rslearn 0.0.3__py3-none-any.whl → 0.0.5__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rslearn/arg_parser.py +59 -0
- rslearn/data_sources/copernicus.py +10 -8
- rslearn/data_sources/earthdaily.py +21 -1
- rslearn/data_sources/eurocrops.py +246 -0
- rslearn/data_sources/gcp_public_data.py +3 -3
- rslearn/data_sources/local_files.py +11 -0
- rslearn/data_sources/openstreetmap.py +2 -4
- rslearn/data_sources/utils.py +1 -17
- rslearn/main.py +10 -1
- rslearn/models/copernicusfm.py +216 -0
- rslearn/models/copernicusfm_src/__init__.py +1 -0
- rslearn/models/copernicusfm_src/aurora/area.py +50 -0
- rslearn/models/copernicusfm_src/aurora/fourier.py +134 -0
- rslearn/models/copernicusfm_src/dynamic_hypernetwork.py +523 -0
- rslearn/models/copernicusfm_src/flexivit/patch_embed.py +260 -0
- rslearn/models/copernicusfm_src/flexivit/utils.py +69 -0
- rslearn/models/copernicusfm_src/model_vit.py +348 -0
- rslearn/models/copernicusfm_src/util/pos_embed.py +216 -0
- rslearn/models/panopticon.py +167 -0
- rslearn/models/presto/__init__.py +5 -0
- rslearn/models/presto/presto.py +247 -0
- rslearn/models/presto/single_file_presto.py +932 -0
- rslearn/models/trunk.py +0 -144
- rslearn/models/unet.py +15 -0
- rslearn/train/callbacks/adapters.py +53 -0
- rslearn/train/callbacks/freeze_unfreeze.py +319 -0
- rslearn/train/callbacks/gradients.py +54 -34
- rslearn/train/data_module.py +70 -41
- rslearn/train/dataset.py +232 -54
- rslearn/train/lightning_module.py +4 -0
- rslearn/train/prediction_writer.py +7 -0
- rslearn/train/scheduler.py +15 -0
- rslearn/train/tasks/per_pixel_regression.py +259 -0
- rslearn/train/tasks/regression.py +6 -4
- rslearn/train/tasks/segmentation.py +44 -14
- rslearn/train/transforms/mask.py +69 -0
- rslearn/utils/geometry.py +8 -8
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/METADATA +6 -3
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/RECORD +43 -27
- rslearn/models/moe/distributed.py +0 -262
- rslearn/models/moe/soft.py +0 -676
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/WHEEL +0 -0
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/entry_points.txt +0 -0
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/licenses/LICENSE +0 -0
- {rslearn-0.0.3.dist-info → rslearn-0.0.5.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,216 @@
|
|
|
1
|
+
"""Copernicus FM model."""
|
|
2
|
+
|
|
3
|
+
import logging
|
|
4
|
+
import math
|
|
5
|
+
from enum import Enum
|
|
6
|
+
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn.functional as F
|
|
9
|
+
from einops import rearrange
|
|
10
|
+
from upath import UPath
|
|
11
|
+
|
|
12
|
+
from .copernicusfm_src.model_vit import vit_base_patch16
|
|
13
|
+
|
|
14
|
+
logger = logging.getLogger(__name__)
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class CopernicusFMModality(Enum):
|
|
18
|
+
"""Modality for Copernicus FM."""
