rtc-tools 2.7.0.dev1__py3-none-any.whl → 2.7.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of rtc-tools might be problematic. Click here for more details.
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info}/METADATA +6 -4
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info}/RECORD +25 -25
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info}/WHEEL +1 -1
- rtctools/_internal/casadi_helpers.py +13 -5
- rtctools/_version.py +3 -3
- rtctools/data/netcdf.py +16 -15
- rtctools/data/pi.py +5 -2
- rtctools/data/rtc.py +3 -3
- rtctools/optimization/collocated_integrated_optimization_problem.py +16 -19
- rtctools/optimization/control_tree_mixin.py +9 -6
- rtctools/optimization/csv_lookup_table_mixin.py +5 -3
- rtctools/optimization/csv_mixin.py +3 -0
- rtctools/optimization/goal_programming_mixin.py +3 -2
- rtctools/optimization/goal_programming_mixin_base.py +4 -3
- rtctools/optimization/modelica_mixin.py +13 -5
- rtctools/optimization/optimization_problem.py +20 -2
- rtctools/optimization/pi_mixin.py +3 -3
- rtctools/rtctoolsapp.py +15 -13
- rtctools/simulation/io_mixin.py +1 -1
- rtctools/simulation/pi_mixin.py +3 -3
- rtctools/simulation/simulation_problem.py +25 -12
- rtctools/util.py +1 -0
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info}/entry_points.txt +0 -0
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info/licenses}/COPYING.LESSER +0 -0
- {rtc_tools-2.7.0.dev1.dist-info → rtc_tools-2.7.1.dist-info}/top_level.txt +0 -0
|
@@ -1,9 +1,9 @@
|
|
|
1
|
-
Metadata-Version: 2.
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
2
|
Name: rtc-tools
|
|
3
|
-
Version: 2.7.
|
|
3
|
+
Version: 2.7.1
|
|
4
4
|
Summary: Toolbox for control and optimization of water systems.
|
|
5
5
|
Home-page: https://oss.deltares.nl/web/rtc-tools/home
|
|
6
|
-
Download-URL: http://
|
|
6
|
+
Download-URL: http://github.com/deltares/rtc-tools/
|
|
7
7
|
Author: Deltares
|
|
8
8
|
Maintainer: Deltares
|
|
9
9
|
Platform: Windows
|
|
@@ -25,12 +25,13 @@ Classifier: Operating System :: Unix
|
|
|
25
25
|
Classifier: Operating System :: MacOS
|
|
26
26
|
Requires-Python: >=3.9
|
|
27
27
|
License-File: COPYING.LESSER
|
|
28
|
-
Requires-Dist: casadi!=3.6.6
|
|
28
|
+
Requires-Dist: casadi!=3.6.6,<=3.7,>=3.6.3
|
|
29
29
|
Requires-Dist: numpy>=1.16.0
|
|
30
30
|
Requires-Dist: scipy>=1.0.0
|
|
31
31
|
Requires-Dist: pymoca==0.9.*,>=0.9.1
|
|
32
32
|
Requires-Dist: rtc-tools-channel-flow>=1.2.0
|
|
33
33
|
Requires-Dist: defusedxml>=0.7.0
|
|
34
|
+
Requires-Dist: importlib_metadata>=5.0.0; python_version < "3.10"
|
|
34
35
|
Provides-Extra: netcdf
|
|
35
36
|
Requires-Dist: netCDF4; extra == "netcdf"
|
|
36
37
|
Provides-Extra: all
|
|
@@ -40,6 +41,7 @@ Dynamic: classifier
|
|
|
40
41
|
Dynamic: description
|
|
41
42
|
Dynamic: download-url
|
|
42
43
|
Dynamic: home-page
|
|
44
|
+
Dynamic: license-file
|
|
43
45
|
Dynamic: maintainer
|
|
44
46
|
Dynamic: platform
|
|
45
47
|
Dynamic: provides-extra
|
|
@@ -1,50 +1,50 @@
|
|
|
1
|
+
rtc_tools-2.7.1.dist-info/licenses/COPYING.LESSER,sha256=46mU2C5kSwOnkqkw9XQAJlhBL2JAf1_uCD8lVcXyMRg,7652
|
|
1
2
|
rtctools/__init__.py,sha256=91hvS2-ryd2Pvw0COpsUzTwJwSnTZ035REiej-1hNI4,107
|
|
2
|
-
rtctools/_version.py,sha256=
|
|
3
|
-
rtctools/rtctoolsapp.py,sha256=
|
|
4
|
-
rtctools/util.py,sha256=
|
|
3
|
+
rtctools/_version.py,sha256=ubDLFEsn6M8sS1xje_kpC8yHDTNm4E1cjPgcW2wj13Y,497
|
|
4
|
+
rtctools/rtctoolsapp.py,sha256=2RVZI4QQUg0yC6ii4lr50yx1blEfHBFsAgUjLR5pBkA,4336
|
|
5
|
+
rtctools/util.py,sha256=8IGva7xWcAH-9Xcr1LaxUpYoZjF6vbo1eqdNJ9pKgGA,9098
|
|
5
6
|
rtctools/_internal/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
6
7
|
rtctools/_internal/alias_tools.py,sha256=XuQSAhhFuVtwn0yrAObZWIKPsSF4j2axXRtEmitIFPs,5310
|
|
7
8
|
rtctools/_internal/caching.py,sha256=p4gqSL7kCI7Hff-KjMEP7mhJCQSiU_lYm2MR7E18gBM,905
|
|
8
|
-
rtctools/_internal/casadi_helpers.py,sha256=
|
|
9
|
+
rtctools/_internal/casadi_helpers.py,sha256=UcVSBsOs9f8gAGk4s3CQRS7TSE1CIvKt0uhrD4gLwu4,1727
|
|
9
10
|
rtctools/_internal/debug_check_helpers.py,sha256=UgQTEPw4PyR7MbYLewSSWQqTwQj7xr5yUBk820O9Kk4,1084
|
|
10
11
|
rtctools/data/__init__.py,sha256=EllgSmCdrlvQZSd1VilvjPaeYJGhY9ErPiQtedmuFoA,157
|
|
11
12
|
rtctools/data/csv.py,sha256=hEpoTH3nhZaAvRN4r-9-nYeAjaFiNDRoiZWg8GxM3yo,5539
|
|
12
|
-
rtctools/data/netcdf.py,sha256=
|
|
13
|
-
rtctools/data/pi.py,sha256=
|
|
14
|
-
rtctools/data/rtc.py,sha256=
|
|
13
|
+
rtctools/data/netcdf.py,sha256=tMs-zcSlOR0HhajUKJVbXGNoi3GeKCM3X4DjuW8FDo8,19130
|
|
14
|
+
rtctools/data/pi.py,sha256=D2r9gaYu6qMpgWRqiWpWPSPJXWgqCVV0bz6ewgM78mc,46701
|
|
15
|
+
rtctools/data/rtc.py,sha256=tYPOzZSFE02bAXX3lgcGR1saoQNIv6oWVWH8CS0dl5Q,9079
|
|
15
16
|
rtctools/data/storage.py,sha256=67J4BRTl0AMEzlKNZ8Xdpy_4cGtwx8Lo_tL2n0G4S9w,13206
|
|
16
17
|
rtctools/data/interpolation/__init__.py,sha256=GBubCIT5mFoSTV-lOk7cpwvZekNMEe5bvqSQJ9HE34M,73
|
|
17
18
|
rtctools/data/interpolation/bspline.py,sha256=qevB842XWCH3fWlWMBqKMy1mw37ust-0YtSnb9PKCEc,948
|
|
18
19
|
rtctools/data/interpolation/bspline1d.py,sha256=HAh7m5xLBuiFKzMzuYEqZX_GmCPChKjV7ynTS6iRZOc,6166
|
|
19
20
|
rtctools/data/interpolation/bspline2d.py,sha256=ScmX0fPDxbUVtj3pbUE0L7UJocqroD_6fUT-4cvdRMc,1693
|
|
20
21
|
rtctools/optimization/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
21
|
-
rtctools/optimization/collocated_integrated_optimization_problem.py,sha256=
|
|
22
|
-
rtctools/optimization/control_tree_mixin.py,sha256=
|
|
23
|
-
rtctools/optimization/csv_lookup_table_mixin.py,sha256=
|
|
24
|
-
rtctools/optimization/csv_mixin.py,sha256=
|
|
25
|
-
rtctools/optimization/goal_programming_mixin.py,sha256=
|
|
26
|
-
rtctools/optimization/goal_programming_mixin_base.py,sha256=
|
|
22
|
+
rtctools/optimization/collocated_integrated_optimization_problem.py,sha256=ROXVwSEyGxPkVxhZhjxo3x99x-bNl9ipkWDF6r5Lse8,131252
|
|
23
|
+
rtctools/optimization/control_tree_mixin.py,sha256=6OMvjT5rFvvXU3_O6Uwz8xvBQpRH9d5z4mMOtOQ4-a4,9036
|
|
24
|
+
rtctools/optimization/csv_lookup_table_mixin.py,sha256=TUYAT-u-mzH6HLP0iJHnLBVqV5tWnhYAqDC4Aj17MJg,17399
|
|
25
|
+
rtctools/optimization/csv_mixin.py,sha256=_6iPVK_EJ8PxnukepzkhFtidceucsozRML_DDEycYik,12453
|
|
26
|
+
rtctools/optimization/goal_programming_mixin.py,sha256=vdnKnz1Ov3OFN-J9KQiiAwHbrLjWH6o_PeZz2YfLz6k,33320
|
|
27
|
+
rtctools/optimization/goal_programming_mixin_base.py,sha256=qJQQcJlJdio4GTcrKfuBi6Nho9u16pDuuprzK0LUyhA,43835
|
|
27
28
|
rtctools/optimization/homotopy_mixin.py,sha256=Kh0kMfxB-Fo1FBGW5tPOQk24Xx_Mmw_p0YuSQotdkMU,6905
|
|
28
29
|
rtctools/optimization/initial_state_estimation_mixin.py,sha256=74QYfG-VYYTNVg-kAnCG6QoY3_sUmaID0ideF7bPkkY,3116
|
|
29
30
|
rtctools/optimization/io_mixin.py,sha256=AsZQ7YOUcUbWoczmjTXaSje5MUEsPNbQyZBJ6qzSjzU,11821
|
|
30
31
|
rtctools/optimization/linearization_mixin.py,sha256=mG5S7uwvwDydw-eBPyQKnLyKoy08EBjQh25vu97afhY,1049
|
|
31
32
|
rtctools/optimization/linearized_order_goal_programming_mixin.py,sha256=LQ2qpYt0YGLpEoerif4FJ5wwzq16q--27bsRjcqIU5A,9087
|
|
32
33
|
rtctools/optimization/min_abs_goal_programming_mixin.py,sha256=WMOv9EF8cfDJgTunzXfI_cUmBSQK26u1HJB_9EAarfM,14031
|
|
33
|
-
rtctools/optimization/modelica_mixin.py,sha256=
|
|
34
|
+
rtctools/optimization/modelica_mixin.py,sha256=b_VsEcg_VsAnODnTQybrY0GbuZUNQ3uugQmML6FlklE,18037
|
|
34
35
|
rtctools/optimization/netcdf_mixin.py,sha256=-zkXh3sMYE50c3kHsrmUVGWMSFm-0cXQpGrCm0yn-Tc,7563
|
|
35
|
-
rtctools/optimization/optimization_problem.py,sha256=
|
|
36
|
-
rtctools/optimization/pi_mixin.py,sha256=
|
|
36
|
+
rtctools/optimization/optimization_problem.py,sha256=M2NV2XU0vSXTErSiYm9RmTRDJzW-d3MCNLY5fBeMCKQ,44818
|
|
37
|
+
rtctools/optimization/pi_mixin.py,sha256=G_6RPlXO-IOjqYxNsMZGY4fmnfxVpwN-_T5Ka3rDwK4,11788
|
|
37
38
|
rtctools/optimization/planning_mixin.py,sha256=O_Y74X8xZmaNZR4iYOe7BR06s9hnmcapbuHYHQTBPPQ,724
|
|
38
39
|
rtctools/optimization/single_pass_goal_programming_mixin.py,sha256=Zb9szg3PGT2o6gkGsXluSfEaAswkw3TKfPQDzUrj_Y4,25784
|
|
39
40
|
rtctools/optimization/timeseries.py,sha256=nCrsGCJThBMh9lvngEpbBDa834_QvklVvkxJqwX4a1M,1734
|
|
40
41
|
rtctools/simulation/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
41
42
|
rtctools/simulation/csv_mixin.py,sha256=rGDUFPsqGHmF0_dWdXeWzWzMpkPmwCNweTBVrwSh31g,6704
|
|
42
|
-
rtctools/simulation/io_mixin.py,sha256=
|
|
43
|
-
rtctools/simulation/pi_mixin.py,sha256=
|
|
44
|
-
rtctools/simulation/simulation_problem.py,sha256=
|
|
45
|
-
rtc_tools-2.7.
