJnN2fOHFStWhWhoaGYN29eidOTJ0+ehFarRZcuXQzL6tWrhxo1auDIkSOVUe5zSUtLg7u7e6njTG0b5ubm4uTJkwVedysrK3Tp0qXY1/3IkSMFxgOPP5PmsJ2Ax9sKQKnbKyMjAwEBAfD398frr79e7O8bU3DlyhX4+fkhMDAQb731Fm7evFnsWHPffrm5uVi9ejXee++9Er8Q25y235Pi4+ORlJRUYBu5uLigVatWxW6jZ/kcPwt+SWklSUpKKhB6ABhuJyUlFfsYLy+vAstsbGzg7u5e7GOksnz5cnTv3r3UL3gNDw9HQEAA/Pz8cObMGXz++ee4dOkSNm/eXEmVls/o0aPRrFkzuLu74/Dhw5g0aRLu3r2LBQsWFDk+KSkJtra2hY7z8vb2Nrlt9rSrV69iyZIlmD9/fonjTHEb3r9/HzqdrsjP2MWLF4t8THGfSVPfTgCg1+vxySef4KWXXkKjRo2KHRccHIyff/4ZTZo0QVpaGubPn482bdrg3LlzFfplzM+iVatWWLlyJYKDg3H37l1ERkaibdu2OHv2LJycnAqNN+ftBwBbt25FamoqhgwZUuwYc9p+T8vfDuXZRs/yOX4WDD4lmDhxIr7++usSx1y4cKHUA/DMybP0nJiYiN27d2PDhg2lrv/J45MaN24MX19fdO7cGdeuXUPt2rWfvfByKE+P48aNMyxr0qQJbG1tMWLECMyePdtkLyn/LNvw9u3b6NGjB/r374/hw4eX+FhT2IaWLiIiAmfPni3xGBgAaN26NVq3bm243aZNG9SvXx8//vgjZs6cWdFllkvPnj0N/27SpAlatWqFgIAAbNiwAcOGDZOwsoqxfPly9OzZE35+fsWOMaftZ04YfEowfvz4EtM4AAQGBpZpXT4+PoWOTM8/08fHx6fYxzx9QFdeXh4ePnxY7GOe17P0vGLFClStWhWvvfZauZ+vVatWAB7vbaisP5rPs11btWqFvLw83LhxA8HBwYXu9/HxQW5uLlJTUwvs9UlOTq6wbfa08vZ3584ddOzYEW3atMFPP/1U7ueTYhs+zcPDA9bW1oXOnivpdffx8SnXeFMxatQow4kO5f1fv1KpRGhoKK5evVpB1RmPq6sr6tatW2yt5rr9ACAhIQF79uwp915Sc9p++dshOTkZvr6+huXJyckICQkp8jHP8jl+JkY7WoiEEKUf3JycnGxY9uOPPwpnZ2eRk5NT5LryD24+ceKEYdnu3btN6uBmvV4vatWqJcaPH/9Mjz906JAAIE6fPm3kyirG6tWrhZWVlXj48GGR9+cf3Lxp0ybDsosXL5rswc2JiYmiTp06IiwsTOTl5T3TOkxlG7Zs2VKMGjXKcFun04lq1aqVeHDzK6+8UmBZ69atTfbgWL1eLyIiIoSfn5+4fPnyM60jLy9PBAcHi7Fjxxq5OuNLT08Xbm5u4ttvvy3yfnPbfk+aNm2a8PHxEVqttlyPM+Xth2IObp4/f75hWVpaWpkObi7P5/iZajXamixcQkKCiImJEZGRkcLR0VHExMSImJgYkZ6eLoR4/IZt1KiR6Natm4iNjRW7du0Snp6eYtKkSYZ1HDt2TAQHB4vExETDsh49eojQ0FBx7NgxcejQIVGnTh0xaNCgSu+vOHv27BEAxIULFwrdl5iYKIKDg8WxY8eEEEJcvXpVzJgxQ5w4cULEx8eLbdu2icDAQNGuXbvKLrtMDh8+LBYuXChiY2PFtWvXxOrVq4Wnp6d49913DWOe7lEIIT788ENRo0YNsW/fPnHixAnRunVr0bp1aylaKFFiYqIICgoSnTt3FomJieLu3buGnyfHmMs2XLdunVCpVGLlypXi/Pnz4oMPPhCurq6GMynfeecdMXHiRMP4f/75R9jY2Ij58+eLCxcuiGnTpgmlUini4uKkaqFEI0eOFC4uLuLAgQMFtlVWVpZhzNM9RkZGit27d4tr166JkydPirCwMGFnZyfOnTsnRQslGj9+vDhw4ICIj48X//zzj+jSpYvw8PAQKSkpQgjz3375dDqdqFGjhvj8888L3Wdu2y89Pd3wtw6AWLBggYiJiREJCQlCCCHmzJkjXF1dxbZt28SZM2fE66+/LmrVqiWys7MN6+jUqZNYsmSJ4XZpn2NjYPAxksGDBwsAhX72799vGHPjxg3Rs2dPYW9vLzw8PMT48eMLJP79+/cLACI+Pt6w7MGDB2LQoEHC0dFRODs7i6FDhxrClCkYNGiQaNOmTZH3xcfHF3gNbt68Kdq1ayfc3d2FSqUSQUFBYsKECSItLa0SKy67kydPilatWgkXFxdhZ2cn6tevL2bNmlVgD93TPQohRHZ2tvjoo4+Em5ubcHBwEG+88UaBMGEqVqxYUeR79skdwea2DZcsWSJq1KghbG1tRcuWLcXRo0cN97Vv314MHjy4wPgNGzaIunXrCltbW9GwYUOxY8eOSq647IrbVitWrDCMebrHTz75xPB6eHt7i169eolTp05VfvFlMHDgQOHr6ytsbW1FtWrVxMCBA8XVq1cN95v79su3e/duAUBcunSp0H3mtv3y/2Y9/ZPfg16vF1988YXw9vYWKpVKdO7cuVDfAQEBYtq0aQWWlfQ5NgaFEEIYb+KMiIiIyHTxOj5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BCRrN27dw8+Pj6YNWuWYdnhw4dha2uLvXv3SlgZEUmB39VFRLK3c+dO9OnTB4cPH0ZwcDBCQkLw+uuvY8GCBVKXRkSVjMGHiCxCREQE9uzZgxYtWiAuLg7//vsvVCqV1GURUSVj8CEii5CdnY1GjRrh1q1bOHnyJBo3bix1SUQkAR7jQ0QW4dq1a7hz5w70ej1u3LghdTlEJBHu8SEi2cvNzUXLli0REhKC4OBgLFq0CHFxcfDy8pK6NCKqZAw+RCR7EyZMwKZNm3D69Gk4Ojqiffv2cHFxwfbt26UujYgqGae6iEjWDhw4gEWLFuGXX36Bs7MzrKys8Msvv+Dvv//G999/L3V5RFTJuMeHiIiILAb3+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsBoMPERERWQwGHyIiIrIYDD5ERERkMRh8iIiIyGIw+BAREZHFYPAhIiIii8HgQ0RERBaDwYeIiIgsxv8HIGLLDQ8ifpoAAAAASUVORK5CYII="
48
- }
49
- }
50
- ]
51
- },
52
- {
53
- "cell_type": "markdown",
54
- "metadata": {},
55
- "source": "This script first defines the coefficients of the line (slope and intercept), then generates x values over a range from -10 to 10. It calculates the corresponding y values using the equation of the line, prints out the equation of the line, and finally plots the line using matplotlib. The resulting plot shows the linear relationship between x and y according to the given equation."
56
- },
57
- {
58
- "cell_type": "markdown",
59
- "metadata": {},
60
- "source": "<div class=\"alert alert-block alert-success\">\n<b>User:</b> Solve the bayes theorem equation and plot the results.\n</div>\n"
61
- },
62
- {
63
- "cell_type": "code",
64
- "execution_count": 2,
65
- "metadata": {},
66
- "source": "import numpy as np\nimport matplotlib.pyplot as plt\n\n# Define the probabilities\nP_A = 0.01 # Probability of having the disease\nP_B_given_A = 0.99 # Probability of testing positive given that you have the disease\nP_B_given_not_A = 0.02 # Probability of testing positive given that you don't have the disease\n\n# Calculate P(not A)\nP_not_A = 1 - P_A\n\n# Calculate P(B) using the law of total probability\nP_B = P_B_given_A * P_A + P_B_given_not_A * P_not_A\n\n# Apply Bayes' theorem to find P(A|B)\nP_A_given_B = (P_B_given_A * P_A) / P_B\n\nprint(\"The probability of having the disease given a positive test result is: {:.2%}\".format(P_A_given_B))\n\n# Create an array of different prior probabilities\nprior_probabilities = np.linspace(0, 1, 100)\n\n# Calculate the posterior probabilities for each prior probability\nposterior_probabilities = (P_B_given_A * prior_probabilities) / (P_B_given_A * prior_probabilities + P_B_given_not_A * (1 - prior_probabilities))\n\n# Plot the results\nplt.plot(prior_probabilities, posterior_probabilities)\nplt.xlabel('Prior Probability of Having the Disease')\nplt.ylabel('Posterior Probability of Having the Disease Given a Positive Test Result')\nplt.title('Bayes\\' Theorem Applied to Medical Testing')\nplt.grid(True)\nplt.show()",
67
- "outputs": [
68
- {
69
- "output_type": "stream",
70
- "name": "stdout",
71
- "text": "The probability of having the disease given a positive test result is: 33.33%\n"
72
- },
73
- {
74
- "output_type": "display_data",
75
- "metadata": {},
76
- "data": {
77
- "text/plain": [
78
- "<Figure size 640x480 with 1 Axes>"
79
- ],
80