|
|
19
|
+
|
|
20
|
+
SENTINEL2_L2A = "sentinel2_l2a"
|
|
21
|
+
SENTINEL1 = "sentinel1"
|
|
22
|
+
|
|
23
|
+
|
|
24
|
+
MODALITY_TO_WAVELENGTH_BANDWIDTHS: dict[str, dict[str, list]] = {
|
|
25
|
+
# https://github.com/zhu-xlab/Copernicus-FM/blob/main/Copernicus-Bench/src/configs/dataset/cobench_eurosat_s2.yaml
|
|
26
|
+
CopernicusFMModality.SENTINEL2_L2A.value: {
|
|
27
|
+
"band_names": [
|
|
28
|
+
"B01",
|
|
29
|
+
"B02",
|
|
30
|
+
"B03",
|
|
31
|
+
"B04",
|
|
32
|
+
"B05",
|
|
33
|
+
"B06",
|
|
34
|
+
"B07",
|
|
35
|
+
"B08",
|
|
36
|
+
"B8A",
|
|
37
|
+
"B09",
|
|
38
|
+
"B10",
|
|
39
|
+
"B11",
|
|
40
|
+
"B12",
|
|
41
|
+
],
|
|
42
|
+
"band_wavelengths": [
|
|
43
|
+
440,
|
|
44
|
+
490,
|
|
45
|
+
560,
|
|
46
|
+
665,
|
|
47
|
+
705,
|
|
48
|
+
740,
|
|
49
|
+
783,
|
|
50
|
+
842,
|
|
51
|
+
860,
|
|
52
|
+
940,
|
|
53
|
+
1370,
|
|
54
|
+
1610,
|
|
55
|
+
2190,
|
|
56
|
+
],
|
|
57
|
+
"band_bandwidths": [20, 65, 35, 30, 15, 15, 20, 115, 20, 20, 30, 90, 180],
|
|
58
|
+
},
|
|
59
|
+
# https://github.com/zhu-xlab/Copernicus-FM/blob/main/Copernicus-Bench/src/configs/dataset/cobench_eurosat_s1.yaml
|
|
60
|
+
CopernicusFMModality.SENTINEL1.value: {
|
|
61
|
+
"band_names": ["vv", "vh"],
|
|
62
|
+
"band_wavelengths": [50000000, 50000000],
|
|
63
|
+
"band_bandwidths": [1e9, 1e9],
|
|
64
|
+
},
|
|
65
|
+
}
|
|
66
|
+
|
|
67
|
+
|
|
68
|
+
class CopernicusFM(torch.nn.Module):
|
|
69
|
+
"""Wrapper for Copernicus FM to ingest Masked Helios Sample."""
|
|
70
|
+
|
|
71
|
+
image_resolution = 224
|
|
72
|
+
patch_size = 16
|
|
73
|
+
input_mode = "spectral"
|
|
74
|
+
# Don't need this as band order is provided
|
|
75
|
+
supported_modalities = [
|
|
76
|
+
CopernicusFMModality.SENTINEL2_L2A.value,
|
|
77
|
+
CopernicusFMModality.SENTINEL1.value,
|
|
78
|
+
]
|
|
79
|
+
|
|
80
|
+
def __init__(
|
|
81
|
+
self,
|
|
82
|
+
band_order: dict[str, list[str]],
|
|
83
|
+
load_directory: str | None,
|
|
84
|
+
) -> None:
|
|
85
|
+
"""Initialize the Copernicus FM wrapper.
|
|
86
|
+
|
|
87
|
+
Args:
|
|
88
|
+
band_order: The band order for each modality
|
|
89
|
+
load_directory: The directory to load from, if None no weights are loaded
|
|
90
|
+
"""
|
|
91
|
+
super().__init__()
|
|
92
|
+
|
|
93
|
+
# global_pool=True so that we initialize the fc_norm layer
|
|
94
|
+
self.band_order = band_order
|
|
95
|
+
self.model = vit_base_patch16(num_classes=10, global_pool=True)
|
|
96
|
+
if load_directory is not None:
|
|
97
|
+
check_point = torch.load(
|
|
98
|
+
UPath(load_directory) / "CopernicusFM_ViT_base_varlang_e100.pth",
|
|
99
|
+
weights_only=True,
|
|
100
|
+
)
|
|
101
|
+
if "model" in check_point:
|
|
102
|
+
state_dict = check_point["model"]
|
|
103
|
+
else:
|
|
104
|
+
state_dict = check_point
|
|
105
|
+
self.model.load_state_dict(state_dict, strict=False)
|
|
106
|
+
|
|
107
|
+
# take MODALITY_TO_WAVELENGTH_BANDWIDTHS and rearrage it so that it has the same
|
|
108
|
+
# ordering as the Helios band orders, defined by Modality.band_order
|
|
109
|
+
self.modality_to_wavelength_bandwidths = {}
|
|
110
|
+