|
|
46
|
-
rtc_tools-2.7.
|
|
47
|
-
rtc_tools-2.7.
|
|
48
|
-
rtc_tools-2.7.
|
|
49
|
-
rtc_tools-2.7.
|
|
50
|
-
rtc_tools-2.7.0.dev1.dist-info/RECORD,,
|
|
43
|
+
rtctools/simulation/io_mixin.py,sha256=WIKOQxr3fS-aNbgjet9iWoUayuD22zLIYmqlWEqxXHo,6215
|
|
44
|
+
rtctools/simulation/pi_mixin.py,sha256=_TU2DrK2MQqVsyrHBD9W4SDEuot9dYmgTDNiXkDAJfk,9833
|
|
45
|
+
rtctools/simulation/simulation_problem.py,sha256=v5Lk2x-yuVb5s7ne5fFgxONxGniLHTyTR0XRzYRl1fw,50005
|
|
46
|
+
rtc_tools-2.7.1.dist-info/METADATA,sha256=cjE5IhaJRlh_4B0CVRXs0ItvWMuGj1hOob68z4WXZnE,1772
|
|
47
|
+
rtc_tools-2.7.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
48
|
+
rtc_tools-2.7.1.dist-info/entry_points.txt,sha256=DVS8sWf3b9ph9h8srEr6zmQ7ZKGwblwgZgGPZg-jRNQ,150
|
|
49
|
+
rtc_tools-2.7.1.dist-info/top_level.txt,sha256=pnBrb58PFPd1kp1dqa-JHU7R55h3alDNJIJnF3Jf9Dw,9
|
|
50
|
+
rtc_tools-2.7.1.dist-info/RECORD,,
|
|
@@ -5,12 +5,12 @@ import casadi as ca
|
|
|
5
5
|
logger = logging.getLogger("rtctools")
|
|
6
6
|
|
|
7
7
|
|
|
8
|
-
def is_affine(
|
|
8
|
+
def is_affine(expr, symbols):
|
|
9
9
|
try:
|
|
10
|
-
Af = ca.Function("f", [
|
|
11
|
-
except RuntimeError as
|
|
12
|
-
if "'eval_sx' not defined for" in str(
|
|
13
|
-
Af = ca.Function("f", [
|
|
10
|
+
Af = ca.Function("f", [symbols], [ca.jacobian(expr, symbols)]).expand()
|
|
11
|
+
except RuntimeError as error:
|
|
12
|
+
if "'eval_sx' not defined for" in str(error):
|
|
13
|
+
Af = ca.Function("f", [symbols], [ca.jacobian(expr, symbols)])
|
|
14
14
|
else:
|
|
15
15
|
raise
|
|
16
16
|
return Af.sparsity_jac(0, 0).nnz() == 0
|
|
@@ -52,4 +52,12 @@ def interpolate(ts, xs, t, equidistant, mode=0):
|
|
|
52
52
|
mode_str = "floor"
|
|
53
53
|
else:
|
|
54
54
|
mode_str = "ceil"
|
|
55
|
+
|
|
56
|
+
# CasADi fails if there is just a single point. Just "extrapolate" based on
|
|
57
|
+
# that point, just as CasADi would do for entries in 't' outside the range
|
|
58
|
+
# of 'ts'.
|
|
59
|
+
if len(ts) == 1:
|
|
60
|
+
assert xs.size1() == 1
|
|
61
|
+
return ca.vertcat(*[xs] * len(t))
|
|
62
|
+
|
|
55
63
|
return ca.interp1d(ts, xs, t, mode_str, equidistant)
|
rtctools/_version.py
CHANGED
|
@@ -8,11 +8,11 @@ import json
|
|
|
8
8
|
|
|
9
9
|
version_json = '''
|
|
10
10
|
{
|
|
11
|
-
"date": "2025-
|
|
11
|
+
"date": "2025-07-23T09:21:39+0200",
|
|
12
12
|
"dirty": false,
|
|
13
13
|
"error": null,
|
|
14
|
-
"full-revisionid": "
|
|
15
|
-
"version": "2.7.
|
|
14
|
+
"full-revisionid": "a3a2e2f821b5239481f43285b7dbf495a27de52e",
|
|
15
|
+
"version": "2.7.1"
|
|
16
16
|
}
|
|
17
17
|
''' # END VERSION_JSON
|
|
18
18
|
|
rtctools/data/netcdf.py
CHANGED
|
@@ -401,20 +401,21 @@ class ExportDataset:
|
|
|
401
401
|
"""
|
|
402
402
|
assert len(set(variable_names)) == len(variable_names)
|
|
403
403
|
|
|
404
|
-
assert (
|
|
405
|
-
|
|
406
|
-
)
|
|
407
|
-
assert (
|
|
408
|
-
|
|
409
|
-
)
|
|
404
|
+
assert self.__time_dim is not None, (
|
|
405
|
+
"First call write_times to ensure the time dimension has been created."
|
|
406
|
+
)
|
|
407
|
+
assert self.__station_dim is not None, (
|
|
408
|
+
"First call write_station_data to ensure the station dimension has been created"
|
|
409
|
+
)
|
|
410
410
|
assert (
|
|
411
411
|
self.__station_id_to_index_mapping is not None
|
|
412
412
|
) # should also be created in write_station_data
|
|
413
413
|
|
|
414
414
|
if ensemble_size > 1:
|
|
415
|
-
assert (
|
|
416
|
-
|
|
417
|
-
|
|
415
|
+
assert self.__ensemble_member_dim is not None, (
|
|
416
|
+
"First call write_ensemble_data to ensure "
|
|
417
|
+
"the realization dimension has been created"
|
|
418
|
+
)
|
|
418
419
|
|
|
419
420
|
for variable_name in variable_names:
|
|
420
421
|
self.__dataset.createVariable(
|
|
@@ -446,15 +447,15 @@ class ExportDataset:
|
|
|
446
447
|
:param values: The values that are to be written to the file
|
|
447
448
|
:param ensemble_size: the number of members in the ensemble
|
|
448
449
|
"""
|
|
449
|
-
assert (
|
|
450
|
-
|
|
451
|
-
)
|
|
450
|
+
assert self.__station_id_to_index_mapping is not None, (
|
|
451
|
+
"First call write_station_data and create_variables."