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAHHCAYAAABDUnkqAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjkuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8hTgPZAAAACXBIWXMAAA9hAAAPYQGoP6dpAACDC0lEQVR4nO3dd3zM9x8H8NddciM7MbIIETvELj+xZ9SuPYpqUa3USFWpPVp0EFvRGi21q4OSSKldNUttEjsRInvffX5/xB0nwX3jhsTr+XjkkdznvuN9n8Td22fKhBACEmzZsgX9+vVD37598cMPP+DcuXPw8/PDwoULsWPHDuzYsUPK5YiIiIhMSi71hBkzZmDp0qVYvnw5FAqFvrxBgwY4ceKESYMjIiIikkpycnPx4kU0btw4V7mLiwvi4+NNERMRERFRvklObjw9PXHlypVc5QcOHICfn59JgiIiIiLKL8nJzeDBgzFixAj8/fffkMlkuHPnDtauXYvRo0fjgw8+MEeMREREREazlXrC2LFjodVq0aJFC6SmpqJx48ZQqVQYPXo0PvroI3PESERERGQ0mdTZUjqZmZm4cuUKkpOT4e/vD0dHR6SlpcHOzs7UMRIREREZTXK3lI5SqYS/vz/q1q0LhUKBOXPmoEyZMqaMjYiIiEgyo5ObjIwMjBs3DnXq1EFgYCC2bdsGAFi5ciXKlCmDuXPnYtSoUeaKk4iIiMgoRndLffrpp/j222/RsmVLHDp0CLGxsRg4cCCOHDmCzz77DN27d4eNjY254yUiIiJ6LqNbbjZt2oQ1a9Zg8+bNCAsLg0ajQXZ2Nk6fPo1evXoxsaFCTyaTITg42Nph0BNWrVoFmUyGqKgofVnTpk3RtGlTk95HJpNhypQpJr1mQfB0XUZFRUEmk2HVqlVmud/evXshk8mwd+9es1zflKZMmQKZTGbtMOgZjE5ubt26hdq1awMAqlatCpVKhVGjRvGXW8joPiye/HJ3d0ezZs3wxx9/WDs8SV70Jty0adNcrzWvr9fxQy0/6tatC5lMhiVLllg7FKu4c+cOpkyZglOnTpn0uroPfJlMhh9//DHPYxo0aACZTIaqVaua9N6vImP+zZoqQUpNTcWUKVMKRLJFhoyeCq7RaKBUKh+faGsLR0dHswRF1jdt2jSUKVMGQgjExMRg1apVaNu2LX777Te0b9/e2uGZxPjx4zFo0CD943/++Qfz58/HZ599hsqVK+vLq1WrZo3wCpTLly/jn3/+ga+vL9auXWvVNa/CwsKsct87d+5g6tSp8PX1RY0aNUx+fbVajXXr1uHtt982KI+KisKhQ4egVqtNfs+nlS5dGmlpaQZb71jaDz/8YPB4zZo1CA8Pz1X+5L/h/EpNTcXUqVMBIFdr4IQJEzB27NiXvgeZh9HJjRAC77zzDlQqFQAgPT0dQ4cOhYODg8FxW7duNW2EZBVvvvkm6tSpo3/83nvvwcPDAz/99FOhSW5atWpl8FitVmP+/Plo1aqVybs1TC07OxtardbgPxzW9OOPP8Ld3R3ffPMNunXrhqioKPj6+lolllelTkytbdu2+PXXX3H//n0UK1ZMX75u3Tp4eHigfPnyePjwoVljkMlkFkminufp5O7IkSMIDw/PVW5utra2sLWVvFQcWYjR3VIDBgyAu7s7XFxc4OLigrfffhve3t76x7ovKpxcXV1hZ2eX6x/z119/jcDAQBQtWhR2dnaoXbs2Nm/ebHBMkyZNUL169TyvW7FiRQQFBekfa7VahIaGokqVKlCr1fDw8MD777+f60372LFjCAoKQrFixWBnZ4cyZcrg3XffNdGrfb5t27bpu2arVKmCnTt35jrm9u3bePfdd+Hh4aE/7vvvv8913L179/SJo1qtRvXq1bF69WqDY3TjHL7++muEhoaibNmyUKlUOHfuHADgwoUL6NatG4oUKQK1Wo06derg119/NbiGrrvxwIEDGD58OIoXLw5XV1e8//77yMzMRHx8PPr37w83Nze4ublhzJgxkLIE1rp169CtWze0b98eLi4uWLduXa5jdGMULly4gB49esDZ2RlFixbFiBEjkJ6ebnCsbnzT2rVrUbFiRajVatSuXRv79u17YSx5jbnJyMjA5MmTUa5cOahUKvj4+GDMmDHIyMjIddyoUaNQvHhxODk5oWPHjrh169YL77l371688cYbAICBAwfqu0ae7BbdtGkTateuDTs7OxQrVgxvv/02bt++/cJr63Tq1AkqlQqbNm0yKF+3bh169OjxzHGPP/74o/6+RYoUQa9evXDz5s1cxy1btgxly5aFnZ0d6tati/379+c65lljbnS/0+LFi8POzg4VK1bE+PHj9c9fv34dH374ISpWrAg7OzsULVoU3bt3NxgrZUqmeB+JiopC8eLFAQBTp07N1U2d15gb3d+tMe8Re/fuRZ06daBWq1G2bFl8++23HMdjSoLoCStXrhQAxO7du0VsbKy4d++eOHv2rHj//feFXC4XYWFhBseXLFlSfPjhh2LhwoVizpw5om7dugKA+P333/XHLF++XAAQZ86cMTj36NGjAoBYs2aNvmzQoEHC1tZWDB48WCxdulR8+umnwsHBQbzxxhsiMzNTCCFETEyMcHNzExUqVBBfffWVWL58uRg/fryoXLmywfUBiJUrVxr92jdt2iQAiD179uT5PABRvXp14eXlJaZPny5CQ0OFn5+fsLe3F/fv39cfFx0dLUqWLCl8fHzEtGnTxJIlS0THjh0FADF37lz9campqaJy5cpCoVCIUaNGifnz54tGjRoJACI0NFR/XGRkpAAg/P39hZ+fn5g1a5aYO3euuH79ujh79qxwcXER/v7+Yvbs2WLhwoWicePGQiaTia1bt+qvofu91qhRQ7Rp00YsWrRI9OvXTwAQY8aMEQ0bNhR9+vQRixcvFu3btxcAxOrVq42qtyNHjggAYv/+/UIIId59913h7++f67jJkycLACIgIEB06NBBLFy4ULz99tsCgOjXr1+uuq5ataooVqyYmDZtmpg9e7YoXbq0sLOzM/g70r2uyMhIfVmTJk1EkyZN9I81Go1o3bq1sLe3FyNHjhTffvutCA4OFra2tqJTp04G99XF06dPH7Fw4ULRpUsXUa1aNQFATJ48+Zl1EB0dLaZNmyYAiCFDhogffvhB/PDDD+Lq1asGcb7xxhti7ty5YuzYscLOzk74+vqKhw8fPrd+9+zZIwCITZs2iT59+ohGjRrpnzt16pQAIA4fPiyaNGkiqlSpYnDujBkzhEwmEz179hSLFy8WU6dOFcWKFct13xUrVggAIjAwUMyfP1+MHDlSuLq6Cj8/P4O61P0tPvnv6vTp08LZ2VkULVpUjBs3Tnz77bdizJgxIiAgQH/Mpk2bRPXq1cWkSZPEsmXLxGeffSbc3NxE6dKlRUpKSq7X+qx/g3kZNmyYePqjzBTvI8nJyWLJkiUCgHjrrbf0v9PTp08LIR7/PT/J2PeIEydOCJVKJXx9fcWsWbPE559/Lry9vUX16tVzXZPyh7VIBnRvwk9/qVQqsWrVqlzHp6amGjzOzMwUVatWFc2bN9eXxcfHC7VaLT799FODY4cPHy4cHBxEcnKyEEKI/fv3CwBi7dq1Bsft3LnToPznn38WAMQ///xjktesY0xyo1QqxZUrV/Rlp0+fFgDEggUL9GXvvfee8PLyMngzE0KIXr16CRcXF32dhYaGCgDixx9/1B+TmZkp6tevLxwdHUViYqIQ4vEHirOzs7h3757BNVu0aCECAgJEenq6vkyr1YrAwEBRvnx5fZnu9xoUFCS0Wq2+vH79+kImk4mhQ4fqy7Kzs0XJkiUNPtSeJzg4WPj4+OivGxYWJgCIkydPGhyn+zDo2LGjQfmHH34oAOg/NIQQ+r+7Y8eO6cuuX78u1Gq1eOutt3K9ruclNz/88IOQy+X65Etn6dKlAoA4ePCgEOJxovDhhx8aHNenT58XJjdCCPHPP//kmVBnZmYKd3d3UbVqVZGWlqYv//333wUAMWnSpOde98nk5vfffxcymUzcuHFDCCHEJ598Ivz8/PSv+8nkJioqStjY2IjPP//c4HpnzpwRtra2+nJdfDVq1BAZGRn645YtWyYAvDC5ady4sXBychLXr183uM+Tf2dPv08IIcThw4dz/efGFMmNKd9HYmNjn/m7f1ZyY8x7RIcOHYS9vb24ffu2vuzy5cvC1taWyY2J5HuFYircFi1ahPDwcISHh+PHH39Es2bNMGjQoFxjqp7cbuPhw4dISEhAo0aNcOLECX25i4sLOnXqhJ9++knf1aHRaLBhwwZ07txZP25r06ZNcHFxQatWrXD//n39V+3ateHo6Ig9e/YAyOkiA4Dff/8dWVlZ5qyGXFq2bImyZcvqH1erVg3Ozs64du0agJyxaVu2bEGHDh0ghDB4HUFBQUhISNDXzY4dO+Dp6YnevXvrr6dQKDB8+HAkJyfjr7/+Mrh3165d9c3kABAXF4c///wTPXr0QFJSkv4+Dx48QFBQEC5fvpyr2+O9994zaPauV68ehBB477339GU2NjaoU6eO/jU9T3Z2NjZs2ICePXvqr9u8eXO4u7tj7dq1eZ4zbNgwg8e6Pel27NhhUF6/fn39DE0AKFWqFDp16oRdu3ZBo9G8MDadTZs2oXLlyqhUqZLB76N58+YAoP+70t1/+PDhBuePHDnS6Hvl5dixY7h37x4+/PBDg/Eq7dq1Q6VKlbB9+3ajr9W6dWsUKVIE69evhxAC69evN/j7edLWrVuh1WrRo0cPg9ft6emJ8uXL61+3Lr6hQ4cajFd65513XjjUIDY2Fvv27cO7776LUqVKGTz35N/Zk+8TWVlZePDgAcqVKwdXV1eD9wpTsPb7yIveIzQaDXbv3o3OnTvD29tbf1y5cuXw5ptvmiyO1x1HQ1Ge6tatazCguHfv3qhZsyaCg4PRvn17/Zvg77//jhkzZuDUqVMG4xee7jfu378/NmzYgP3796Nx48bYvXs3YmJi0K9fP/0xly9fRkJCAtzd3fOM6d69ewByxvB07doVU6dOxdy5c9G0aVN07twZffr00Q94N5en38ABwM3NTd+XHxsbi/j4eCxbtgzLli3L8xq613H9+nWUL18ecrnh/zF0szyuX79uUP709iZXrlyBEAITJ07ExIkTn3mvEiVKPDN+3YeXj49PrnJjBqeGhYUhNjYWdevWxZUrV/TlzZo1w08//YTZs2fnen3ly5c3eFy2bFnI5fJc4y+ePg4AKlSogNTUVMTGxsLT0/OF8QE5f1fnz583SAyf9OTvQy6XG3wwATnjwl6G7veY13UqVaqEAwcOGH0thUKB7t27Y926dahbty5u3ryJPn365Hns5cuXIYTIsx5113oyvqePUygU8PPze248ug/sF01BT0tLw8yZM7Fy5Urcvn3bYDxXQkLCc8+VytrvIy96j7h37x7S0tJQrly5XMflVUb5w+SGjCKXy9GsWTPMmzcPly9fRpUqVbB//3507NgRjRs3xuLFi+Hl5QWFQoGVK1fmGlAaFBQEDw8P/Pjjj2jcuDF+/PFHeHp6omXLlvpjtFrtc//Hr/twkslk2Lx5M44cOYLffvsNu3btwrvvvotvvvkGR44cMesSBc8atKl7s9ZqtQByZnQMGDAgz2PzO7X86U1pdfcaPXq0waDsJz39Zvms+PMqf/ID6Fl0v6sePXrk+fxff/2FZs2aPfca5h5AqdVqERAQgDlz5uT5/NOJ3auuT58+WLp0KaZMmYLq1avD398/z+O0Wi1kMhn++OOPPH+/llzK46OPPsLKlSsxcuRI1K9fHy4uLpDJZOjVq5f+79hUrP0+8qL3CLIMycnNvn37EBgYmGvWTHZ2Ng4dOoTGjRubLDh6tWRnZwMAkpOTAQBbtmyBWq3Grl27DP6ns3Llylzn2tjYoE+fPli1ahVmz56Nbdu2YfDgwQZvBGXLlsXu3bvRoEEDo3aX/9///of//e9/+Pzzz7Fu3Tr07dsX69evN1i7xtJ0s2w0Go1B4paX0qVL499//4VWqzVo3bhw4YL++efR/a9aoVC88F7mkJKSgl9++QU9e/ZEt27dcj0/fPhwrF27Nldyc/nyZYNWqCtXrkCr1eaaOn758uVc17x06RLs7e2f2QqTl7Jly+L06dNo0aLFcxOp0qVLQ6vV4urVqwatLBcvXjTqPs+6tu73ePHiRX1X2JPXftHv+WkNGzZEqVKlsHfvXsyePfuZx5UtWxZCCJQpUwYVKlR45nG6+1++fNkgvqysLERGRj5zpiPw+G/w7Nmzz4158+bNGDBgAL755ht9WXp6OuLj4597Xn6Y8n3EHIm3u7s71Gq1QUunTl5llD+Sx9w0a9YMcXFxucoTEhJe+D80KriysrIQFhYGpVKp7zaxsbGBTCYzGP8QFRWl31T1af369cPDhw/x/vvvIzk5Ode6FD169IBGo8H06dNznZudna1/I3z48GGu/wXpFk17emqvpdnY2KBr167YsmVLnm/4sbGx+p/btm2L6OhobNiwQV+WnZ2NBQsWwNHREU2aNHnuvdzd3dG0aVN8++23uHv37nPvZQ4///wzUlJSMGzYMHTr1i3XV/v27bFly5Zcv5NFixYZPF6wYAEA5BpvcPjwYYPxGDdv3sQvv/yC1q1bS9rupUePHrh9+zaWL1+e67m0tDSkpKQY3H/+/PkGx4SGhhp1H93Ysac/sOvUqQN3d3csXbrUoC7++OMPnD9/Hu3atTP2pQDISaLmz5+PyZMnG3TrPq1Lly6wsbHB1KlTc/17EULgwYMH+viKFy+OpUuXIjMzU3/MqlWrXph8FC9eHI0bN8b333+PGzdu5LqHjo2NTa4YFixYIGnslLFM+T5ib28PIPfv9GXY2NigZcuW2LZtG+7cuaMvv3LlSoFbBf5VJrnlRgiRZzb74MGDXAv6UcH1xx9/6FsQ7t27h3Xr1uHy5csYO3YsnJ2dAeQMiJwzZw7atGmDPn364N69e1i0aBHKlSuHf//9N9c1a9asiapVq+oHeNaqVcvg+SZNmuD999/HzJkzcerUKbRu3RoKhQKXL1/Gpk2bMG/ePHTr1g2rV6/G4sWL8dZbb6Fs2bJISkrC8uXL4ezsjLZt25q/cl5g1qxZ2LNnD+rVq4fBgwfD398fcXFxOHHiBHbv3q3/z8GQIUPw7bff4p133sHx48fh6+uLzZs34+DBgwgNDYWTk9ML77Vo0SI0bNgQAQEBGDx4MPz8/BATE4PDhw/j1q1bOH36tNle59q1a1G0aFEEBgbm+XzHjh2xfPlybN++HV26dNGXR0ZGomPHjmjTpg0OHz6MH3/8EX369MnVQlC1alUEBQVh+PDhUKlUWLx4MQDoV4w1Vr9+/bBx40YMHToUe/bsQYMGDaDRaHDhwgVs3LgRu3btQp06dVCjRg307t0bixcvRkJCAgIDAxEREWH0/6bLli0LV1dXLF26FE5OTnBwcEC9evVQpkwZzJ49GwMHDkSTJk3Qu3dvxMTEYN68efD19cWoUaMkvR4gZ82bTp06vTCeGTNmYNy4cYiKikLnzp3h5OSEyMhI/PzzzxgyZAhGjx4NhUKBGTNm4P3330fz5s3Rs2dPREZGYuXKlS8ccwPkJIMNGzZErVq1MGTIEJQpUwZRUVHYvn27fiuK9u3b44cffoCLiwv8/f1x+PBh7N69G0WLFpX82l/ElO8jdnZ28Pf3x4YNG1ChQgUUKVIEVatWfeltLqZMmYKwsDA0aNAAH3zwATQaDRYuXIiqVauafPuO15ax06reeust8dZbbwm5XC7atm2rf/zWW2+Jjh07Cl9fXxEUFGSyaVxkHXlNBVer1aJGjRpiyZIlBtM7hRDiu+++E+XLlxcqlUpUqlRJrFy5Ms8pkjpffvmlACC++OKLZ8awbNkyUbt2bWFnZyecnJxEQECAGDNmjLhz544QImeNiN69e4tSpUoJlUol3N3dRfv27Q2mDeeHMVPBhw0blqu8dOnSYsCAAQZlMTExYtiwYcLHx0coFArh6ekpWrRoIZYtW5bruIEDB4pixYoJpVIpAgICck0l1k2//eqrr/KM6+rVq6J///7C09NTKBQKUaJECdG+fXuxefNm/TG63+vT0151v6vY2FiD8gEDBggHB4c876eL29bWNtf6NE9KTU0V9vb2+qnbunudO3dOdOvWTTg5OQk3NzcRHBxsMEVaiMd1/eOPP+r/vmrWrJnrd2PMVHAhcqY7z549W1SpUkWoVCrh5uYmateuLaZOnSoSEhL0x6WlpYnhw4eLokWLCgcHB9GhQwdx8+ZNo6aCCyHEL7/8Ivz9/fVTep/8XW7YsEHUrFlTqFQqUaRIEdG3b19x69atF17zyangz5PXOjdCCLFlyxbRsGFD4eDgIBwcHESlSpXEsGHDxMWLFw2OW7x4sShTpoxQqVSiTp06Yt++fbnqMq+p4EIIcfbsWfHWW28JV1dXoVarRcWKFcXEiRP1zz98+FD/d+7o6CiCgoLEhQsXcv3bMdU6N0KY7n3k0KFDonbt2kKpVBr8HTxrKrix7xERERGiZs2aQqlUirJly4oVK1aIjz/+WKjVaqNfOz2bTAjjRjkNHDgQALB69Wr06NHDoC9TqVTC19cXgwcPNlgWnOhp8+bNw6hRoxAVFZXnrAIqvKZMmYKpU6ciNjb2he8TMpkMw4YNw8KFCy0UHZH1de7cGf/991+e481IGqO7pXSDRH19fTF69Gh2QZFkQgh89913aNKkCRMbInqtpaWlGTQSXL58GTt27HjmLEuSRvKYm6f3nLl+/Tp+/vln+Pv7o3Xr1iYNjgqHlJQU/Prrr9izZw/OnDmDX375xdohERFZlZ+fH9555x34+fnh+vXrWLJkCZRKJcaMGWPt0AoFyclNp06d0KVLFwwdOhTx8fGoW7culEol7t+/jzlz5uCDDz4wR5xUgMXGxqJPnz5wdXXFZ599ho4dO1o7JCIiq2rTpg1++uknREdHQ6VSoX79+vjiiy+euegiSWP0mBudYsWK4a+//kKVKlWwYsUKLFiwACdPnsSWLVswadIknD9/3lyxEhEREb2Q5HVuUlNT9VNUw8LC0KVLF8jlcvzvf//LtVw8ERERkaVJTm7KlSuHbdu24ebNm9i1a5d+nM29e/f0658QERERWYvkbqnNmzejT58+0Gg0aN68OcLDwwEAM2fOxL59+175FRa1Wi3u3LkDJycns+9pQ0RERKYhhEBSUhK8vb1zbcj7NMnJDQBER0fj7t27qF69uv4GR48ehbOzMypVqpS/qC3k1q1bBW6jPCIiIspx8+ZNlCxZ8rnH5Cu5AXL2wbh69SoaN24MOzu7Z27L8KpJSEiAq6srbt68afJuNN3+S7rlvsk8WM+WwXq2DNaz5bCuLcNc9ZyYmAgfHx/Ex8fDxcXlucdKngr+4MED9OjRA3v27IFMJsPly5fh5+eH9957D25ubga7vr6KdAmYs7OzWZIbe3t7ODs78x+OGbGeLYP1bBmsZ8thXVuGuevZmIYUyQOKR40aBYVCgRs3buh3TAWAnj17YufOnVIvR0RERGRSkltuwsLCsGvXrlz9XeXLl+dUcCIiIrI6yS03KSkpBi02OnFxcVCpVCYJioiIiCi/JCc3jRo1wpo1a/SPZTIZtFotvvzySzRr1sykwRERERFJZXS3lJ+fH/755x98+eWXaNGiBY4dO4bMzEyMGTMG//33H+Li4nDw4EFzxkpERET0Qka33ERFRUGj0aBq1aq4dOkSGjZsiE6dOiElJQVdunTByZMnUbZsWXPGSkRERPRCkgcUA4CLiwvGjx9v6liIiIiIXpqk5GbXrl0vXDinY8eOLxUQERER0cuQlNwMGDDguc/LZDJoNJqXCoiIiIjoZUiaLRUdHQ2tVvvMLyY2REREZG1GJzfm2Ddq37596NChA7y9vSGTybBt27YXnrN3717UqlULKpUK5cqVw6pVq0weFxERERVcRic3+dxf87lSUlJQvXp1LFq0yKjjIyMj0a5dOzRr1gynTp3CyJEjMWjQIOzatcvksREREVHBZPSYmwEDBsDOzs6kN3/zzTfx5ptvGn380qVLUaZMGf3mnJUrV8aBAwcwd+5cBAUFmTQ2IiIiyk0IAa0AsrVaaLQC2VoBjebRd61AemYmEjKtG6PRyc3KlSvNGYdRDh8+jJYtWxqUBQUFYeTIkc88JyMjAxkZGfrHiYmJAHJ2Lc3KyjJpfLrrmfq6ZIj1bBmsZ8tgPVuOpepaiJwP+myNQLZWi0yNQLZGqy/LevJnrVZ/nP6cR4+zNOJR8vDkz4+O1R8n9ElGlsbwZ/3xmieSEP01Hl9b8yg5yXriec0Tz2drRK7zX6SMkw26mekz1hj5WufGWqKjo+Hh4WFQ5uHhgcTERKSlpeXZsjRz5kxMnTo1V3lYWFiee2SZQnh4uFmuS4ZYz5bBerYM1vOzCYGclgIBZGsBzdM/P1Gm0cpyvgtAo819jkYrQ9jK3cgWMv0xj597dJ4wvG7Ol8zg+exHMT19ju7Y15VcJmADwEYmTP43nZqaavSxBSq5yY9x48YhJCRE/zgxMRE+Pj5o3bo1nJ2dTXqvrKwshIeHo1WrVlAoFCa9Nj3GerYM1rNlvKr1rGt9yMjWIiNLk/Pd4EuDzGzx6LsWmY/KMzWPvj9Vlvnkd/3PIldZlsbw+SxNzs9mGPZpUXIZYGsjh0Iug62NDLZyOWxtZI8ey2H76LvCRgZbuQw2chkUNnLYyHMeK/THPHG87uuJxzZPn/vE9WzlT1zj0WObJ563kT31nFwGGzkMjpPLZFDYyPRx2crlkMt1z+VMPjLX37Su58UYBSq58fT0RExMjEFZTEwMnJ2dnzkeSKVS5blbuUKhMNsbiTmvTY+xni2D9WwZL6rnbI0WaVkapGVpkJ6pRXq2BmmZGqTryrJyEo70Rz/rvz9RlpGtQcaj5zKyH3/POe/R89laZDz62YjeB6uQyQCljTznyzYnSVDayqF4skxuWJbzYQ/ci76DMqV8oFLYPj5PnvO8rY0MqkfnKh6dq7DRJRZyKG0fJyVKG7k+qTA47lHiotT9bCOD4lEC8Lox9XuHlGvlO7m5cuUKrl69isaNG8POzg5CCLNMF39S/fr1sWPHDoOy8PBw1K9f36z3JSJ6kSyNFqmZGqRmZud8z3j0c1ZOEpKaqUHao+fSnihLycjCtRty/PzgBNKztUjL0iJdd0yWLjHRIEtj3UxDaSuHylYOla3No+9yfZnyifKny558rLTN+dA3fGyj/1nxKLl4ukxpK4fKxgYK25ykwkYuy9fnTVZWFnbsuIW2baswYS/kJCc3Dx48QM+ePfHnn39CJpPh8uXL8PPzw3vvvQc3Nzf9TCZjJCcn48qVK/rHkZGROHXqFIoUKYJSpUph3LhxuH37NtasWQMAGDp0KBYuXIgxY8bg3XffxZ9//omNGzdi+/btUl8GEb3GhMjpbklKz0ZyRjZSMp7+rkFKRjZSMrMffdcgNSMbyY8SFt3j1EwNUjKzkZqhQaZG+xIRyYEH9406UiYD1LY2sFPaQG0rh1ppA7WtDdQKOdQKm0dfcqhtbaBSPFH+xDEq29zfVYrHSYtaYQOV4omExeb1bHmggktycjNq1CjY2trixo0bqFy5sr68Z8+eCAkJkZTcHDt2DM2aNdM/1o2NGTBgAFatWoW7d+/ixo0b+ufLlCmD7du3Y9SoUZg3bx5KliyJFStWcBo40WtEoxVITs9GYnpWzldaNpLSs5CU/vh7ckY2Eh99T07PQnJG9qPnHycxxsz4yA9buQz2ShvYK21hr8xJQnK+28JeYaMvs3v0s9JGhsjLF1C7RjU42in15WpFzjFqhVx/vC4RMXcrOVFBJzm5CQsLw65du1CyZEmD8vLly+P69euSrtW0adPnLg6Y1+rDTZs2xcmTJyXdh4heLdkaLRLSshCfloX41CwkpmXlPE7NREJaNhIePU5I0yUwOUlLYloWkjKyTRqLg9IGjmpbOKhs4aiyhYNS97MN7A3KchKWJ7/ryu2UtnBU2sJOmdOdIkVWVhZ2JJ9H29ol2FVCZCKSk5uUlJQ8p1DHxcXlOXCXiAq3jGwN4lIyEZeSiYcpWYhLzcTDR4/jUzPxMDULD1MzEZ+ahfi0nO9J6S+foKhs5XC2U8BJbQtn9ePvjipbOKlt4fSozFFtC2e1LRxVCjiobHLKVAo4qnNaUtjdQlT4SE5uGjVqhDVr1mD69OkAcqZ9abVafPnllwZdTERUMGVrtIhLzUT0w1RciJch69QdxKdrcD85Ew+SMxCXkon7KZmIS8lAXHImUjLzv2Guk8oWLvYKuNor4GL3+Mv5yZ/Vj8uc1bb6hEZla2PCV01EhYnk5ObLL79EixYtcOzYMWRmZmLMmDH477//EBcXh4MHD5ojRiIygbRMDWIS0xGTmI57SRmPvtIRm5Sh/7qfnIEHKZlPrCliA5w/+8Jr28plcHNQooi9Em4OChRxUMLVXgk3ewXc7B//7GqvgKu9Eq6PEhdbG2ldOERExpCc3FStWhWXLl3CwoUL4eTkhOTkZHTp0gXDhg2Dl5eXOWIkoucQQiA+NQt3EtIQnZCOuwnp+u+6ZCY6MV1SV5BMBrjZK6DSZqKMV1EUdVKjmKMSxRxVKOKgRBEHJYo5KlHEIeexs9qWg1yJ6JWRr3VuXFxcMH78eFPHQkR5yNZocTchHbcepuF2fBpuP0zD7fhU3IlPx52ENNyJT0N6lnHTkO0UNvBwVsHdSY3iziq4Oz362UmV8+WoQjEnJYo6qKDVZGPHjh1o27YOB7oSUYEiObkpV64c3n77bfTt2xfly5c3R0xErxUhBB6mZuH6gxTciEvF9QepuBmXipsPU3EzLg3RienQGDFtuZijEl4udvBwVsPLRQ1PFzU8nXO+ezir4O6shpPK+BYWbf6H0hARWZXk5GbYsGFYt24dpk2bhtq1a+Ptt99Gz5494enpaY74iAqNhNQsXL2fjKj7KYh89BX1IAXX76e+cHqz0laOEq52j7/ccr57uapRwjUnoVErOMCWiAjI5yJ+o0aNwqVLl7B27VosWrQIo0ePRrNmzfD222+jf//+5oiTqEAQQuBOQjouxyThyr1kXLmXjGuxKbgam4wHKZnPPdfTWY1SRe1RqkjOl08RO/i42cOniD2KO6o4ZZmIyEj53luqQoUKmDp1KqZOnYojR47ggw8+wMCBA5nc0GvjfnIGLkYn4UJ0Ei5GJ+JiTDKuxCQ9d2q0p7MaZYo5wLeYA8oUs4dvUQeUKeYAnyL2bHkhIjKRl9oV/OjRo1i3bh02bNiAxMREdO/e3VRxEb0yNFqByPspOHc3EefuJOq/30/OyPN4W7kMZYo5oLyHI8oVd0RZd0eULe6IMsUc4KB6qX9yRERkBMnvtLruqJ9++gmRkZFo3rw5Zs+ejS5dusDR0dEcMRJZjBA5icyZ2wn491YCztxOwH+3E/JsjZHJgNJF7FHR0wkVPZ1R0cMJFT0dUbqoAxRcv4WIyGokJzeVKlXCG2+8gWHDhqFXr17w8PAwR1xEFpGYnoVTN+Jx8kY8Tt58iFM34xGfmpXrOLVCjkqezqji7Qx/b2f4ezmjoqcT7JVsiSEietVIfme+ePEip4BTgRWdkI5/ouIefT3EhehEPL13q9JWjirezqhWwgUBJV1RraQLyhZ3hA0H9BIRFQiSkxsmNlSQxCZl4PC1Bzh89QEOX72PqAepuY4pVcQetUq5omYpN9Qs5YpKns6Sd3YmIqJXh1HJTZEiRXDp0iUUK1YMbm5uz10ELC4uzmTBEUmVnqXB0cg47LsUi/2X7+NiTJLB83IZ4O/tjDqli6BumSKoU9oN7s5qK0VLRETmYFRyM3fuXDg5Oel/5h4y9Cq59TAVEefvIeLCPfx97QEysh9vRSCTAZU9nVG/bFEEli2KN8oUgbOaWwkQERVmRiU3AwYM0P/8zjvvmCsWIqMIIXA9GZi7+wr+vBiLC9GGrTOezmo0rlAMjSsUR4OyxeDmoLRSpEREZA2Sx9zY2Njg7t27cHd3Nyh/8OAB3N3dodFwQxoyPSEETt2Mx44zd7HjzF3cjrcFcA1ATldTHd8iaFHJHc0quaO8uyNbF4mIXmOSkxvx9NSSRzIyMqBU8n/IZFoXo5Ow9eQt/H76Lm7Hp+nLlXKB5pU9EVTVE00ruLN1hoiI9IxObubPnw8AkMlkWLFihcGCfRqNBvv27UOlSpVMHyG9du4lpePXU3ew9cRtnLubqC93UNqgRWUPtK5cHGnXjqNzh+pQKDh+hoiIDBmd3MydOxdATsvN0qVLYWPzeB8cpVIJX19fLF261PQR0mtBqxXYf+U+1v19HbvP34NGm9NCqLCRoVlFd3SpVQJNK7pDrbBBVlYWdly3csBERPTKMjq5iYyMBAA0a9YMW7duhZubm9mCotfH/eQMbPjnJtb/cwM34x53O9XwcUXXWiXQvpo3u5yIiEgSyWNu9uzZY4446DVzOSYJ3x2IxNaTt5H5aOq2k9oWXWuVRJ96pVDBw8nKERIRUUFlVHITEhKC6dOnw8HBASEhIc89ds6cOSYJjAofIQQOXX2A5fuvYe/FWH159ZIuePt/pdG+mjfslDbPuQIREdGLGZXcnDx5EllZWfqfn4XTbykvQgjsv3wfobsv4cSNeAA5i+u19vfA4EZ+qF36+ateExERSWFUcvNkVxS7pchYeSU1Kls5er3hg3cblkHpog7WDZCIiAolyWNunpaYmIg///wTlSpV4lRw0jt9Mx6fbz+Po1E5e42pbOV4+3+l8X4TP7g7cS8nIiIyH8nJTY8ePdC4cWMEBwcjLS0NderUQVRUFIQQWL9+Pbp27WqOOKmAuB2fhq92XsC2U3cAMKkhIiLLk5zc7Nu3D+PHjwcA/PzzzxBCID4+HqtXr8aMGTOY3LymUjOzsXjPVSzff02/cWXXWiUxOqgCvFzsrBwdERG9TiQnNwkJCShSpAgAYOfOnejatSvs7e3Rrl07fPLJJyYPkF59ey/ew/ifz+q3R6hbpggmtvNHQEkXK0dGRESvI8nJjY+PDw4fPowiRYpg586dWL9+PQDg4cOHUKvZ7fA6eZCcgem/n9N3QZVwtcPE9pURVMWTs5+IiMhqJCc3I0eORN++feHo6IjSpUujadOmAHK6qwICAkwdH72ChBD45dQdTP3tPzxMzYJcBrwTWAYft64AB9VLj1EnIiJ6KZI/iT788EPUrVsXN2/eRKtWrSCXywEAfn5+mDFjhskDpFdLUnoWJmw7i18etdZU8nTC7K7VUN3H1bqBERERPZKv/2bXqVMHderUgRACQgjIZDK0a9fO1LHRK+bUzXgM/+kkbsSlwkYuw4gW5fFB07JQ2MitHRoREZFevj6V1qxZg4CAANjZ2cHOzg7VqlXDDz/8YOrY6BWh1Qos/esqui05hBtxqSjhaoeN7/8Pw1uUZ2JDRESvHMktN3PmzMHEiRMRHByMBg0aAAAOHDiAoUOH4v79+xg1apTJgyTrScnIxsgNpxB+LgYA0C7AC190CYCLncLKkREREeVNcnKzYMECLFmyBP3799eXdezYEVWqVMGUKVOY3BQid+LT8N7qYzh/NxFKWzmmdqyCXm/4cCYUERG90iQnN3fv3kVgYGCu8sDAQNy9e9ckQZH1nboZj8FrjiE2KQPFHJX4tl8d1C7tZu2wiIiIXkjygIly5cph48aNuco3bNiA8uXLmyQosq7fTt9Bz28PIzYpA5U8nbBtWAMmNkREVGBIbrmZOnUqevbsiX379unH3Bw8eBARERF5Jj1UsKz9+zrG/3wWANCikjvm9a4JR65dQ0REBYjkT62uXbvi6NGjmDNnDrZt2wYAqFy5Mo4ePYqaNWuaOj6yoNWHojD51/8AAAPql8akDlVgI+f4GiIiKlgkJTeJiYn4+++/kZmZiblz56J48eLmiossbMX+a5ix/TwA4P3Gfhj7ZiUOHCYiogLJ6OTm1KlTaNu2LWJiYiCEgJOTEzZu3IigoCBzxkcWsGTvVczeeQEAMKxZWYxuXZGJDRERFVhGDyj+9NNPUaZMGRw4cADHjx9HixYtEBwcbM7YyAK+/etxYjOiRXkmNkREVOAZ3XJz/PhxhIWFoVatWgCA77//HkWKFEFiYiKcnZ3NFiCZz2+n72DmHzmJzcetKuCjFpztRkREBZ/RLTdxcXEoWbKk/rGrqyscHBzw4MEDswRG5nUsKg4fbzoNAHi3QRkmNkREVGhIGlB87tw5REdH6x8LIXD+/HkkJSXpy6pVq2a66MgsIu+nYPCaY8jM1qKVvwfGt6ts7ZCIiIhMRlJy06JFCwghDMrat28PmUym3x1co9GYNEAyrbiUTAxceRQPU7NQvaQL5vWqweneRERUqBid3ERGRpozDrKAjGwNhqw5hqgHOTt7rxjwBuyVXKCPiIgKF6M/2UqXLm3OOMgCvtp5EceuP4ST2harBr6B4k4qa4dERERkcpL3lqKCae/Fe1hxIKf1bU6PGijv4WTliIiIiMyDyc1rIDYpA6MfzYzqX780Wvl7WDkiIiIi82FyU8hptQKfbD6N+8mZqOjhhM/acmYUEREVbkxuCrmVh6Kw92IsVLZyzO9dE2qFjbVDIiIiMismN4XYf3cSMPvRCsQT2lVGRU+OsyEiosIvX/OAN2/ejI0bN+LGjRvIzMw0eO7EiRMmCYxeTrZGi483nkamRouWlT3w9v84242IiF4Pkltu5s+fj4EDB8LDwwMnT55E3bp1UbRoUVy7dg1vvvmm5AAWLVoEX19fqNVq1KtXD0ePHn3u8aGhoahYsSLs7Ozg4+ODUaNGIT09XfJ9C7u1f9/AhegkuNorMLtrADfDJCKi14bk5Gbx4sVYtmwZFixYAKVSiTFjxiA8PBzDhw9HQkKCpGtt2LABISEhmDx5Mk6cOIHq1asjKCgI9+7dy/P4devWYezYsZg8eTLOnz+P7777Dhs2bMBnn30m9WUUag+SM/BN2EUAwMetK6KoI9ezISKi14fk5ObGjRsIDAwEANjZ2en3lerXrx9++uknSdeaM2cOBg8ejIEDB8Lf3x9Lly6Fvb09vv/++zyPP3ToEBo0aIA+ffrA19cXrVu3Ru/evV/Y2vO6+WrXRSSmZ8Pfyxl96paydjhEREQWJXnMjaenJ+Li4lC6dGmUKlUKR44cQfXq1REZGZlr36nnyczMxPHjxzFu3Dh9mVwuR8uWLXH48OE8zwkMDMSPP/6Io0ePom7durh27Rp27NiBfv36PfM+GRkZyMjI0D9OTEwEAGRlZSErK8voeI2hu56pryvFmdsJ2HDsJgBgUruK0GqyoS1k2329CvX8OmA9Wwbr2XJY15ZhrnqWcj3JyU3z5s3x66+/ombNmhg4cCBGjRqFzZs349ixY+jSpYvR17l//z40Gg08PAwXlPPw8MCFCxfyPKdPnz64f/8+GjZsCCEEsrOzMXTo0Od2S82cORNTp07NVR4WFgZ7e3uj45UiPDzcLNd9Ea0AQs/aQAgZ6hTTIua/w9jxn1VCsQhr1fPrhvVsGaxny2FdW4ap6zk1NdXoYyUnN8uWLYNWqwUADBs2DEWLFsWhQ4fQsWNHvP/++1IvJ8nevXvxxRdfYPHixahXrx6uXLmCESNGYPr06Zg4cWKe54wbNw4hISH6x4mJifDx8UHr1q3h7Oxs0viysrIQHh6OVq1aQaFQmPTaxthy4jauH/kPDkobzHu3CdwL6d5R1q7n1wXr2TJYz5bDurYMc9WzrufFGJKTG7lcDrn88VCdXr16oVevXlIvg2LFisHGxgYxMTEG5TExMfD09MzznIkTJ6Jfv34YNGgQACAgIAApKSkYMmQIxo8fbxCXjkqlgkqV+0NeoVCY7Y/bnNd+lsT0LHwdfhkAMLxFeZQo4mjR+1uDNer5dcR6tgzWs+Wwri3D1PUs5VpWW8RPqVSidu3aiIiI0JdptVpERESgfv36eZ6TmpqaK4GxsclZcVfKeJ/CaNXBKNxPzoRfcQcMbFDG2uEQERFZTb4W8TOVkJAQDBgwAHXq1EHdunURGhqKlJQUDBw4EADQv39/lChRAjNnzgQAdOjQAXPmzEHNmjX13VITJ05Ehw4d9EnO6yg1MxsrD+bs+D2yZQUobbnwNBERvb6smtz07NkTsbGxmDRpEqKjo1GjRg3s3LlTP8j4xo0bBi01EyZMgEwmw4QJE3D79m0UL14cHTp0wOeff26tl/BKWH/0Jh6mZqF0UXu0rZp3lx4REdHrwqrJDQAEBwcjODg4z+f27t1r8NjW1haTJ0/G5MmTLRBZwZCZrcXy/dcAAO83LgtbG7baEBHR642fhAXctlO3cTchHe5OKnStXcLa4RAREVmd5OQmJiYG/fr1g7e3N2xtbWFjY2PwRZaj0Qos/esqAGBQozJQ2bL+iYiIJHdLvfPOO7hx4wYmTpwILy8vbshoRWH/ReNabApc7BToU4+7fhMREQH5SG4OHDiA/fv3o0aNGmYIh4wlhMDivTmtNgPql4ajyurDp4iIiF4JkrulfHx8Xvs1ZV4F+y/fx5nbCbBT2OAdrmtDRESkJzm5CQ0NxdixYxEVFWWGcMhYurE2ver6oIiD0srREBERvTok92X07NkTqampKFu2LOzt7XMthxwXF2ey4Chv1x+k4NDVB5DJgEGN/KwdDhER0StFcnITGhpqhjBIiq0nbgMAGpYrhhKudlaOhoiI6NUiObkZMGCAOeIgIwkhsPXkLQBA11olrRwNERHRqydfi/hdvXoVEyZMQO/evXHv3j0AwB9//IH//vvPpMFRbseuP8TNuDQ4KG3QuoqHtcMhIiJ65UhObv766y8EBATg77//xtatW5GcnAwAOH36NLdFsICtJ3Jabd4M8IK9ktO/iYiIniY5uRk7dixmzJiB8PBwKJWPZ+k0b94cR44cMWlwZCg9S4PfT98FwC4pIiKiZ5Gc3Jw5cwZvvfVWrnJ3d3fcv3/fJEFR3sLPxSApIxslXO1Qr0wRa4dDRET0SpKc3Li6uuLu3bu5yk+ePIkSJbhxoznpuqTeqlkCcjm3vSAiIsqL5OSmV69e+PTTTxEdHQ2ZTAatVouDBw9i9OjR6N+/vzliJAD3ktKx73JOy1iXWkwiiYiInkVycvPFF1+gUqVK8PHxQXJyMvz9/dG4cWMEBgZiwoQJ5oiRAPx66g40WoGapVzhV9zR2uEQERG9siRPt1EqlVi+fDkmTpyIs2fPIjk5GTVr1kT58uXNER89suXRwn1dOJCYiIjoufK1K3jDhg1RqlQplCpVyhwx0VPO3UnE+buJUNrI0aGal7XDISIieqVJ7pZq3rw5ypQpg88++wznzp0zR0z0lD/O5gzgbl7JHa723CSTiIjoeSQnN3fu3MHHH3+Mv/76C1WrVkWNGjXw1Vdf4datW+aIjwDsuxQLAGhR2d3KkRAREb36JCc3xYoVQ3BwMA4ePIirV6+ie/fuWL16NXx9fdG8eXNzxPhai0vJxL+3EwAAjSsUt3I0REREr7587S2lU6ZMGYwdOxazZs1CQEAA/vrrL1PFRY8cuHIfQgCVPJ3g4ay2djhERESvvHwnNwcPHsSHH34ILy8v9OnTB1WrVsX27dtNGRvhcZcUW22IiIiMI3m21Lhx47B+/XrcuXMHrVq1wrx589CpUyfY29ubI77XmhAC+y/nJDeNyhezcjREREQFg+TkZt++ffjkk0/Qo0cPFCvGD1xzuhSTjJjEDKgVcrzhy72kiIiIjCE5uTl48KA54qA86Lqk6pUpCrXCxsrREBERFQxGJTe//vor3nzzTSgUCvz666/PPbZjx44mCYyAfZc53oaIiEgqo5Kbzp07Izo6Gu7u7ujcufMzj5PJZNBoNKaK7bWWlqnB35FxAIAmFdj9R0REZCyjkhutVpvnz2Q+f0c+QGa2Ft4uapTlRplERERGe6l1bsh89l26DyCnS0omk1k5GiIiooLD6AHFaWlpiIiIQPv27QHkTAnPyMjQP29jY4Pp06dDreZCc6bA8TZERET5Y3Rys3r1amzfvl2f3CxcuBBVqlSBnZ0dAODChQvw9vbGqFGjzBPpa+ROfBqu3EuGXAY0KMvxNkRERFIY3S21du1aDBkyxKBs3bp12LNnD/bs2YOvvvoKGzduNHmAryPdwn3VfVzhYq+wcjREREQFi9HJzZUrVxAQEKB/rFarIZc/Pr1u3bo4d+6caaN7TenH25RnlxQREZFURndLxcfHG4yxiY2NNXheq9UaPE/5o9UKHLjyeDAxERERSWN0y03JkiVx9uzZZz7/77//omTJkiYJ6nUW9SAFCWlZUCvkqF7SxdrhEBERFThGJzdt27bFpEmTkJ6enuu5tLQ0TJ06Fe3atTNpcK+jM7cTAACVvZxha8OZ+kRERFIZ3S312WefYePGjahYsSKCg4NRoUIFAMDFixexcOFCZGdn47PPPjNboK+Ls4+Sm4ASbLUhIiLKD6OTGw8PDxw6dAgffPABxo4dCyEEgJwtF1q1aoXFixfDw8PDbIG+LnQtN1W9mdwQERHlh6RdwcuUKYOdO3ciLi4OV65cAQCUK1cORYoUMUtwrxutVuC/24kAgKpsuSEiIsoXScmNTpEiRVC3bl1Tx/LauxGXiqSMbCht5Sjvwf2kiIiI8oMjVl8h+sHEnk5QcDAxERFRvvAT9BWiG0zMLikiIqL8Y3LzCjl7hzOliIiIXhaTm1eEEAJnOZiYiIjopeUrufnhhx/QoEEDeHt74/r16wCA0NBQ/PLLLyYN7nVyMy4NCWlZUNrIUcHDydrhEBERFViSk5slS5YgJCQEbdu2RXx8PDQaDQDA1dUVoaGhpo7vtaEbTFzR0wlKWzaoERER5ZfkT9EFCxZg+fLlGD9+PGxsbPTlderUwZkzZ0wa3OtEN96GXVJEREQvR3JyExkZiZo1a+YqV6lUSElJMUlQr6PHM6WcrRwJERFRwSY5uSlTpgxOnTqVq3znzp2oXLmyKWJ67Qgh9N1SnClFRET0ciSvUBwSEoJhw4YhPT0dQggcPXoUP/30E2bOnIkVK1aYI8ZC79bDNMSnZkFhI0NFTw4mJiIiehmSk5tBgwbBzs4OEyZMQGpqKvr06QNvb2/MmzcPvXr1MkeMhd5/j8bbVPBwgsrW5gVHExER0fPka2+pvn37om/fvkhNTUVycjLc3d1NHddrhTuBExERmY7kMTdpaWlITU0FANjb2yMtLQ2hoaEICwszeXCvizO6xftKMrkhIiJ6WZKTm06dOmHNmjUAgPj4eNStWxfffPMNOnXqhCVLlpg8wMIuZ2ViDiYmIiIyFcnJzYkTJ9CoUSMAwObNm+Hp6Ynr169jzZo1mD9/vskDLOzuJqQjLiUTNnIZKnEwMRER0UuTnNykpqbCySnnQzgsLAxdunSBXC7H//73P/1WDFIsWrQIvr6+UKvVqFevHo4ePfrc4+Pj4zFs2DB4eXlBpVKhQoUK2LFjh+T7vip0423KuztCreBgYiIiopclObkpV64ctm3bhps3b2LXrl1o3bo1AODevXtwdpa2AN2GDRsQEhKCyZMn48SJE6hevTqCgoJw7969PI/PzMxEq1atEBUVhc2bN+PixYtYvnw5SpQoIfVlvDL+Y5cUERGRSUlObiZNmoTRo0fD19cX9erVQ/369QHktOLktXLx88yZMweDBw/GwIED4e/vj6VLl8Le3h7ff/99nsd///33iIuLw7Zt29CgQQP4+vqiSZMmqF69utSX8cqIfJAzOLu8h6OVIyEiIiocJE8F79atGxo2bIi7d+8aJBUtWrTAW2+9ZfR1MjMzcfz4cYwbN05fJpfL0bJlSxw+fDjPc3799VfUr18fw4YNwy+//ILixYujT58++PTTTw32uXpSRkYGMjIy9I8TE3NmJmVlZSErK8voeI2hu56U615/kAwAKOGiMnk8hVV+6pmkYz1bBuvZcljXlmGuepZyvXytc+Pp6QlPT0+Dsrp160q6xv3796HRaODh4WFQ7uHhgQsXLuR5zrVr1/Dnn3+ib9++2LFjB65cuYIPP/wQWVlZmDx5cp7nzJw5E1OnTs1VHhYWBnt7e0kxGys8PNzoY69G2wCQ4fp/x7EjyizhFFpS6pnyj/VsGaxny2FdW4ap61m3DI0x8pXcHDt2DBs3bsSNGzeQmZlp8NzWrVvzc0mjaLVauLu7Y9myZbCxsUHt2rVx+/ZtfPXVV89MbsaNG4eQkBD948TERPj4+KB169aSxwi9SFZWFsLDw9GqVSsoFIoXHp+Uno2Uw38CAHp1aA0ndb5+Ha8dqfVM+cN6tgzWs+Wwri3DXPWs63kxhuRP0/Xr16N///4ICgpCWFgYWrdujUuXLiEmJkZSt1SxYsVgY2ODmJgYg/KYmJhcrUI6Xl5eUCgUBl1QlStXRnR0NDIzM6FUKnOdo1KpoFKpcpUrFAqz/XEbe+3o2DQAQBEHJYo42ZkllsLMnL9Deoz1bBmsZ8thXVuGqetZyrUkDyj+4osvMHfuXPz2229QKpWYN28eLly4gB49eqBUqVJGX0epVKJ27dqIiIjQl2m1WkREROgHKT+tQYMGuHLlCrRarb7s0qVL8PLyyjOxedXdiMtpYvNxY2JDRERkKpKTm6tXr6Jdu3YAchKUlJQUyGQyjBo1CsuWLZN0rZCQECxfvhyrV6/G+fPn8cEHHyAlJQUDBw4EAPTv399gwPEHH3yAuLg4jBgxApcuXcL27dvxxRdfYNiwYVJfxivhpi65KWKesT9ERESvI8ndUm5ubkhKSgIAlChRAmfPnkVAQADi4+MlDfYBgJ49eyI2NhaTJk1CdHQ0atSogZ07d+oHGd+4cQNy+eP8y8fHB7t27cKoUaNQrVo1lChRAiNGjMCnn34q9WW8EnQtN6WY3BAREZmM5OSmcePGCA8PR0BAALp3744RI0bgzz//RHh4OFq0aCE5gODgYAQHB+f53N69e3OV1a9fH0eOHJF8n1cRkxsiIiLTk5zcLFy4EOnp6QCA8ePHQ6FQ4NChQ+jatSsmTJhg8gALs5tMboiIiExOcnJTpEgR/c9yuRxjx441aUCvC41W4NbDnNlSHHNDRERkOpIHFAM5g4onTJiA3r176/eB+uOPP/Dff/+ZNLjCLCYxHZkaLWzlMni5qK0dDhERUaEhObn566+/EBAQgL///htbt25FcnLO9gGnT59+5kJ6lJtuvE0JNzvY2uQrxyQiIqI8SP5UHTt2LGbMmIHw8HCDtWWaN29eaAb6WgIHExMREZmH5OTmzJkzea5E7O7ujvv375skqNfBLa5xQ0REZBaSkxtXV1fcvXs3V/nJkydRokQJkwT1OmDLDRERkXlITm569eqFTz/9FNHR0ZDJZNBqtTh48CBGjx6N/v37myPGQonJDRERkXnka2+pSpUqwcfHB8nJyfD390fjxo0RGBjIdW4kuBGXMw2cyQ0REZFpSV7nRqlUYvny5Zg0aRLOnDmD5ORk1KxZE+XLlzdHfIVSamY27idnAOCYGyIiIlOTnNzo+Pj4wMfHBxqNBmfOnMHDhw/h5uZmytgKrZuPWm1c7BRwsTPddvBERESUj26pkSNH4rvvvgMAaDQaNGnSBLVq1YKPj0+ee0FRbhxvQ0REZD6Sk5vNmzejevXqAIDffvsN165dw4ULFzBq1CiMHz/e5AEWRjf008DtrBwJERFR4SM5ubl//z48PT0BADt27ECPHj1QoUIFvPvuuzhz5ozJAyyMbnKNGyIiIrORnNx4eHjg3Llz0Gg02LlzJ1q1agUASE1NhY2NjckDLIzYLUVERGQ+kgcUDxw4ED169ICXlxdkMhlatmwJAPj7779RqVIlkwdYGDG5ISIiMh/Jyc2UKVNQtWpV3Lx5E927d4dKpQIA2NjYYOzYsSYPsLDRaoW+W4rJDRERkenlayp4t27dcpUNGDDgpYN5HcQmZyAjWwu5DPB25YBiIiIiUzMquZk/fz6GDBkCtVqN+fPnP/fY4cOHmySwwkrXJeXtageFjeQhT0RERPQCRiU3c+fORd++faFWqzF37txnHieTyZjcvMCNB+ySIiIiMiejkpvIyMg8fybpOJiYiIjIvNgvYmE3H3KNGyIiInOSlNykpKRg0qRJqFq1KhwdHeHk5IRq1aph2rRpSE1NNVeMhQpnShEREZmX0bOlMjMz0aRJE5w9exZvvvkmOnToACEEzp8/j88//xx//PEH9u3bB4WCG0E+D7uliIiIzMvo5GbJkiW4desWTp8+jYoVKxo8d+HCBTRt2hRLly7FRx99ZPIgC4v0LA1iEjMAMLkhIiIyF6O7pbZu3YqJEyfmSmwAoFKlShg/fjw2b95s0uAKm+iEdACAncIGrvZs4SIiIjIHo5Obc+fOoWnTps98vlmzZjh37pwpYiq04lIzAQBFHJSQyWRWjoaIiKhwMjq5iY+PR9GiRZ/5fNGiRZGQkGCSoAqruOSc5Kaoo9LKkRARERVeRic3Wq32ubt+y+VyaDQakwRVWOlabtzsmdwQERGZi9EDioUQaNGiBWxt8z4lOzvbZEEVVnEpj1puHJjcEBERmYvRyc3kyZNfeEzXrl1fKpjC7uGj5MaNyQ0REZHZmDS5oed7kPJ4QDERERGZB7dfsKCHTG6IiIjMjsmNBbHlhoiIyPyY3FjQw1QmN0RERObG5MaCdOvcMLkhIiIyn5dKbtLT000VR6GXma1FUkbOdPkiXOeGiIjIbCQnN1qtFtOnT0eJEiXg6OiIa9euAQAmTpyI7777zuQBFha6Lim5DHCx475SRERE5iI5uZkxYwZWrVqFL7/8Ekrl4xaIqlWrYsWKFSYNrjDRLeDnZq+EXM59pYiIiMxFcnKzZs0aLFu2DH379jXYjqF69eq4cOGCSYMrTOI4U4qIiMgiJCc3t2/fRrly5XKVa7VaZGVlmSSowiiOqxMTERFZhOTkxt/fH/v3789VvnnzZtSsWdMkQRVG3FeKiIjIMozefkFn0qRJGDBgAG7fvg2tVoutW7fi4sWLWLNmDX7//XdzxFgosOWGiIjIMiS33HTq1Am//fYbdu/eDQcHB0yaNAnnz5/Hb7/9hlatWpkjxkJBv4Afp4ETERGZleSWGwBo1KgRwsPDTR1LocatF4iIiCwjX8kNAGRmZuLevXvQarUG5aVKlXrpoAojbppJRERkGZKTm8uXL+Pdd9/FoUOHDMqFEJDJZNBoNCYLrjDhVHAiIiLLkJzcvPPOO7C1tcXvv/8OLy8vyGRckM4YTG6IiIgsQ3Jyc+rUKRw/fhyVKlUyRzyFkhCCO4ITERFZSL7Wubl//745Yim0kjKykaURAJjcEBERmZtRyU1iYqL+a/bs2RgzZgz27t2LBw8eGDyXmJho7ngLpLjknFYbe6UN1AqbFxxNREREL8OobilXV1eDsTVCCLRo0cLgGA4ofra41MebZhIREZF5GZXc7Nmzx9xxFGq6lpuijkxuiIiIzM2o5KZJkyb6n2/cuAEfH59cs6SEELh586Zpoysk2HJDRERkOZIHFJcpUwaxsbG5yuPi4lCmTBmTBFXYcNNMIiIiy5Gc3OjG1jwtOTkZarXaJEEVNg+5aSYREZHFGL3OTUhICABAJpNh4sSJsLe31z+n0Wjw999/o0aNGvkKYtGiRfjqq68QHR2N6tWrY8GCBahbt+4Lz1u/fj169+6NTp06Ydu2bfm6tyVwXykiIiLLMTq5OXnyJICclpszZ85AqXz8Qa1UKlG9enWMHj1acgAbNmxASEgIli5dinr16iE0NBRBQUG4ePEi3N3dn3leVFQURo8ejUaNGkm+p6VxXykiIiLLMTq50c2YGjhwIObNmwdnZ2eTBDBnzhwMHjwYAwcOBAAsXboU27dvx/fff4+xY8fmeY5Go0Hfvn0xdepU7N+/H/Hx8SaJxVzYckNERGQ5ksfcrFy50mSJTWZmJo4fP46WLVs+DkguR8uWLXH48OFnnjdt2jS4u7vjvffeM0kc5satF4iIiCxH8t5SpnT//n1oNBp4eHgYlHt4eODChQt5nnPgwAF89913OHXqlFH3yMjIQEZGhv6xbhXlrKwsZGVl5S/wZ9Bd7+nrPni0zo2zUm7ye76OnlXPZFqsZ8tgPVsO69oyzFXPUq5n1eRGqqSkJPTr1w/Lly9HsWLFjDpn5syZmDp1aq7ysLAwg0HRphQeHq7/OVsLJGfkVPPxQ3/hgsIst3wtPVnPZD6sZ8tgPVsO69oyTF3PqampRh9r1eSmWLFisLGxQUxMjEF5TEwMPD09