for modality in self.supported_modalities:
|
|
111
|
+
wavelength_bandwidths = MODALITY_TO_WAVELENGTH_BANDWIDTHS[modality]
|
|
112
|
+
wavelengths = []
|
|
113
|
+
bandwidths = []
|
|
114
|
+
modality_band_order = self.band_order.get(modality, None)
|
|
115
|
+
if modality_band_order is None:
|
|
116
|
+
logger.warning(
|
|
117
|
+
f"Band order for modality {modality} not found in band_order dictionary, unable to use this modality unless specified"
|
|
118
|
+
)
|
|
119
|
+
continue
|
|
120
|
+
for b in modality_band_order:
|
|
121
|
+
cfm_idx = wavelength_bandwidths["band_names"].index(b)
|
|
122
|
+
wavelengths.append(wavelength_bandwidths["band_wavelengths"][cfm_idx])
|
|
123
|
+
bandwidths.append(wavelength_bandwidths["band_bandwidths"][cfm_idx])
|
|
124
|
+
self.modality_to_wavelength_bandwidths[modality] = {
|
|
125
|
+
"band_bandwidths": bandwidths,
|
|
126
|
+
"band_wavelengths": wavelengths,
|
|
127
|
+
}
|
|
128
|
+
|
|
129
|
+
def _resize_data(self, data: torch.Tensor) -> torch.Tensor:
|
|
130
|
+
"""Process individual modality data.
|
|
131
|
+
|
|
132
|
+
Args:
|
|
133
|
+
data: Input tensor of shape [B, C, H, W]
|
|
134
|
+
|
|
135
|
+
Returns:
|
|
136
|
+
list of tensors of shape [B, C, H, W]
|
|
137
|
+
"""
|
|
138
|
+
# Get original dimensions
|
|
139
|
+
original_height = data.shape[2]
|
|
140
|
+
new_height = self.patch_size if original_height == 1 else self.image_resolution
|
|
141
|
+
data = F.interpolate(
|
|
142
|
+
data,
|
|
143
|
+
size=(new_height, new_height),
|
|
144
|
+
mode="bilinear",
|
|
145
|
+
align_corners=False,
|
|
146
|
+
)
|
|
147
|
+
return data
|
|
148
|
+
|
|
149
|
+
def prepare_input(
|
|
150
|
+
self,
|
|
151
|
+
inputs: dict[str, torch.Tensor],
|
|
152
|
+
) -> tuple[torch.Tensor, list[int], list[int]]:
|
|
153
|
+
"""Prepare input for the CopernicusFM model from MaskedHeliosSample."""
|
|
154
|
+
wavelengths: list[int] = []
|
|
155
|
+
bandwidths: list[int] = []
|
|
156
|
+
all_processed_data: list[list[torch.Tensor]] = []
|
|
157
|
+
for modality in inputs.keys():
|
|
158
|
+
if modality not in self.supported_modalities:
|
|
159
|
+
logger.debug(
|
|
160
|
+
f"Skipping modality {modality} as it is not in the supported "
|
|
161
|
+
f"modalities list {self.supported_modalities}"
|
|
162
|
+
)
|
|
163
|
+
continue
|
|
164
|
+
|
|
165
|
+
data = inputs[modality]
|
|
166
|
+
|
|
167
|
+
if data is None:
|
|
168
|
+
continue
|
|
169
|
+
|
|
170
|
+
all_processed_data.append(self._resize_data(data))
|
|
171
|
+
wavelengths.extend(
|
|
172
|
+
self.modality_to_wavelength_bandwidths[modality]["band_wavelengths"]
|
|
173
|
+
)
|
|
174
|
+
bandwidths.extend(
|
|
175
|
+
self.modality_to_wavelength_bandwidths[modality]["band_bandwidths"]
|
|
176
|
+
)
|
|
177
|
+
|
|
178
|
+
concatenated_processed_data = torch.cat(all_processed_data, dim=1)
|
|
179
|
+
return concatenated_processed_data, wavelengths, bandwidths
|
|
180
|
+
|
|
181
|
+
def forward(
|
|
182
|
+
self,
|
|
183
|
+
inputs: list[dict[str, torch.Tensor]],
|
|
184
|
+
) -> torch.Tensor:
|
|
185
|
+
"""Forward pass through CopernicusFM model."""