|
|
452
|
+
)
|
|
452
453
|
|
|
453
454
|
station_index = self.__station_id_to_index_mapping[station_id]
|
|
454
455
|
if ensemble_size > 1:
|
|
455
|
-
self.__dataset.variables[variable_name][
|
|
456
|
-
|
|
457
|
-
|
|
456
|
+
self.__dataset.variables[variable_name][:, station_index, ensemble_member_index] = (
|
|
457
|
+
values
|
|
458
|
+
)
|
|
458
459
|
else:
|
|
459
460
|
self.__dataset.variables[variable_name][:, station_index] = values
|
|
460
461
|
|
rtctools/data/pi.py
CHANGED
|
@@ -333,8 +333,11 @@ class ParameterConfig:
|
|
|
333
333
|
|
|
334
334
|
parameters = group.findall("pi:parameter", ns)
|
|
335
335
|
for parameter in parameters:
|
|
336
|
-
yield
|
|
337
|
-
|
|
336
|
+
yield (
|
|
337
|
+
location_id,
|
|
338
|
+
model_id,
|
|
339
|
+
parameter.attrib["id"],
|
|
340
|
+
self.__parse_parameter(parameter),
|
|
338
341
|
)
|
|
339
342
|
|
|
340
343
|
|
rtctools/data/rtc.py
CHANGED
|
@@ -60,9 +60,9 @@ class DataConfig:
|
|
|
60
60
|
logger.error(message)
|
|
61
61
|
raise Exception(message)
|
|
62
62
|
else:
|
|
63
|
-
self.__location_parameter_ids[
|
|
64
|
-
|
|
65
|
-
|
|
63
|
+
self.__location_parameter_ids[internal_id] = (
|
|
64
|
+
self.__pi_location_parameter_id(pi_timeseries, "fews")
|
|
65
|
+
)
|
|
66
66
|
self.__variable_map[external_id] = internal_id
|
|
67
67
|
|
|
68
68
|
for k in ["import", "export"]:
|
|
@@ -670,7 +670,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
670
670
|
for ensemble_member in range(self.ensemble_size)
|
|
671
671
|
]
|
|
672
672
|
if (
|
|
673
|
-
len(values) == 1 or
|
|
673
|
+
len(values) == 1 or all(v == values[0] for v in values)
|
|
674
674
|
) and parameter.name() not in dynamic_parameter_names:
|
|
675
675
|
constant_parameters.append(parameter)
|
|
676
676
|
constant_parameter_values.append(values[0])
|
|
@@ -898,11 +898,11 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
898
898
|
function_options,
|
|
899
899
|
)
|
|
900
900
|
|
|
901
|
+
# Expand the residual function if possible.
|
|
901
902
|
try:
|
|
902
903
|
dae_residual_function_integrated = dae_residual_function_integrated.expand()
|
|
903
904
|
except RuntimeError as e:
|
|
904
|
-
|
|
905
|
-
if "'eval_sx' not defined for External" in str(e):
|
|
905
|
+
if "'eval_sx' not defined for" in str(e):
|
|
906
906
|
pass
|
|
907
907
|
else:
|
|
908
908
|
raise
|
|
@@ -933,13 +933,13 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
933
933
|
[dae_residual_collocated],
|
|
934
934
|
function_options,
|
|
935
935
|
)
|
|
936
|
+
# Expand the residual function if possible.
|
|
936
937
|
try:
|
|
937
938
|
self.__dae_residual_function_collocated = (
|
|
938
939
|
self.__dae_residual_function_collocated.expand()
|
|
939
940
|
)
|
|
940
941
|
except RuntimeError as e:
|
|
941
|
-
|
|
942
|
-
if "'eval_sx' not defined for External" in str(e):
|
|
942
|
+
if "'eval_sx' not defined for" in str(e):
|
|
943
943
|
pass
|
|
944
944
|
else:
|
|
945
945
|
raise
|
|
@@ -1028,8 +1028,8 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
1028
1028
|
+ len(self.dae_variables["constant_inputs"])
|
|
1029
1029
|
]
|
|
1030
1030
|
constant_inputs_1 = accumulated_U[
|
|
1031
|
-
2 * len(collocated_variables)
|
|
1032
|
-
|
|
1031
|
+
2 * len(collocated_variables) + len(self.dae_variables["constant_inputs"]) : 2
|
|
1032
|
+
* len(collocated_variables)
|
|
1033
1033
|
+ 2 * len(self.dae_variables["constant_inputs"])
|
|
1034
1034
|
]
|
|
1035
1035
|
|
|
@@ -1803,9 +1803,9 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
1803
1803
|
# Cast delay from DM to np.array
|
|
1804
1804
|
delay = delay.toarray().flatten()
|
|
1805
1805
|
|
|
1806
|
-
assert np.all(
|
|
1807
|
-
|
|
1808
|
-
)
|
|
1806
|
+
assert np.all(np.isfinite(delay)), (
|
|
1807
|
+
"Delay duration must be resolvable to real values at transcribe()"
|
|
1808
|
+
)
|
|
1809
1809
|
|
|
1810
1810
|
out_times = np.concatenate([history_times, collocation_times])
|
|
1811
1811
|
out_values = ca.veccat(
|
|
@@ -2043,9 +2043,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
2043
2043
|
def controls(self):
|
|
2044
2044
|
return self.__controls
|
|
2045
2045
|
|
|
2046
|
-
def _collint_get_lbx_ubx(self, count, indices):
|
|
2047
|
-
bounds = self.bounds()
|
|
2048
|
-
|
|
2046
|
+
def _collint_get_lbx_ubx(self, bounds, count, indices):
|
|
2049
2047
|
lbx = np.full(count, -np.inf, dtype=np.float64)
|
|
2050
2048
|
ubx = np.full(count, np.inf, dtype=np.float64)
|
|
2051
2049
|
|
|