cx1/9epVREVFoUOHDvoyrVYLALC1tcXFixdRtmxZg3PGjRunn+kF5LTc+Pj4oHXr1ibrXtPJyspCeHg4WrVqBYUiJ4u5l5QB/P0X5DKga4c3IZfnnkZP0uRVz2R6rGfLYD1bDuvaMsxVz1L2r7RqcqNUKlG7dm1ERESgc+fOAHKSlYiICAQHB+c6vlKlSjhz5oxB2YQJE5CUlIR58+bBx8cn1zkqlQoqlSpXuUKhMNsf95PXTsxIA5CzOrFKxTE3pmTO3yE9xnq2DNaz5bCuLcPU9SzlWpKTm19//TXPcplMBrVajXLlyklaqTgkJAQDBgxAnTp1ULduXYSGhiIlJUU/e6p///4oUaIEZs6cCbVajapVqxqc7+rqCgC5yl8VXMCPiIjIsiQnN507d4ZMJoMQwqBcVyaTydCwYUNs27YNbm5uL7xez549ERsbi0mTJiE6Oho1atTAzp079YOMb9y4Ablc8qSuVwangRMREVmW5KwhPDwcb7zxBsLDw5GQkICEhASEh4ejXr16+P3337Fv3z48ePBA0oJ+wcHBuH79OjIyMvD333+jXr16+uf27t2LVatWPfPcVatWvdKrE+ungXPTTCIiIouQ3HIzYsQILFu2DIGBgfqyFi1aQK1WY8iQIfjvv/8QGhqKd99916SBFlS6aeBFHJncEBERWYLklpurV6/mOcvI2dkZ165dAwCUL18e9+/ff/noCgG23BAREVmW5OSmdu3a+OSTTxAbG6svi42NxZgxY/DGG28AAC5fvpznzKXXEcfcEBERWZbkbqnvvvsOnTp1QsmSJfUJzM2bN+Hn54dffvkFAJCcnIwJEyaYNtICiptmEhERWZbk5KZixYo4d+4cwsLCcOnSJX1Zq1at9LOadGvWEBDH5IaIiMii8rWIn1wuR5s2bdCmTRtTx1PoMLkhIiKyrHwlNxEREYiIiMC9e/f02x/ofP/99yYJrDAQQnBHcCIiIguTnNxMnToV06ZNQ506deDl5QWZjHslPUtSRjayNDmLHTK5ISIisgzJyc3SpUuxatUq9OvXzxzxFCpxj9a4sVfaQK2wsXI0RERErwfJU8EzMzMNFvCjZ4t71CXlxjVuiIiILEZycjNo0CCsW7fOHLEUOrqWm6JcnZiIiMhiJHdLpaenY9myZdi9ezeqVauWawvyOXPmmCy4go4tN0RERJYnObn5999/UaNGDQDA2bNnDZ7j4GJDXMCPiIjI8iQnN3v27DFHHIUS17ghIiKyPMljbsh4TG6IiIgsz6iWmy5dumDVqlVwdnZGly5dnnvs1q1bTRJYYZCQlgUAcLFTvOBIIiIiMhWjkhsXFxf9eBoXFxezBlSYpGVpAOSsc0NERESWYVRys3Llyjx/pudLf5Tc2HEBPyIiIouRPOZmxowZiIyMNEcshU5qZk5yo2bLDRERkcVITm42bdqEcuXKITAwEIsXL8b9+/fNEVehoO+WYssNERGRxUhObk6fPo1///0XTZs2xddffw1vb2+0a9cO69atQ2pqqjliLLDSH7Xc2LHlhoiIyGLyNRW8SpUq+OKLL3Dt2jXs2bMHvr6+GDlyJDw9PU0dX4GWyjE3REREFvfS69w4ODjAzs4OSqUSWVlZpoip0Ehjyw0REZHF5Su5iYyMxOeff44qVaqgTp06OHnyJKZOnYro6GhTx1dgabUCGdlaAGy5ISIisiTJ2y/873//wz///INq1aph4MCB6N27N0qUKGGO2Ao03WBigC03REREliQ5uWnRogW+//57+Pv7myOeQuPJ5EZty+SGiIjIUiQnN59//rk54ih0dONt1Ao55HLulk5ERGQpkpMbALh16xZ+/fVX3LhxA5mZmQbPzZkzxySBFXRpnClFRERkFZKTm4iICHTs2BF+fn64cOECqlatiqioKAghUKtWLXPEWCDpWm7slfnKH4mIiCifJM+WGjduHEaPHo0zZ85ArVZjy5YtuHnzJpo0aYLu3bubI8YCSddyo1a89Gx7IiIikkDyJ+/58+fRv39/AICtrS3S0tLg6OiIadOmYfbs2SYPsKDiGjdERETWITm5cXBw0I+z8fLywtWrV/XPcZ+pxx7vK8VuKSIiIkvK1zo3Bw4cQOXKldG2bVt8/PHHOHPmDLZu3Yr//e9/5oixQErjjuBERERWITm5mTNnDpKTkwEAU6dORXJyMjZs2IDy5ctzptQTHu8rxTE3REREliQ5ufHz89P/7ODggKVLl5o0oMIinbOliIiIrILNCmbyeLYUu6WIiIgsyehmBTc3N8hkL15pNy4u7qUCKixSM7mIHxERkTUYndyEhobqfxZC4IMPPsC0adPg7u5ujrgKvHTdbCkOKCYiIrIoo5ObAQMGGDz+6KOP0LVrV4MxOPQY17khIiKyDo65MZNUjrkhIiKyCiY3ZvJ4bykmN0RERJbE5MZM0rkrOBERkVUYPeYmJCTE4HFmZiY+//xzuLi4GJRzIb8cqZnZANgtRUREZGlGJzcnT540eBwYGIhr164ZlBkzVfx1kZalBcBuKSIiIkszOrnZs2ePOeModPTdUkxuiIiILIpjbsxE1y3FMTdERESWxeTGTLjODRERkXUwuTGT9EdjbthyQ0REZFlMbswgW6NFpoYDiomIiKzBqOSmS5cuSExMBACsWbMGGRkZZg2qoNPNlAI4FZyIiMjSjEpufv/9d6SkpAAABg4ciISEBLMGVdDpZkrJZIDKlo1jRERElmTUVPBKlSph3LhxaNasGYQQ2LhxI5ydnfM8tn///iYNsCDS7Stlr7Dh2j9EREQWZlRys3TpUoSEhGD79u2QyWSYMGFCnh/aMpmMyQ2AdM6UIiIishqjkpvAwEAcOXIEACCXy3Hp0iW4u7ubNbCCLI07ghMREVmN5AEhkZGRKF68uDliKTR0yQ1nShEREVme0dsv6JQuXRrx8fH47rvvcP78eQCAv78/3nvvvVybaL6u0rjGDRERkdVIbrk5duwYypYti7lz5yIuLg5xcXGYO3cuypYtixMnTuQriEWLFsHX1xdqtRr16tXD0aNHn3ns8uXL0ahRI7i5ucHNzQ0tW7Z87vHWoBtzw24pIiIiy5Oc3IwaNQodO3ZEVFQUtm7diq1btyIyMhLt27fHyJEjJQewYcMGhISEYPLkyThx4gSqV6+OoKAg3Lt3L8/j9+7di969e2PPnj04fPgwfHx80Lp1a9y+fVvyvc0lld1SREREVpOvlptPP/0UtraPe7RsbW0xZswYHDt2THIAc+bMweDBgzFw4ED4+/tj6dKlsLe3x/fff5/n8WvXrsWHH36IGjVqoFKlSlixYgW0Wi0iIiIk39tcuCM4ERGR9UhObpydnXHjxo1c5Tdv3oSTk5Oka2VmZuL48eNo2bLl44DkcrRs2RKHDx826hqpqanIyspCkSJFJN3bnDhbioiIyHokDyju2bMn3nvvPXz99dcIDAwEABw8eBCffPIJevfuLela9+/fh0ajgYeHh0G5h4cHLly4YNQ1Pv30U3h7exskSE/KyMgw2C5Ct41EVlYWsrKyJMX7IrrrJaflfFfbykx+D3pcz6xb82I9Wwbr2XJY15ZhrnqWcj3Jyc3XX3+tX6wvOzsbAKBQKPDBBx9g1qxZUi/3UmbNmoX169dj7969UKvVeR4zc+ZMTJ06NVd5WFgY7O3tzRLXhSvXAMhx9+YN7NgRZZZ7EBAeHm7tEF4LrGfLYD1bDuvaMkxdz6mpqUYfKxNCiPze5OrVqwCAsmXL5itRyMzMhL29PTZv3ozOnTvrywcMGID4+Hj88ssvzzz366+/xowZM7B7927UqVPnmcfl1XLj4+OD+/fvP3MLifzKyspCeHg4/s4ujXX/3Mawpn4Y2aKcSe9Bj+u5VatWUCgU1g6n0GI9Wwbr2XJY15ZhrnpOTExEsWLFkJCQ8MLPb8ktNzr29vYICAjI7+kAAKVSidq1ayMiIkKf3OgGBwcHBz/zvC+//BKff/45du3a9dzEBgBUKhVUKlWucoVCYbY/7vTsnHzRUa3kPyAzMufvkB5jPVsG69lyWNeWYep6lnKtfCc3phISEoIBAwagTp06qFu3LkJDQ5GSkoKBAwcCyNmIs0SJEpg5cyYAYPbs2Zg0aRLWrVsHX19fREdHAwAcHR3h6OhotdfxJP1sKQV3BCciIrI0qyc3PXv2RGxsLCZNmoTo6GjUqFEDO3fu1A8yvnHjBuTyx0nCkiVLkJmZiW7duhlcZ/LkyZgyZYolQ3+mNE4FJyIishqrJzcAEBwc/MxuqL179xo8joqKMn9ALylNvyv4K1G9RERErxXJ/SYpKSnmiKNQ4d5SRERE1iM5ufHw8MC7776LAwcOmCOeQuHxmBsmN0RERJYmObn58ccfERcXh+bNm6NChQqYNWsW7ty5Y47YCqzUTI65ISIishbJyU3nzp2xbds23L59G0OHDsW6detQunRptG/fHlu3btUv7Pc6Y8sNERGR9eR7rnLx4sUREhKCf//9F3PmzMHu3bvRrVs3eHt7Y9KkSZJWEixs9GNu2HJDRERkcfmezhMTE4PVq1dj1apVuH79Orp164b33nsPt27dwuzZs3HkyBGEhYWZMtYCQYjHU8HtmdwQERFZnOTkZuvWrVi5ciV27doFf39/fPjhh3j77bfh6uqqPyYwMBCVK1c2ZZwFhkYAGm3OCsXcFZyIiMjyJCc3AwcORK9evXDw4EG88cYbeR7j7e2N8ePHv3RwBVGm9vHPHHNDRERkeZKTm7t3775wk0w7OztMnjw530EVZI8mSsFWLoPSltsvEBERWZrkT18nJyfcu3cvV/mDBw9gY8OWCl3LDVttiIiIrENyciOEyLM8IyMDSqXypQMq6LJ0yQ0HExMREVmF0d1S8+fPBwDIZDKsWLHCYAdujUaDffv2oVKlSqaPsIDJZHJDRERkVUYnN3PnzgWQ03KzdOlSgy4opVIJX19fLF261PQRFjCZGhkAdksRERFZi9HJTWRkJACgWbNm2Lp1K9zc3MwWVEHGlhsiIiLrkjxbas+ePeaIo9DggGIiIiLrMiq5CQkJwfTp0+Hg4ICQkJDnHjtnzhyTBFZQ6aaCM7khIiKyDqOSm5MnTyIrK0v/87PIZDLTRFWAcbYUERGRdRmV3DzZFcVuqefLYLcUERGRVXEJXRPL0s2WYssNERGRVRjVctOlSxejL7h169Z8B1MYcLYUERGRdRmV3Li4uJg7jkKDs6WIiIisy6jkZuXKleaOo9BgckNERGRdHHNjYlmPpoLbs1uKiIjIKoxqualVqxYiIiLg5uaGmjVrPnfK94kTJ0wWXEGkmy2lZssNERGRVRiV3HTq1AkqlQoA0LlzZ3PGU+BlaTlbioiIyJqMSm4mT56c58+UWya7pYiIiKxK8t5SOseOHcP58+cBAP7+/qhdu7bJgirIMtktRUREZFWSk5tbt26hd+/eOHjwIFxdXQEA8fHxCAwMxPr161GyZElTx1igcLYUERGRdUmeLTVo0CBkZWXh/PnziIuLQ1xcHM6fPw+tVotBgwaZI8YCRZfc2Cvz3ShGREREL0HyJ/Bff/2FQ4cOoWLFivqyihUrYsGCBWjUqJFJgyuIuCs4ERGRdUluufHx8dHvEP4kjUYDb29vkwRVUAkh9LuCq5VcQoiIiMgaJH8Cf/XVV/joo49w7NgxfdmxY8cwYsQIfP311yYNrqDJzNZCIGcqOLuliIiIrMOoT2A3NzeDhftSUlJQr1492NrmnJ6dnQ1bW1u8++67r/U6OKm65YkBqG3ZckNERGQNRiU3oaGhZg6jcEh/1CelsJHB1obJDRERkTUYldwMGDDA3HEUCmmPRhNzAT8iIiLreamBIenp6cjMzDQoc3Z2fqmACrK0R91SXMCPiIjIeiT3naSkpCA4OBju7u5wcHCAm5ubwdfrTJfccBo4ERGR9UhObsaMGYM///wTS5YsgUqlwooVKzB16lR4e3tjzZo15oixwGByQ0REZH2Su6V+++03rFmzBk2bNsXAgQPRqFEjlCtXDqVLl8batWvRt29fc8RZIOjG3HBHcCIiIuuR3HITFxcHPz8/ADnja+Li4gAADRs2xL59+0wbXQGT9mi2FFtuiIiIrEdycuPn54fIyEgAQKVKlbBx40YAOS06uo00X1fp+m4pTgMnIiKyFsmfwgMHDsTp06cBAGPHjsWiRYugVqsxatQofPLJJyYPsCBJzeRsKSIiImuTPOZm1KhR+p9btmyJ8+fP48SJEyhXrhyqVatm0uAKGl3LDde5ISIisp6X3gDJ19cXvr6+Jgil4OM6N0RERNaXr8EhERERaN++PcqWLYuyZcuiffv22L17t6ljK3D0s6WY3BAREVmN5ORm8eLFaNOmDZycnDBixAiMGDECzs7OaNu2LRYtWmSOGAsM/WwpdksRERFZjeRuqS+++AJz585FcHCwvmz48OFo0KABvvjiCwwbNsykARYknC1FRERkfZI/hePj49GmTZtc5a1bt0ZCQoJJgiqoOFuKiIjI+iQnNx07dsTPP/+cq/yXX35B+/btTRJUQcXZUkRERNZnVLfU/Pnz9T/7+/vj888/x969e1G/fn0AwJEjR3Dw4EF8/PHH5omygOBsKSIiIuszKrmZO3euwWM3NzecO3cO586d05e5urri+++/x4QJE0wbYQGSxjE3REREVmdUcqPbboGeLy2Ts6WIiIis7aWaGIQQEEKYKpYC7/FsKSY3RERE1pKv5GbNmjUICAiAnZ0d7OzsUK1aNfzwww+mjq3A4ZgbIiIi65O8zs2cOXMwceJEBAcHo0GDBgCAAwcOYOjQobh//77B3lOvmzTOliIiIrI6ycnNggULsGTJEvTv319f1rFjR1SpUgVTpkx5bZMbrVYg/dEKxWy5ISIish7J3VJ3795FYGBgrvLAwEDcvXvXJEEVROnZGv3PnC1FRERkPZI/hcuVK4eNGzfmKt+wYQPKly+fryAWLVoEX19fqNVq1KtXD0ePHn3u8Zs2bUKlSpWgVqsREBCAHTt25Ou+pqTbNBMA1LZsuSEiIrIWyd1SU6dORc+ePbFv3z79mJuDBw8iIiIiz6TnRTZs2ICQkBAsXboU9erVQ2hoKIKCgnDx4kW4u7vnOv7QoUPo3bs3Zs6cifbt22PdunXo3LkzTpw4gapVq0q+v6noxtso5AJyucxqcRAREb3uJLfcdO3aFUePHkWxYsWwbds2bNu2DcWKFcPRo0fx1ltvSQ5gzpw5GDx4MAYOHAh/f38sXboU9vb2+P777/M8ft68eWjTpg0++eQTVK5cGdOnT0etWrWwcOFCyfc2JV3LjZI9UkRERFYlqeUmKysL77//PiZOnIgff/zxpW+emZmJ48ePY9y4cfoyuVyOli1b4vDhw3mec/jwYYSEhBiUBQUFYdu2bXken5GRgYyMDP3jxMREADmvJSsr6yVfwWNJaTn3UMph0utSbrr6ZT2bF+vZMljPlsO6tgxz1bOU60lKbhQKBbZs2YKJEydKDiov9+/fh0ajgYeHh0G5h4cHLly4kOc50dHReR4fHR2d5/EzZ87E1KlTc5WHhYXB3t4+n5HnFpkEqOQ2UNkA4eHhJrsuPRvr2TJYz5bBerYc1rVlmLqeU1NTjT5W8pibzp07Y9u2bQVmyve4ceMMWnoSExPh4+OD1q1bw9nZ2aT3GpKVhbCwcLRq1QoKhcKk16bHsrKyEB7OejY31rNlsJ4th3VtGeaqZ13PizEkJzfly5fHtGnTcPDgQdSuXRsODg4Gzw8fPtzoaxUrVgw2NjaIiYkxKI+JiYGnp2ee53h6eko6XqVSQaVS5SpXKBRm+eOWycx3bTLEerYM1rNlsJ4th3VtGaauZynXkpzcfPfdd3B1dcXx48dx/Phxg+dkMpmk5EapVKJ27dqIiIhA586dAQBarRYREREIDg7O85z69esjIiICI0eO1JeFh4ejfv36Ul8KERERFUKSkxtT7xAeEhKCAQMGoE6dOqhbty5CQ0ORkpKCgQMHAgD69++PEiVKYObMmQCAESNGoEmTJvjmm2/Qrl07rF+/HseOHcOyZctMGhcREREVTJKSmyNHjuC3335DZmYmWrRogTZt2rx0AD179kRsbCwmTZqE6Oho1KhRAzt37tQPGr5x4wbk8sfzqwMDA7Fu3TpMmDABn332GcqXL49t27ZZdY0bIiIienUYndxs3rwZPXv2hJ2dHRQKBebMmYPZs2dj9OjRLx1EcHDwM7uh9u7dm6use/fu6N69+0vfl4iIiAofo5ecmzlzJgYPHoyEhAQ8fPgQM2bMwBdffGHO2IiIiIgkMzq5uXjxIkaPHg0bm5x9kz7++GMkJSXh3r17ZguOiIiISCqjk5vU1FSDdWGUSiXUajWSk5PNEhgRERFRfkgaULxixQo4OjrqH2dnZ2PVqlUoVqyYvkzKVHAiIiIiUzM6uSlVqhSWL19uUObp6YkffvhB/1jqOjdEREREpmZ0chMVFWXGMIiIiIhMw+gxN0REREQFAZMbIiIiKlSY3BAREVGhInlvqYJOCAFA2tbpxsrKykJqaioSExO546wZsZ4tg/VsGaxny2FdW4a56ln3ua37HH8eSclNdnY21q1bh6CgIP3eTwVNUlISAMDHx8fKkRAREZFUSUlJcHFxee4xMmFMCvQEe3t7nD9/HqVLl36p4KxFq9Xizp07cHJygkwmM+m1ExMT4ePjg5s3bxoseEimxXq2DNazZbCeLYd1bRnmqmchBJKSkuDt7W2woXZeJHdL1a1bF6dOnSqwyY1cLkfJkiXNeg9nZ2f+w7EA1rNlsJ4tg/VsOaxryzBHPb+oxUZHcnLz4YcfIiQkBDdv3kTt2rXh4OBg8Hy1atWkXpKIiIjIZCQnN7169QJguM2CTCaDEAIymQwajcZ00RERERFJJDm5iYyMNEcchYJKpcLkyZOhUqmsHUqhxnq2DNazZbCeLYd1bRmvQj1LHlBMRERE9CrL1zo3V69eRWhoKM6fPw8A8Pf3x4gRI1C2bFmTBkdEREQkleQVinft2gV/f38cPXoU1apVQ7Vq1fD333+jSpUqCA8PN0eMREREREaT3C1Vs2ZNBAUFYdasWQblY8eORVhYGE6cOGHSAImIiIikkJzcqNVqnDlzBuXLlzcov3TpEqpVq4b09HSTBkhEREQkheRuqeLFi+PUqVO5yk+dOgV3d3dTxPRKW7RoEXx9faFWq1GvXj0cPXr0ucdv2rQJlSpVglqtRkBAAHbs2GGhSAs2KfW8fPlyNGrUCG5ubnBzc0PLli1f+HuhHFL/nnXWr18PmUyGzp07mzfAQkJqPcfHx2PYsGHw8vKCSqVChQoV+N5hBKn1HBoaiooVK8LOzg4+Pj4YNWoU/4P+Avv27UOHDh3g7e0NmUyGbdu2vfCcvXv3olatWlCpVChXrhxWrVpl9jghJJo6dapwdXUVs2bNEvv27RP79u0TM2fOFK6urmLatGlSL1egrF+/XiiVSvH999+L//77TwwePFi4urqKmJiYPI8/ePCgsLGxEV9++aU4d+6cmDBhglAoFOLMmTMWjrxgkVrPffr0EYsWLRInT54U58+fF++8845wcXERt27dsnDkBYvUetaJjIwUJUqUEI0aNRKdOnWyTLAFmNR6zsjIEHXq1BFt27YVBw4cEJGRkWLv3r3i1KlTFo68YJFaz2vXrhUqlUqsXbtWREZGil27dgkvLy8xatQoC0desOzYsUOMHz9ebN26VQAQP//883OPv3btmrC3txchISHi3LlzYsGCBcLGxkbs3LnTrHFKTm60Wq2YM2eOKFGihJDJZEImk4kSJUqI0NBQodVqzRHjK6Nu3bpi2LBh+scajUZ4e3uLmTNn5nl8jx49RLt27QzK6tWrJ95//32zxlnQSa3np2VnZwsnJyexevVqc4VYKOSnnrOzs0VgYKBYsWKFGDBgAJMbI0it5yVLlgg/Pz+RmZlpqRALBan1PGzYMNG8eXODspCQENGgQQOzxlmYGJPcjBkzRlSpUsWgrGfPniIoKMiMkQkhuVtKJpNh1KhRuHXrFhISEpCQkIBbt25hxIgRJt+I8lWSmZmJ48ePo2XLlvoyuVyOli1b4vDhw3mec/jwYYPjASAoKOiZx1P+6vlpqampyMrKQpEiRcwVZoGX33qeNm0a3N3d8d5771kizAIvP/X866+/on79+hg2bBg8PDxQtWpVfPHFF1z9/TnyU8+BgYE4fvy4vuvq2rVr2LFjB9q2bWuRmF8X1voczNc6NzpOTk6miuOVd//+fWg0Gnh4eBiUe3h44MKFC3meEx0dnefx0dHRZouzoMtPPT/t008/hbe3d65/UPRYfur5wIED+O677/Icc0d5y089X7t2DX/++Sf69u2LHTt24MqVK/jwww+RlZWFyZMnWyLsAic/9dynTx/cv38fDRs2hBAC2dnZGDp0KD777DNLhPzaeNbnYGJiItLS0mBnZ2eW+xqV3NSqVQsRERFwc3NDzZo1n9tCw6ngZE2zZs3C+vXrsXfvXqjVamuHU2gkJSWhX79+WL58OYoVK2btcAo1rVYLd3d3LFu2DDY2NqhduzZu376Nr776ismNCe3duxdffPEFFi9ejHr16uHKlSsYMWIEpk+fjokTJ1o7PHpJRiU3nTp10u8R8brOjihWrBhsbGwQExNjUB4TEwNPT888z/H09JR0POWvnnW+/vprzJo1C7t37+bu9C8gtZ6vXr2KqKgodOjQQV+m1WoBALa2trh48SJXKM9Dfv6evby8oFAoYGNjoy+rXLkyoqOjkZmZCaVSadaYC6L81PPEiRPRr18/DBo0CAAQEBCAlJQUDBkyBOPHj4dcLnnUBuXhWZ+Dzs7OZmu1AYxMbnT/W9BoNGjWrBmqVasGV1dXswX1KlIqlahduzYiIiL0CZ5Wq0VERASCg4PzPKd+/fqIiIjAyJEj9WXh4eGoX7++BSIumPJTzwDw5Zdf4vPPP8euXbtQp04dC0VbcEmt50qVKuHMmTMGZRMmTEBSUhLmzZsHHx8fS4Rd4OTn77lBgwZYt24dtFqt/gP20qVL8PLyYmLzDPmp59TU1FwJjC6hFNxy0WTq16+faxkDi3wOSh2BrFKpxLVr10w/tLkAWL9+vVCpVGLVqlXi3LlzYsiQIcLV1VVER0cLIYTo16+fGDt2rP74gwcPCltbW/H111+L8+fPi8mTJ3MquBGk1vOsWbOEUqkUmzdvFnfv3tV/JSUlWeslFAhS6/lpnC1lHKn1fOPGDeHk5CSCg4PFxYsXxe+//y7c3d3FjBkzrPUSCgSp9Tx58mTh5OQkfvrpJ3Ht2jURFhYmypYtK3r06GGtl1AgJCUliZMnT4qTJ08KAGLOnDni5MmT4vr160IIIcaOHSv69eunP143FfyTTz4R58+fF4sWLXo1p4LXrl1b7N692xyxFAgLFiwQpUqVEkqlUtStW1ccOXJE/1yTJk3EgAEDDI7fuHGjqFChglAqlaJKlSpi+/btFo64YJJSz6VLlxYAcn1NnjzZ8oEXMFL/np/E5MZ4Uuv50KFDol69ekKlUgk/Pz/x+eefi+zsbAtHXfBIqeesrCwxZcoUUbZsWaFWq4WPj4/48MMPxcOHDy0feAGyZ8+ePN9vdXU7YMAA0aRJk1zn1KhRQyiVSuHn5ydWrlxp9jglb7+wc+dOjBs3DtOnT0ft2rXh4OBg8Lyzs/PLNycRERER5ZPk5ObJPsonZ00JISCTybgWAxEREVmV5HVu9uzZY444iIiIiExCcssNERER0assXxP59+/fj7fffhuBgYG4ffs2AOCHH37AgQMHTBocERERkVSSk5stW7YgKCgIdnZ2OHHiBDIyMgAACQkJ+OKLL0weIBEREZEUkpObGTNmYOnSpVi+fDkUCoW+vEGDBtx6gYiIiKxOcnJz8eJFNG7cOFe5i4sL4uPjTRETERERUb5JTm48PT1x5cqVXOUHDhyAn5+fSYIisgRfX1+EhoZaOwyj7d27FzKZ7KX/E9G0aVODLUHy8nTdyGQybNu2DQAQFRUFmUxmtd3Bp0yZAg8PD4OYrMmacbzzzjtW3e/PVH+TRKYmObkZPHgwRowYgb///hsymQx37tzB2rVrMXr0aHzwwQfmiJHoud555x3IZDLIZDIolUqUK1cO06ZNQ3Z29nPP++effzBkyBCTx6N7w9d9eXh4oGvXrrh27ZrJ72Uuz6sbHx8f3L17F1WrVgVg2Q+48+fPY+rUqfj2229x9+5dvPnmm7mOeV7yZUxiJ9Wz4jAlSyeUvr6++r9fOzs7+Pr6okePHvjzzz8NjgsMDMTdu3fh4uJikbiIjCV5nZuxY8dCq9WiRYsWSE1NRePGjaFSqTB69Gh89NFH5oiR6IXatGmDlStXIiMjAzt27MCwYcOgUCgwbty4XMfqdlYuXrz4S93zRTs0X7x4EU5OTrh8+TKGDBmCDh064N9//zXY7RnIWQBTo9HA1lbyP0ezeV7d2NjYWG1n+6tXrwIAOnXqZLCIqDVZqy7Mbdq0aRg8eDAyMzMRFRWFH3/8ES1btsT06dMxfvx4ADkbVhbW108Fm+SWG5lMhvHjxyMuLg5nz57FkSNHEBsbi+nTp5sjPiKjqFQqeHp6onTp0vjggw/QsmVL/PrrrwAeN91//vnn8Pb2RsWKFQHk7nq5ceMGOnXqBEdHRzg7O6NHjx6IiYnRPz9lyhTUqFEDK1asQJkyZaBWq58bk7u7O7y8vNC4cWNMmjQJ586dw5UrV/QtHX/88Qdq164NlUqFAwcOICMjA8OHD4e7uzvUajUaNmyIf/75J9d1Dx48iGrVqkGtVuN///sfzp49q3/uwYMH6N27N0qUKAF7e3sEBATgp59+ynWN7OxsBAcHw8XFBcWKFcPEiRMNdkJ+Xpfdk60IUVFRaNasGQDAzc0NMpkM77zzDtasWYOiRYvqZ1PqdO7cGf369XtmnZ05cwbNmzeHnZ0dihYtiiFDhiA5ORlATv136NABQM5K6aZIbn744QfUqVMHTk5O8PT0RJ8+fXDv3j0AObtKlyxZEkuWLDE45+TJk5DL5bh+/TqAvLvstm7dimbNmsHe3h7Vq1fH4cOHDa6xfPly+Pj4wN7eHm+99RbmzJkDV1fXZ8ZZpkwZAEDNmjUhk8nQtGlTg+e//vpreHl5oWjRohg2bBiysrL0z2VkZGD06NEoUaIEHBwcUK9ePezdu/eFdaOrk1KlSqFx48ZYtmwZJk6ciEmTJuHixYsAcrfaXb9+HR06dICbmxscHBxQpUoVgx2hz549izfffBOOjo7w8PBAv379cP/+ff3zO3fuRMOGDeHq6oqiRYuiffv2+oQWyPkPRXBwMLy8vKBWq1G6dGnMnDlT/3x8fDwGDRqE4sWLw9nZGc2bN8fp06df+Fqp8JGc3Lz77rtISkqCUqmEv78/6tatC0dHR6SkpODdd981R4xEktnZ2SEzM1P/OCIiAhcvXkR4eDh+//33XMdrtVp06tQJcXFx+OuvvxAeHo5r166hZ8+eBsdduXIFW7ZswdatWyV1EdjZ2QGAQUxjx47FrFmzcP78eVSrVg1jxozBli1bsHr1apw4cQLlypVDUFAQ4uLiDK71ySef4JtvvsE///yD4sWLo0OHDvoPs/T0dNSuXRvbt2/H2bNnMWTIEPTr1w9Hjx41uMbq1atha2uLo0ePYt68eZgzZw5WrFhh9OvR8fHxwZYtWwDktFTdvXsX8+bNQ/fu3aHRaPQJJgDcu3cP27dvf+b7REpKCoKCguDm5oZ//vkHmzZtwu7duxEcHAwAGD16NFauXAkgpyvo7t27kuN9WlZWFqZPn47Tp09j27ZtiIqKwjvvvAMgJ4Hq3bs31q1bZ3DO2rVr0aBBA5QuXfqZ1x0/fjxGjx6NU6dOoUKFCujdu7e+m/TgwYMYOnQoRowYgVOnTqFVq1b4/PPPnxun7ve3e/du3L17F1u3btU/t2fPHly9ehV79uzB6tWrsWrVKqxatUr/fHBwMA4fPoz169fj33//Rffu3dGmTRtcvnxZSlUBAEaMGAEhBH755Zc8nx82bBgyMjKwb98+nDlzBrNnz4ajoyOAnMSjefPmqFmzJo4dO4adO3ciJiYGPXr00J+fkpKCkJAQHDt2DBEREZDL5Xjrrbeg1WoBAPPnz8evv/6KjRs34uLFi1i7di18fX3153fv3h337t3DH3/8gePHj6NWrVpo0aJFrn9D9BqQutOmXC4XMTExucpjY2OFjY3NS+zhSZQ/T+5OrdVqRXh4uFCpVGL06NH65z08PERGRobBeaVLlxZz584VQggRFhYmbGxsxI0bN/TP//fffwKAOHr0qBBCiMmTJwuFQiHu3bv33Hh0u+bqdhe+c+eOCAwMFCVKlBAZGRn657dt26Y/Jzk5WSgUCrF27Vp9WWZmpvD29hZffvmlwXXXr1+vP+bBgwfCzs5ObNiw4ZnxtGvXTnz88cf6x02aNBGVK1cWWq1WX/bpp5+KypUr51k3QggBQPz8889CCCEiIyMFAHHy5Mk8X6/OBx98IN58803942+++Ub4+fkZ3PdJy5YtE25ubiI5OVlftn37diGXy0V0dLQQQoiff/5ZvOhtSxefnZ2dcHBwMPiSy+VixIgRzzz3n3/+EQBEUlKSEEKIkydPCplMJq5fvy6EEEKj0YgSJUqIJUuWPLduVqxYoX9e93d0/vx5IYQQPXv2FO3atTO4b9++fYWLi8sLX5OuznUGDBggSpcubbBjePfu3UXPnj2FEEJcv35d2NjYiNu3bxuc16JFCzFu3Lhn3u/p3/+TPDw8xAcffCCEyP27DwgIEFOmTMnzvOnTp4vWrVsblN28eVMAEBcvXszznNjYWAFAnDlzRgghxEcffSSaN2+e59/Q/v37hbOzs0hPTzcoL1u2rPj222+f+VqpcDK65SYxMREJCQkQQiApKQmJiYn6r4cPH2LHjh1wd3c3YdpFZLzff/8djo6OUKvVePPNN9GzZ09MmTJF/3xAQMBzx8ecP38ePj4+8PHx0Zf5+/vD1dUV58+f15eVLl3a6LE6JUuWhIODA7y9vZGSkoItW7YYxFCnTh39z1evXkVWVhYaNGigL1MoFKhbt67B/QGgfv36+p+LFCmCihUr6o/RaDSYPn06AgICUKRIETg6OmLXrl24ceOGwTX+97//GXTr1K9fH5cvXzbpxreDBw9GWFiYfhXzVatW6Qd/5+X8+fOoXr06HBwc9GUNGjSAVqvVd4NIsWHDBpw6dcrg68k6B4Djx4+jQ4cOKFWqFJycnNCkSRMA0NdXjRo1ULlyZX3rzV9//YV79+6he/fuz713tWrV9D97eXkBgL676+LFi6hbt67B8U8/lqJKlSoG47i8vLz09zpz5gw0Gg0qVKgAR0dH/ddff/1l0N0jhXi0SXJehg8fjhkzZqBBgwaYPHky/v33X/1zp0+fxp49ewziqFSpEoDHY6kuX76M3r17w8/PD87OzvpWGd3v45133sGpU6dQsWJFDB8+HGFhYQbXT05ORtGiRQ3uERkZme/XSgWX0SMYXV1d9aPnK1SokOt5mUyGqVOnmjQ4ImM1a9YMS5YsgVKphLe3d67BuU9+YL4MKdfZv38/nJ2d4e7uDicnp5e6lrG++uorzJs3D6GhoQgICICDgwNGjhxp0B1mKTVr1kT16tWxZs0atG7dGv/99x+2b99usfv7+PigXLlyBmW67kHgcTdYUFAQ1q5di+LFi+PGjRsICgoyqK++ffti3bp1GDt2LNatW4c2bdqgaNGiz733kwuc6hIBXdeKqT15L939dPdKTk6GjY0Njh8/nmsgu667SIoHDx4gNjZWPwboaYMGDUJQUBC2b9+OsLAwzJw5E9988w0++ugjJCcno0OHDpg9e3au83QJYIcOHVC6dGksX74c3t7e0Gq1qFq1qv73UatWLURGRuKPP/7A7t270aNHD7Rs2RKbN29GcnIyvLy88hxP9LzxTFQ4GZ3c7NmzB0IING/eHFu2bEGRIkX0zymVSpQuXRre3t5mCZLoRRwcHHJ9kElRuXJl3Lx5Ezdv3tS33pw7dw7x8fHw9/fP1zXLlClj9Jtq2bJloVQqcfDgQf1YjqysLPzzzz+5pi4fOXIEpUqVAgA8fPgQly5dQuXKlQHkjOfo1KkT3n77bQA5H6iXLl3K9Rr+/vvvXNcsX758rg9AY+hao/Jq9Rk0aBBCQ0Nx+/ZttGzZ0qBl7GmVK1fGqlWrkJKSok/8Dh48CLlcrh8EbkoXLlzAgwcPMGvWLH1cx44dy3Vcnz59MGHCBBw/fhybN2/G0qVLX+q+FStWzDVQPK+B4096Xh0/T82aNaHRaHDv3j00atRIWqB5mDdvHuRy+XPX1vHx8cHQoUMxdOhQjBs3DsuXL8dHH32EWrVqYcuWLfD19c1zZuCDBw9w8eJFLF++XB9rXvsVOjs7o2fPnujZsye6deuGNm3aIC4uDrVq1UJ0dDRsbW0NxuHQ68no5EbXXBsZGYlSpUq9MtMwiUyhZcuWCAgIQN++fREaGors7Gx8+OGHaNKkSa6uDHNwcHDABx98gE8++QRFihRBqVKl8OWXXyI1NRXvvfeewbHTpk1D0aJF4eHhgfHjx6NYsWL6D5vy5ctj8+bNOHToENzc3DBnzhzExMTkSm5u3LiBkJAQvP/++zhx4gQWLFiAb775Jl+xly5dGjKZDL///jvatm0LOzs7fatAnz59MHr0aCxfvhxr1qx57nX69u2LyZMnY8CAAZgyZQpiY2Px0UcfoV+/fvDw8MhXbM9TqlQpKJVKLFiwAEOHDsXZs2fznPXp6+uLwMBAvPfee9BoNOjYseNL3fejjz5C48aNMWfOHHTo0AF//vkn/vjjj+e+p7q7u8POzg47d+5EyZIloVarjVpbpkKFCujbty/69++Pb775BjVr1kRsbCwiIiJQrVo1tGvX7pnnJiUlITo6GllZWYiMjMSPP/6IFStWYObMmc/8j8TIkSPx5ptvokKFCnj48CH27NmjT7yHDRuG5cuXo3fv3hgzZgyKFCmCK1euYP369VixYgXc3NxQtGhRLFu2DF5eXrhx4wbGjh1rcP05c+bAy8sLNWvWhFwux6ZNm+Dp6QlXV1e0bNkS9evXR+fOnfHll1+iQoUKuHPnDrZv34633nrLIv+O6dUhebbU+fPncfDgQf3jRYsWoUaNGujTpw8ePnxo0uCILEUmk+GXX36Bm5sbGjdujJYtW8LPzw8bNmywWAyzZs1C165d0a9fP9SqVQtXrlzBrl274Obmluu4ESNGoHbt2oiOjsZvv/2m/5/9hAkTUKtWLQQFBaFp06bw9PTM83/Z/fv3R1paGurWrYthw4ZhxIgR+V7QsESJEpg6dSrGjh0LDw8P/ewmIGdblq5du8LR0fGFK+na29tj165diIuLwxtvvIFu3bqhRYsWWLhwYb7iepHixYtj1apV2LRpE/z9/TFr1ix8/fXXeR7bt29fnD59Gm+99ZZB11Z+NGjQAEuXLsWcOXNQvXp17Ny5E6NGjXru0gK2traYP38+vv32W3h7e6NTp05G32/lypXo378/Pv74Y1SsWBGdO3fGP//8o2/9e5ZJkybBy8sL5cqVQ79+/ZCQkICIiAh8+umnzzxHo9Fg2LBhqFy5Mtq0aYMKFSpg8eLFAABvb28cPHgQGo0GrVu3RkBAAEaOHAlXV1fI5XLI5XKsX78ex48fR9WqVTFq1Ch89dVXBtd3cnLCl19+iTp16uCNN95AVFQUduzYoV8aYMeOHWjcuDEGDhyIChUqoFevXrh+/bpZkmN6tcmEeGJxCyMEBARg9uzZaNu2Lc6cOYM6derg448/xp49e1CpUiX9VE0iIgBo0aIFqlSpgvnz51s7lFfW4MGDceHCBezfv9/aoRAVCpKXRI2MjNQ3cW/ZsgUdOnTAF198gRMnTqBt27YmD5CICqaHDx9i79692Lt3r/5/75Tj66+/RqtWreDg4IA//vgDq1evZh0RmZDk5EapVCI1NRVAzoJS/fv3B5AzJTUxMdG00RFRgVWzZk08fPgQs2fPNsuA4ILs6NGj+PLLL5GUlAQ/Pz/Mnz8fgwYNsnZYRIWG5G6pjh07IjMzEw0aNMD06dMRGRmJEiVKICwsDMHBwbh06ZK5YiUiIiJ6IckDihcuXAhbW1ts3rwZS5YsQYkSJQAAf/zxB9q0aWPyAImIiIikkNxyQ0RERPQqkzzmBsiZ7rdt2zb9ku9VqlRBx44d87UAGBEREZEpSW65uXLlCtq2bYvbt2/rBwlevHgRPj4+2L59O8qWLWuWQImIiIiMITm5adu2LYQQWLt2rX4LhgcPHuDtt9+GXC636N4xRERERE+TnNw4ODjgyJEjCAgIMCg/ffo0GjRogOTkZJMGSERERCSF5NlSKpUKSUlJucqTk5P1S8ATERERWYvk5KZ9+/YYMmQI/v77bwghIITAkSNHMHTo0JfeUI6IiIjoZUnuloqPj8eAAQPw22+/QaFQAACys7PRsWNHrFq1yqidaomIiIjM5f/yfewmgrj9sQAAAABJRU5ErkJggg=="
81
- }
82
- }
83
- ]
84
- },
85
- {
86
- "cell_type": "markdown",
87
- "metadata": {},
88
- "source": "This script first defines the probabilities involved in the problem, then applies Bayes' theorem to calculate the probability of having the disease given a positive test result. It also creates an array of different prior probabilities and calculates the corresponding posterior probabilities using Bayes' theorem. Finally, it plots the relationship between the prior and posterior probabilities. The resulting plot shows how the posterior probability changes as the prior probability varies."
89
- }
90
- ]
91
- }