|
|
186
|
+
batch_inputs = {
|
|
187
|
+
key: torch.stack([inp[key] for inp in inputs], dim=0)
|
|
188
|
+
for key in inputs[0].keys()
|
|
189
|
+
}
|
|
190
|
+
# Prepare input
|
|
191
|
+
data, wavelengths, bandwidths = self.prepare_input(batch_inputs)
|
|
192
|
+
meta = torch.full(
|
|
193
|
+
(1, 4), float("nan"), device=data.device
|
|
194
|
+
) # [lon, lat, delta_time, patch_token_area], assume unknown
|
|
195
|
+
# "The embed tensor contains the encoded image features, which can be used for downstream tasks."
|
|
196
|
+
_, timestep_output = self.model(
|
|
197
|
+
data,
|
|
198
|
+
meta,
|
|
199
|
+
wavelengths,
|
|
200
|
+
bandwidths,
|
|
201
|
+
None,
|
|
202
|
+
self.input_mode,
|
|
203
|
+
self.patch_size,
|
|
204
|
+
)
|
|
205
|
+
# no norm, following
|
|
206
|
+
# https://github.com/zhu-xlab/Copernicus-FM/blob/main/Copernicus-Bench/src/foundation_models/CopernicusFM/models_dwv_seg.py
|
|
207
|
+
side = math.isqrt(timestep_output.shape[1])
|
|
208
|
+
output_features = rearrange(
|
|
209
|
+
timestep_output, "b (h w) c -> b c h w ", h=side, w=side
|
|
210
|
+
)
|
|
211
|
+
return [output_features]
|
|
212
|
+
|
|
213
|
+
def get_backbone_channels(self) -> list[tuple[int, int]]:
|
|
214
|
+
"""Returns the output channels of this model when used as a backbone."""
|
|
215
|
+
# TODO: load this from a constant depending on the model size
|
|
216
|
+
return [(self.patch_size, 768)]
|
|
@@ -0,0 +1 @@
|
|
|
1
|
+
# mypy: ignore-errors
|
|
@@ -0,0 +1,50 @@
|
|
|
1
|
+
"""Copyright (c) Microsoft Corporation. Licensed under the MIT license."""
|
|
2
|
+
|
|
3
|
+
import torch
|
|
4
|
+
|
|
5
|
+
__all__ = ["area", "radius_earth"]
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
# float: Radius of the earth in kilometers.
|
|
9
|
+
radius_earth = 6378137 / 1000
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
def area(polygon: torch.Tensor) -> torch.Tensor:
|
|
13
|
+
"""Compute the area of a polygon specified by latitudes and longitudes in degrees.
|
|
14
|
+
|
|
15
|
+
This function is a PyTorch port of the PyPI package `area`. In particular, it is heavily
|
|
16
|
+
inspired by the following file:
|
|
17
|
+
|
|
18
|
+
https://github.com/scisco/area/blob/9d9549d6ebffcbe4bffe11b71efa2d406d1c9fe9/area/__init__.py
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
polygon (:class:`torch.Tensor`): Polygon of the shape `(*b, n, 2)` where `b` is an optional
|
|
22
|
+
multidimensional batch size, `n` is the number of points of the polygon, and 2
|
|
23
|
+
concatenates first latitudes and then longitudes. The polygon does not have be closed.
|
|
24
|
+
|
|
25
|
+
Returns:
|
|
26
|
+
:class:`torch.Tensor`: Area in square kilometers.
|
|
27
|
+
"""
|
|
28
|
+
# Be sure to close the loop.
|
|
29
|
+
polygon = torch.cat((polygon, polygon[..., -1:, :]), axis=-2)
|
|
30
|
+
|
|
31
|
+
area = torch.zeros(polygon.shape[:-2], dtype=polygon.dtype, device=polygon.device)
|
|
32
|
+
n = polygon.shape[-2] # Number of points of the polygon
|
|
33
|
+
|
|
34
|
+
rad = torch.deg2rad # Convert degrees to radians.