@@ -2210,7 +2208,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
2210
2208
|
count = max(count, control_indices_stop)
|
|
2211
2209
|
|
|
2212
2210
|
discrete = self._collint_get_discrete(count, indices)
|
|
2213
|
-
lbx, ubx = self._collint_get_lbx_ubx(count, indices)
|
|
2211
|
+
lbx, ubx = self._collint_get_lbx_ubx(bounds, count, indices)
|
|
2214
2212
|
x0 = self._collint_get_x0(count, indices)
|
|
2215
2213
|
|
|
2216
2214
|
# Return number of control variables
|
|
@@ -2326,7 +2324,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
2326
2324
|
offset += 1
|
|
2327
2325
|
|
|
2328
2326
|
discrete = self._collint_get_discrete(count, indices)
|
|
2329
|
-
lbx, ubx = self._collint_get_lbx_ubx(count, indices)
|
|
2327
|
+
lbx, ubx = self._collint_get_lbx_ubx(bounds, count, indices)
|
|
2330
2328
|
x0 = self._collint_get_x0(count, indices)
|
|
2331
2329
|
|
|
2332
2330
|
# Return number of state variables
|
|
@@ -2610,7 +2608,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
2610
2608
|
else:
|
|
2611
2609
|
tf = xf = ca.MX()
|
|
2612
2610
|
t = ca.vertcat(t0, history_times[history_indices], times[indices], tf)
|
|
2613
|
-
x = ca.vertcat(x0, history[history_indices], state[indices
|
|
2611
|
+
x = ca.vertcat(x0, history[history_indices], state[indices], xf)
|
|
2614
2612
|
|
|
2615
2613
|
return x, t
|
|
2616
2614
|
|
|
@@ -2869,8 +2867,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
2869
2867
|
|
|
2870
2868
|
# Check coefficient matrix
|
|
2871
2869
|
logger.info(
|
|
2872
|
-
"Sanity check on objective and constraints Jacobian matrix"
|
|
2873
|
-
"/constant coefficients values"
|
|
2870
|
+
"Sanity check on objective and constraints Jacobian matrix/constant coefficients values"
|
|
2874
2871
|
)
|
|
2875
2872
|
|
|
2876
2873
|
in_var = nlp["x"]
|
|
@@ -3113,7 +3110,7 @@ class CollocatedIntegratedOptimizationProblem(OptimizationProblem, metaclass=ABC
|
|
|
3113
3110
|
variable_to_all_indices = {k: set(v) for k, v in indices[0].items()}
|
|
3114
3111
|
for ensemble_indices in indices[1:]:
|
|
3115
3112
|
for k, v in ensemble_indices.items():
|
|
3116
|
-
variable_to_all_indices[k] |= v
|
|
3113
|
+
variable_to_all_indices[k] |= set(v)
|
|
3117
3114
|
|
|
3118
3115
|
if len(inds_up) > 0:
|
|
3119
3116
|
exceedences = []
|
|
@@ -50,7 +50,7 @@ class ControlTreeMixin(OptimizationProblem):
|
|
|
50
50
|
return options
|
|
51
51
|
|
|
52
52
|
def discretize_control(self, variable, ensemble_member, times, offset):
|
|
53
|
-
control_indices = np.zeros(len(times), dtype=np.
|
|
53
|
+
control_indices = np.zeros(len(times), dtype=np.int64)
|
|
54
54
|
for branch, members in self.__branches.items():
|
|
55
55
|
if ensemble_member not in members:
|
|
56
56
|
continue
|
|
@@ -86,6 +86,11 @@ class ControlTreeMixin(OptimizationProblem):
|
|
|
86
86
|
logger.debug("ControlTreeMixin: Branching times:")
|
|
87
87
|
logger.debug(self.__branching_times)
|
|
88
88
|
|
|
89
|
+
# Avoid calling constant_inputs() many times
|
|
90
|
+
constant_inputs = [
|
|
91
|
+
self.constant_inputs(ensemble_member=i) for i in range(self.ensemble_size)
|
|
92
|
+
]
|
|
93
|
+
|
|
89
94
|
# Branches start at branching times, so that the tree looks like the following:
|
|
90
95
|
#
|
|
91
96
|
# *-----
|
|
@@ -122,18 +127,16 @@ class ControlTreeMixin(OptimizationProblem):
|
|
|
122
127
|
for forecast_variable in options["forecast_variables"]:
|
|
123
128
|
# We assume the time stamps of the forecasts in all ensemble
|
|
124
129
|
# members to be identical
|
|
125
|
-
timeseries =
|
|
130
|
+
timeseries = constant_inputs[0][forecast_variable]
|
|
126
131
|
els = np.logical_and(
|
|
127
132
|
timeseries.times >= branching_time_0, timeseries.times < branching_time_1
|
|
128
133
|
)
|
|
129
134
|
|
|
130
135
|
# Compute distance between ensemble members
|
|
131
136
|
for i, member_i in enumerate(branches[current_branch]):
|
|
132
|
-
timeseries_i =
|
|
137
|
+
timeseries_i = constant_inputs[member_i][forecast_variable]
|
|
133
138
|
for j, member_j in enumerate(branches[current_branch]):
|
|
134
|
-
timeseries_j =
|
|
135
|
-
forecast_variable
|
|
136
|
-
]
|
|
139
|
+
timeseries_j = constant_inputs[member_j][forecast_variable]
|
|
137
140
|
distances[i, j] += np.linalg.norm(
|
|
138
141
|
timeseries_i.values[els] - timeseries_j.values[els]
|
|
139
142
|
)
|
|
@@ -55,7 +55,7 @@ class LookupTable(LookupTableBase):
|
|
|
55
55
|
"This lookup table was not instantiated with tck metadata. \
|
|
56
56
|
Domain/Range information is unavailable."