|
|
35
|
+
|
|
36
|
+
if n > 2:
|
|
37
|
+
for i in range(n):
|
|
38
|
+
i_lower = i
|
|
39
|
+
i_middle = (i + 1) % n
|
|
40
|
+
i_upper = (i + 2) % n
|
|
41
|
+
|
|
42
|
+
lon_lower = polygon[..., i_lower, 1]
|
|
43
|
+
lat_middle = polygon[..., i_middle, 0]
|
|
44
|
+
lon_upper = polygon[..., i_upper, 1]
|
|
45
|
+
|
|
46
|
+
area = area + (rad(lon_upper) - rad(lon_lower)) * torch.sin(rad(lat_middle))
|
|
47
|
+
|
|
48
|
+
area = area * radius_earth * radius_earth / 2
|
|
49
|
+
|
|
50
|
+
return torch.abs(area)
|
|
@@ -0,0 +1,134 @@
|
|
|
1
|
+
# type: ignore
|
|
2
|
+
"""Copyright (c) Microsoft Corporation. Licensed under the MIT license."""
|
|
3
|
+
|
|
4
|
+
import math
|
|
5
|
+
|
|
6
|
+
import numpy as np
|
|
7
|
+
import torch
|
|
8
|
+
import torch.nn as nn
|
|
9
|
+
|
|
10
|
+
from .area import area, radius_earth
|
|
11
|
+
|
|
12
|
+
__all__ = [
|
|
13
|
+
"FourierExpansion",
|
|
14
|
+
"pos_expansion",
|
|
15
|
+
"scale_expansion",
|
|
16
|
+
"lead_time_expansion",
|
|
17
|
+
"levels_expansion",
|
|
18
|
+
"absolute_time_expansion",
|
|
19
|
+
]
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class FourierExpansion(nn.Module):
|
|
23
|
+
"""A Fourier series-style expansion into a high-dimensional space.
|
|
24
|
+
|
|
25
|
+
Attributes:
|
|
26
|
+
lower (float): Lower wavelength.
|
|
27
|
+
upper (float): Upper wavelength.
|
|
28
|
+
assert_range (bool): Assert that the encoded tensor is within the specified wavelength
|
|
29
|
+
range.
|
|
30
|
+
"""
|
|
31
|
+
|
|
32
|
+
def __init__(self, lower: float, upper: float, assert_range: bool = True) -> None:
|
|
33
|
+
"""Initialise.
|
|
34
|
+
|
|
35
|
+
Args:
|
|
36
|
+
lower (float): Lower wavelength.
|
|
37
|
+
upper (float): Upper wavelength.
|
|
38
|
+
assert_range (bool, optional): Assert that the encoded tensor is within the specified
|
|
39
|
+
wavelength range. Defaults to `True`.
|
|
40
|
+
"""
|
|
41
|
+
super().__init__()
|
|
42
|
+
self.lower = lower
|
|
43
|
+
self.upper = upper
|
|
44
|
+
self.assert_range = assert_range
|
|
45
|
+
|
|
46
|
+
def forward(self, x: torch.Tensor, d: int) -> torch.Tensor:
|
|
47
|
+
"""Perform the expansion.
|
|
48
|
+
|
|
49
|
+
Adds a dimension of length `d` to the end of the shape of `x`.
|
|
50
|
+
|
|
51
|
+
Args:
|
|
52
|
+
x (:class:`torch.Tensor`): Input to expand of shape `(..., n)`. All elements of `x` must
|
|
53
|
+
lie within `[self.lower, self.upper]` if `self.assert_range` is `True`.
|
|
54
|
+
d (int): Dimensionality. Must be a multiple of two.
|
|
55
|
+
|
|
56
|
+
Raises:
|
|
57
|
+
AssertionError: If `self.assert_range` is `True` and not all elements of `x` are not
|
|
58
|
+
within `[self.lower, self.upper]`.
|
|
59
|
+
ValueError: If `d` is not a multiple of two.
|
|
60
|
+
|
|
61
|
+
Returns:
|
|
62
|
+
torch.Tensor: Fourier series-style expansion of `x` of shape `(..., n, d)`.