|
|
57
57
|
)
|
|
58
|
-
if
|
|
58
|
+
if isinstance(t, tuple) and len(t) == 2:
|
|
59
59
|
raise NotImplementedError(
|
|
60
60
|
"Domain/Range information is not yet implemented for 2D LookupTables"
|
|
61
61
|
)
|
|
@@ -298,8 +298,9 @@ class CSVLookupTableMixin(OptimizationProblem):
|
|
|
298
298
|
def check_lookup_table(lookup_table):
|
|
299
299
|
if lookup_table in self.__lookup_tables:
|
|
300
300
|
raise Exception(
|
|
301
|
-
"Cannot add lookup table {},"
|
|
302
|
-
|
|
301
|
+
"Cannot add lookup table {},since there is already one with this name.".format(
|
|
302
|
+
lookup_table
|
|
303
|
+
)
|
|
303
304
|
)
|
|
304
305
|
|
|
305
306
|
# Read CSV files
|
|
@@ -358,6 +359,7 @@ class CSVLookupTableMixin(OptimizationProblem):
|
|
|
358
359
|
k=k,
|
|
359
360
|
monotonicity=mono,
|
|
360
361
|
curvature=curv,
|
|
362
|
+
ipopt_options={"nlp_scaling_method": "none"},
|
|
361
363
|
)
|
|
362
364
|
else:
|
|
363
365
|
raise Exception(
|
|
@@ -98,6 +98,9 @@ class CSVMixin(IOMixin):
|
|
|
98
98
|
names=True,
|
|
99
99
|
encoding=None,
|
|
100
100
|
)
|
|
101
|
+
if len(self.__ensemble.shape) == 0:
|
|
102
|
+
# If there is only one ensemble member, the array is 0-dimensional.
|
|
103
|
+
self.__ensemble = np.expand_dims(self.__ensemble, 0)
|
|
101
104
|
|
|
102
105
|
logger.debug("CSVMixin: Read ensemble description")
|
|
103
106
|
|
|
@@ -351,8 +351,9 @@ class GoalProgrammingMixin(_GoalProgrammingMixinBase):
|
|
|
351
351
|
if goal.has_target_bounds:
|
|
352
352
|
# We use a violation variable formulation, with the violation
|
|
353
353
|
# variables epsilon bounded between 0 and 1.
|
|
354
|
-
m, M =
|
|
355
|
-
epsilon, np.inf, dtype=np.float64
|
|
354
|
+
m, M = (
|
|
355
|
+
np.full_like(epsilon, -np.inf, dtype=np.float64),
|
|
356
|
+
np.full_like(epsilon, np.inf, dtype=np.float64),
|
|
356
357
|
)
|
|
357
358
|
|
|
358
359
|
# A function range does not have to be specified for critical
|
|
@@ -437,7 +437,7 @@ class _GoalConstraint:
|
|
|
437
437
|
):
|
|
438
438
|
assert isinstance(m, (float, np.ndarray, Timeseries))
|
|
439
439
|
assert isinstance(M, (float, np.ndarray, Timeseries))
|
|
440
|
-
assert type(m)
|
|
440
|
+
assert type(m) is type(M)
|
|
441
441
|
|
|
442
442
|
# NumPy arrays only allowed for vector goals
|
|
443
443
|
if isinstance(m, np.ndarray):
|
|
@@ -982,8 +982,9 @@ class _GoalProgrammingMixinBase(OptimizationProblem, metaclass=ABCMeta):
|
|
|
982
982
|
if goal.has_target_bounds:
|
|
983
983
|
# We use a violation variable formulation, with the violation
|
|
984
984
|
# variables epsilon bounded between 0 and 1.
|
|
985
|
-
m, M =
|
|
986
|
-
epsilon, np.inf, dtype=np.float64
|
|
985
|
+
m, M = (
|
|
986
|
+
np.full_like(epsilon, -np.inf, dtype=np.float64),
|
|
987
|
+
np.full_like(epsilon, np.inf, dtype=np.float64),
|
|
987
988
|
)
|
|
988
989
|
|
|
989
990
|
# A function range does not have to be specified for critical
|
|
@@ -1,10 +1,18 @@
|
|
|
1
|
+
import importlib.resources
|
|
1
2
|
import itertools
|
|
2
3
|
import logging
|
|
4
|
+
import sys
|
|
3
5
|
from typing import Dict, Union
|
|
4
6
|
|
|
7
|
+
# Python 3.9's importlib.metadata does not support the "group" parameter to
|
|
8
|
+
# entry_points yet.
|
|
9
|
+
if sys.version_info < (3, 10):
|
|
10
|
+
import importlib_metadata
|
|
11
|
+
else:
|
|
12
|
+
from importlib import metadata as importlib_metadata
|
|
13
|
+
|
|
5
14
|
import casadi as ca
|
|
6
15
|
import numpy as np
|
|
7
|
-
import pkg_resources
|
|
8
16
|
import pymoca
|
|
9
17
|
import pymoca.backends.casadi.api
|
|
10
18
|
|
|
@@ -174,9 +182,9 @@ class ModelicaMixin(OptimizationProblem):
|
|
|
174
182
|
# Where imported model libraries are located.
|
|
175
183
|
library_folders = self.modelica_library_folders.copy()
|
|
176
184
|
|
|
177
|
-
for ep in
|
|
185
|
+
for ep in importlib_metadata.entry_points(group="rtctools.libraries.modelica"):
|
|
178
186
|
if ep.name == "library_folder":
|
|
179
|
-
library_folders.append(
|
|
187
|
+
library_folders.append(str(importlib.resources.files(ep.module).joinpath(ep.attr)))
|
|
180
188
|
|
|
181
189
|
compiler_options["library_folders"] = library_folders
|
|
182
190
|
|
|
@@ -326,7 +334,7 @@ class ModelicaMixin(OptimizationProblem):
|
|
|
326
334
|
try:
|
|
327
335
|
(m, M) = bounds[sym_name]
|
|
328
336
|
except KeyError:
|
|
329
|
-
if self.__python_types.get(sym_name, float)
|
|
337
|
+
if self.__python_types.get(sym_name, float) is bool:
|
|
330
338
|
(m, M) = (0, 1)
|
|
331
339
|
else:
|
|
332
340
|
(m, M) = (-np.inf, np.inf)
|
|
@@ -400,7 +408,7 @@ class ModelicaMixin(OptimizationProblem):
|
|
|
400
408
|
return seed
|
|
401
409
|
|
|
402
410
|
def variable_is_discrete(self, variable):
|
|
403
|
-
return self.__python_types.get(variable, float)
|
|
411
|
+
return self.__python_types.get(variable, float) is not float
|
|
404
412
|
|
|
405
413
|
@property
|
|
406
414
|
@cached
|
|
@@ -199,12 +199,12 @@ class OptimizationProblem(DataStoreAccessor, metaclass=ABCMeta):
|
|
|
199
199
|
log_level = logging.INFO
|
|
200
200
|
logger.log(
|
|
201
201
|
log_level,
|
|
202
|
-
"Solver
|
|
202
|
+
"Solver failed with status {} ({}).".format(return_status, wall_clock_time),
|
|
203
203
|
)
|
|
204
204
|
except (AttributeError, ValueError):
|
|
205
205
|
logger.log(
|
|
206
206
|
log_level,
|
|
207
|
-
"Solver
|
|
207
|
+
"Solver failed with status {} ({}).".format(return_status, wall_clock_time),
|
|
208
208
|
)
|
|
209
209
|
|
|
210
210
|
# Do any postprocessing
|
|
@@ -314,6 +314,24 @@ class OptimizationProblem(DataStoreAccessor, metaclass=ABCMeta):
|
|
|
314
314
|
if log_level == logging.ERROR and not log_solver_failure_as_error:
|
|
315
315
|
log_level = logging.INFO
|
|
316
316
|
|
|
317
|
+
if self.solver_options()["solver"].lower() == "knitro":
|
|
318
|
+
list_feas_flags = [
|
|
319
|
+
"KN_RC_OPTIMAL_OR_SATISFACTORY",
|
|
320
|
+
"KN_RC_ITER_LIMIT_FEAS",
|
|
321
|
+
"KN_RC_NEAR_OPT",
|
|
322
|
+
"KN_RC_FEAS_XTOL",
|
|
323
|
+
"KN_RC_FEAS_NO_IMPROVE",
|
|
324
|
+
"KN_RC_FEAS_FTOL",
|
|
325
|
+
"KN_RC_TIME_LIMIT_FEAS",
|
|
326
|
+
"KN_RC_FEVAL_LIMIT_FEAS",
|
|
327
|
+
"KN_RC_MIP_EXH_FEAS",
|
|
328
|
+
"KN_RC_MIP_TERM_FEAS",
|
|
329
|
+
"KN_RC_MIP_SOLVE_LIMIT_FEAS",
|
|
330
|
+
"KN_RC_MIP_NODE_LIMIT_FEAS",
|
|
331
|
+
]
|
|
332
|
+
if solver_stats["return_status"] in list_feas_flags:
|
|
333
|
+
success = True
|
|
334
|
+
|
|
317
335
|
return success, log_level
|
|
318
336
|
|
|
319
337
|
@abstractproperty
|
|
@@ -285,8 +285,8 @@ class PIMixin(IOMixin):
|
|
|
285
285
|
:param variable: Time series ID.
|
|
286
286
|
:param unit: Unit.
|
|
287
287
|
"""
|
|
288
|
-
assert hasattr(
|
|
289
|
-
|
|
290
|
-
)
|
|
288
|
+
assert hasattr(self, "_PIMixin__timeseries_import"), (
|
|
289
|
+
"set_unit can only be called after read() in pre() has finished."
|
|
290
|
+
)
|
|
291
291
|
self.__timeseries_import.set_unit(variable, unit, 0)
|
|
292
292
|
self.__timeseries_export.set_unit(variable, unit, 0)
|
rtctools/rtctoolsapp.py
CHANGED
|
@@ -1,9 +1,17 @@
|
|
|
1
|
+
import importlib.resources
|
|
1
2
|
import logging
|
|
2
3
|
import os
|
|
3
4
|
import shutil
|
|
4
5
|
import sys
|
|
5
6
|
from pathlib import Path
|
|
6
7
|
|
|
8
|
+
# Python 3.9's importlib.metadata does not support the "group" parameter to
|
|
9
|
+
# entry_points yet.
|
|
10
|
+
if sys.version_info < (3, 10):
|
|
11
|
+
import importlib_metadata
|
|
12
|
+
else:
|
|
13
|
+
from importlib import metadata as importlib_metadata
|
|
14
|
+
|
|
7
15
|
import rtctools
|
|
8
16
|
|
|
9
17
|
logging.basicConfig(format="%(asctime)s %(levelname)s %(message)s")
|
|
@@ -23,9 +31,6 @@ def copy_libraries(*args):
|
|
|
23
31
|
if not os.path.exists(path):
|
|
24
32
|
sys.exit("Folder '{}' does not exist".format(path))
|
|
25
33
|
|
|
26
|
-
# pkg_resources can be quite a slow import, so we do it here
|
|
27
|
-
import pkg_resources
|
|
28
|
-
|
|
29
34
|
def _copytree(src, dst, symlinks=False, ignore=None):
|
|
30
35
|
if not os.path.exists(dst):
|
|
31
36
|
os.makedirs(dst)
|
|
@@ -56,11 +61,10 @@ def copy_libraries(*args):
|
|
|
56
61
|
dst = Path(path)
|
|
57
62
|
|
|
58
63
|
library_folders = []
|
|
59
|
-
|
|
64
|
+
|
|
65
|
+
for ep in importlib_metadata.entry_points(group="rtctools.libraries.modelica"):
|
|
60
66
|
if ep.name == "library_folder":
|
|
61
|
-
library_folders.append(
|
|
62
|
-
Path(pkg_resources.resource_filename(ep.module_name, ep.attrs[0]))
|
|
63
|
-
)
|
|
67
|
+
library_folders.append(Path(importlib.resources.files(ep.module).joinpath(ep.attr)))
|
|
64
68
|
|
|
65
69
|
tlds = {}
|
|
66
70
|
for lf in library_folders:
|
|
@@ -100,11 +104,8 @@ def download_examples(*args):
|
|
|
100
104
|
from zipfile import ZipFile
|
|
101
105
|
|
|
102
106
|
version = rtctools.__version__
|
|
103
|
-
rtc_full_name = "rtc-tools-{}".format(version)
|
|
104
107
|
try:
|
|
105
|
-
url = "https://
|
|
106
|
-
version, rtc_full_name
|
|
107
|
-
)
|
|
108
|
+
url = "https://github.com/deltares/rtc-tools/zipball/{}".format(version)
|
|
108
109
|
|
|
109
110
|
opener = urllib.request.build_opener()
|
|
110
111
|
urllib.request.install_opener(opener)
|
|
@@ -115,11 +116,12 @@ def download_examples(*args):
|
|
|
115
116
|
|
|
116
117
|
with ZipFile(local_filename, "r") as z:
|
|
117
118
|
target = path / "rtc-tools-examples"
|
|
118
|
-
|
|
119
|
+
zip_folder_name = next(x for x in z.namelist() if x.startswith("Deltares-rtc-tools-"))
|
|
120
|
+
prefix = "{}/examples/".format(zip_folder_name.rstrip("/"))
|
|
119
121
|
members = [x for x in z.namelist() if x.startswith(prefix)]
|
|
120
122
|
z.extractall(members=members)
|
|
121
123
|
shutil.move(prefix, target)
|
|
122
|
-
shutil.rmtree(
|
|
124
|
+
shutil.rmtree(zip_folder_name)
|
|
123
125
|
|
|
124
126
|
sys.exit("Succesfully downloaded the RTC-Tools examples to '{}'".format(target.resolve()))
|
|
125
127
|
|
rtctools/simulation/io_mixin.py
CHANGED
|
@@ -94,7 +94,7 @@ class IOMixin(SimulationProblem, metaclass=ABCMeta):
|
|
|
94
94
|
self.__cache_loop_timeseries = {}
|
|
95
95
|
|
|
96
96
|
timeseries_names = set(self.io.get_timeseries_names(0))
|
|
97
|
-
for v in self.