|
|
63
|
+
"""
|
|
64
|
+
# If the input is not within the configured range, the embedding might be ambiguous!
|
|
65
|
+
in_range = torch.logical_and(
|
|
66
|
+
self.lower <= x.abs(), torch.all(x.abs() <= self.upper)
|
|
67
|
+
)
|
|
68
|
+
in_range_or_zero = torch.all(
|
|
69
|
+
torch.logical_or(in_range, x == 0)
|
|
70
|
+
) # Allow zeros to pass through.
|
|
71
|
+
if self.assert_range and not in_range_or_zero:
|
|
72
|
+
raise AssertionError(
|
|
73
|
+
f"The input tensor is not within the configured range"
|
|
74
|
+
f" `[{self.lower}, {self.upper}]`."
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
# We will use half of the dimensionality for `sin` and the other half for `cos`.
|
|
78
|
+
if not (d % 2 == 0):
|
|
79
|
+
raise ValueError("The dimensionality must be a multiple of two.")
|
|
80
|
+
|
|
81
|
+
# Always perform the expansion with `float64`s to avoid numerical accuracy shenanigans.
|
|
82
|
+
x = x.double()
|
|
83
|
+
|
|
84
|
+
wavelengths = torch.logspace(
|
|
85
|
+
math.log10(self.lower),
|
|
86
|
+
math.log10(self.upper),
|
|
87
|
+
d // 2,
|
|
88
|
+
base=10,
|
|
89
|
+
device=x.device,
|
|
90
|
+
dtype=x.dtype,
|
|
91
|
+
)
|
|
92
|
+
prod = torch.einsum("...i,j->...ij", x, 2 * np.pi / wavelengths)
|
|
93
|
+
encoding = torch.cat((torch.sin(prod), torch.cos(prod)), dim=-1)
|
|
94
|
+
|
|
95
|
+
return encoding.float() # Cast to `float32` to avoid incompatibilities.
|
|
96
|
+
|
|
97
|
+
|
|
98
|
+
# Determine a reasonable smallest value for the scale embedding by assuming a smallest delta in
|
|
99
|
+
# latitudes and longitudes.
|
|
100
|
+
_delta = 0.01 # Reasonable smallest delta in latitude and longitude
|
|
101
|
+
_min_patch_area: float = area(
|
|
102
|
+
torch.tensor(
|
|
103
|
+
[
|
|
104
|
+
# The smallest patches will be at the poles. Just use the north pole.
|
|
105
|
+
[90, 0],
|
|
106
|
+
[90, _delta],
|
|
107
|
+
[90 - _delta, _delta],
|
|
108
|
+
[90 - _delta, 0],
|
|
109
|
+
],
|
|
110
|
+
dtype=torch.float64,
|
|
111
|
+
)
|
|
112
|
+
).item()
|
|
113
|
+
_area_earth = 4 * np.pi * radius_earth * radius_earth
|
|
114
|
+
|
|
115
|
+
pos_expansion = FourierExpansion(_delta, 720)
|
|
116
|
+
|
|
117
|
+
|
|
118
|
+
scale_expansion = FourierExpansion(_min_patch_area, _area_earth)
|
|
119
|
+
|
|
120
|
+
|
|
121
|
+
lead_time_expansion = FourierExpansion(1 / 60, 24 * 7 * 3)
|
|
122
|
+
|
|
123
|
+
levels_expansion = FourierExpansion(0.01, 1e5)
|
|
124
|
+
|
|
125
|
+
absolute_time_expansion = FourierExpansion(1, 24 * 365.25, assert_range=False)
|
|
126
|
+
|
|
127
|
+
### new for SSL4EO-S ###
|
|
128
|
+
# min wavelength: ultraviolet light (100 nm)
|
|
129
|
+
# max wavelength: radio waves (1 m)
|
|
130
|
+
spectrum_central_expansion = FourierExpansion(1e-7, 1)
|
|
131
|
+
|
|
132
|
+
# min bandwidth: 10nm
|
|
133
|
+
# max bandwidth: 1m
|
|
134
|
+
spectrum_width_expansion = FourierExpansion(1e-7, 1)
|