|
|
97
|
+
for v in self.get_input_variables():
|
|
98
98
|
if v in timeseries_names:
|
|
99
99
|
_, values = self.io.get_timeseries_sec(v)
|
|
100
100
|
self.__cache_loop_timeseries[v] = values
|
rtctools/simulation/pi_mixin.py
CHANGED
|
@@ -248,8 +248,8 @@ class PIMixin(IOMixin):
|
|
|
248
248
|
:param variable: Time series ID.
|
|
249
249
|
:param unit: Unit.
|
|
250
250
|
"""
|
|
251
|
-
assert hasattr(
|
|
252
|
-
|
|
253
|
-
)
|
|
251
|
+
assert hasattr(self, "_PIMixin__timeseries_import"), (
|
|
252
|
+
"set_unit can only be called after read() in pre() has finished."
|
|
253
|
+
)
|
|
254
254
|
self.__timeseries_import.set_unit(variable, unit, 0)
|
|
255
255
|
self.__timeseries_export.set_unit(variable, unit, 0)
|
|
@@ -1,13 +1,21 @@
|
|
|
1
1
|
import copy
|
|
2
|
+
import importlib.resources
|
|
2
3
|
import itertools
|
|
3
4
|
import logging
|
|
4
5
|
import math
|
|
6
|
+
import sys
|
|
5
7
|
from collections import OrderedDict
|
|
6
8
|
from typing import List, Union
|
|
7
9
|
|
|
10
|
+
# Python 3.9's importlib.metadata does not support the "group" parameter to
|
|
11
|
+
# entry_points yet.
|
|
12
|
+
if sys.version_info < (3, 10):
|
|
13
|
+
import importlib_metadata
|
|
14
|
+
else:
|
|
15
|
+
from importlib import metadata as importlib_metadata
|
|
16
|
+
|
|
8
17
|
import casadi as ca
|
|
9
18
|
import numpy as np
|
|
10
|
-
import pkg_resources
|
|
11
19
|
import pymoca
|
|
12
20
|
import pymoca.backends.casadi.api
|
|
13
21
|
|
|
@@ -492,8 +500,9 @@ class SimulationProblem(DataStoreAccessor):
|
|
|
492
500
|
self.set_var(var_name, numeric_start_val)
|
|
493
501
|
except KeyError:
|
|
494
502
|
logger.warning(
|
|
495
|
-
"Initialize: {} not found in state vector. "
|
|
496
|
-
|
|
503
|
+
"Initialize: {} not found in state vector. Initial value of {} not set.".format(
|
|
504
|
+
var_name, numeric_start_val
|
|
505
|
+
)
|
|
497
506
|
)
|
|
498
507
|
|
|
499
508
|
# Add a residual for the difference between the state and its starting expression
|
|
@@ -517,10 +526,14 @@ class SimulationProblem(DataStoreAccessor):
|
|
|
517
526
|
# Check that the start_value is in between the variable bounds.
|
|
518
527
|
if start_is_numeric and not min_is_symbolic and not max_is_symbolic:
|
|
519
528
|
if not (var.min <= start_val and start_val <= var.max):
|
|
520
|
-
logger.
|
|
521
|
-
|
|
522
|
-
|
|
523
|
-
|
|
529
|
+
logger.log(
|
|
530
|
+
(
|
|
531
|
+
logging.WARNING
|
|
532
|
+
if source_description != "modelica file or default value"
|
|
533
|
+
else logging.DEBUG
|
|
534
|
+
),
|
|
535
|
+
f"Initialize: start value {var_name} = {start_val} "
|
|
536
|
+
f"is not in between bounds {var.min} and {var.max} and will be adjusted.",
|
|
524
537
|
)
|
|
525
538
|
|
|
526
539
|
# Default start var for ders is zero
|
|
@@ -1059,9 +1072,9 @@ class SimulationProblem(DataStoreAccessor):
|
|
|
1059
1072
|
:param dt: Timestep size of the simulation.
|
|
1060
1073
|
"""
|
|
1061
1074
|
if self._dt_is_fixed:
|
|
1062
|
-
assert math.isclose(
|
|
1063
|
-
|
|
1064
|
-
)
|
|
1075
|
+
assert math.isclose(self.__dt, dt), (
|
|
1076
|
+
"Timestep size dt is marked as constant and cannot be changed."
|
|
1077
|
+
)
|
|
1065
1078
|
else:
|
|
1066
1079
|
self.__dt = dt
|
|
1067
1080
|
|
|
@@ -1244,9 +1257,9 @@ class SimulationProblem(DataStoreAccessor):
|
|
|
1244
1257
|
# Where imported model libraries are located.
|
|
1245
1258
|
library_folders = self.modelica_library_folders.copy()
|
|
1246
1259
|
|
|
1247
|
-
for ep in
|
|
1260
|
+
for ep in importlib_metadata.entry_points(group="rtctools.libraries.modelica"):
|
|
1248
1261
|
if ep.name == "library_folder":
|
|
1249
|
-
library_folders.append(
|
|
1262
|
+
library_folders.append(str(importlib.resources.files(ep.module).joinpath(ep.attr)))
|
|
1250
1263
|
|
|
1251
1264
|
compiler_options["library_folders"] = library_folders
|
|
1252
1265
|
|
rtctools/util.py
CHANGED
|
File without changes
|
|
File without changes
|
|
File without changes
|