rslearn 0.0.25__py3-none-any.whl → 0.0.27__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. rslearn/config/dataset.py +30 -23
  2. rslearn/data_sources/__init__.py +2 -0
  3. rslearn/data_sources/aws_landsat.py +44 -161
  4. rslearn/data_sources/aws_open_data.py +2 -4
  5. rslearn/data_sources/aws_sentinel1.py +1 -3
  6. rslearn/data_sources/aws_sentinel2_element84.py +54 -165
  7. rslearn/data_sources/climate_data_store.py +1 -3
  8. rslearn/data_sources/copernicus.py +1 -2
  9. rslearn/data_sources/data_source.py +1 -1
  10. rslearn/data_sources/direct_materialize_data_source.py +336 -0
  11. rslearn/data_sources/earthdaily.py +52 -155
  12. rslearn/data_sources/earthdatahub.py +425 -0
  13. rslearn/data_sources/eurocrops.py +1 -2
  14. rslearn/data_sources/gcp_public_data.py +1 -2
  15. rslearn/data_sources/google_earth_engine.py +1 -2
  16. rslearn/data_sources/hf_srtm.py +595 -0
  17. rslearn/data_sources/local_files.py +3 -3
  18. rslearn/data_sources/openstreetmap.py +1 -1
  19. rslearn/data_sources/planet.py +1 -2
  20. rslearn/data_sources/planet_basemap.py +1 -2
  21. rslearn/data_sources/planetary_computer.py +183 -186
  22. rslearn/data_sources/soilgrids.py +3 -3
  23. rslearn/data_sources/stac.py +1 -2
  24. rslearn/data_sources/usda_cdl.py +1 -3
  25. rslearn/data_sources/usgs_landsat.py +7 -254
  26. rslearn/data_sources/utils.py +204 -64
  27. rslearn/data_sources/worldcereal.py +1 -1
  28. rslearn/data_sources/worldcover.py +1 -1
  29. rslearn/data_sources/worldpop.py +1 -1
  30. rslearn/data_sources/xyz_tiles.py +5 -9
  31. rslearn/dataset/materialize.py +5 -1
  32. rslearn/models/clay/clay.py +3 -3
  33. rslearn/models/concatenate_features.py +6 -1
  34. rslearn/models/detr/detr.py +4 -1
  35. rslearn/models/dinov3.py +0 -1
  36. rslearn/models/olmoearth_pretrain/model.py +3 -1
  37. rslearn/models/pooling_decoder.py +1 -1
  38. rslearn/models/prithvi.py +0 -1
  39. rslearn/models/simple_time_series.py +97 -35
  40. rslearn/train/{all_patches_dataset.py → all_crops_dataset.py} +120 -117
  41. rslearn/train/data_module.py +32 -27
  42. rslearn/train/dataset.py +260 -117
  43. rslearn/train/dataset_index.py +156 -0
  44. rslearn/train/lightning_module.py +1 -1
  45. rslearn/train/model_context.py +19 -3
  46. rslearn/train/prediction_writer.py +69 -41
  47. rslearn/train/tasks/classification.py +1 -1
  48. rslearn/train/tasks/detection.py +5 -5
  49. rslearn/train/tasks/per_pixel_regression.py +13 -13
  50. rslearn/train/tasks/regression.py +1 -1
  51. rslearn/train/tasks/segmentation.py +26 -13
  52. rslearn/train/transforms/concatenate.py +17 -27
  53. rslearn/train/transforms/crop.py +8 -19
  54. rslearn/train/transforms/flip.py +4 -10
  55. rslearn/train/transforms/mask.py +9 -15
  56. rslearn/train/transforms/normalize.py +31 -82
  57. rslearn/train/transforms/pad.py +7 -13
  58. rslearn/train/transforms/resize.py +5 -22
  59. rslearn/train/transforms/select_bands.py +16 -36
  60. rslearn/train/transforms/sentinel1.py +4 -16
  61. rslearn/utils/__init__.py +2 -0
  62. rslearn/utils/geometry.py +21 -0
  63. rslearn/utils/m2m_api.py +251 -0
  64. rslearn/utils/retry_session.py +43 -0
  65. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/METADATA +6 -3
  66. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/RECORD +71 -66
  67. rslearn/data_sources/earthdata_srtm.py +0 -282
  68. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/WHEEL +0 -0
  69. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/entry_points.txt +0 -0
  70. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/licenses/LICENSE +0 -0
  71. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/licenses/NOTICE +0 -0
  72. {rslearn-0.0.25.dist-info → rslearn-0.0.27.dist-info}/top_level.txt +0 -0
@@ -6,23 +6,20 @@ from collections.abc import Callable
6
6
  from datetime import timedelta
7
7
  from typing import Any
8
8
 
9
- import affine
10
9
  import numpy as np
11
10
  import numpy.typing as npt
12
11
  import rasterio
13
12
  import requests
14
- from rasterio.enums import Resampling
15
13
  from upath import UPath
16
14
 
17
- from rslearn.config import LayerConfig
15
+ from rslearn.data_sources.direct_materialize_data_source import (
16
+ DirectMaterializeDataSource,
17
+ )
18
18
  from rslearn.data_sources.stac import SourceItem, StacDataSource
19
- from rslearn.dataset import Window
20
- from rslearn.dataset.manage import RasterMaterializer
21
19
  from rslearn.log_utils import get_logger
22
- from rslearn.tile_stores import TileStore, TileStoreWithLayer
23
- from rslearn.utils import Projection, STGeometry
20
+ from rslearn.tile_stores import TileStoreWithLayer
21
+ from rslearn.utils import STGeometry
24
22
  from rslearn.utils.fsspec import join_upath
25
- from rslearn.utils.geometry import PixelBounds
26
23
  from rslearn.utils.raster_format import get_raster_projection_and_bounds
27
24
 
28
25
  from .data_source import (
@@ -32,7 +29,7 @@ from .data_source import (
32
29
  logger = get_logger(__name__)
33
30
 
34
31
 
35
- class Sentinel2(StacDataSource, TileStore):
32
+ class Sentinel2(DirectMaterializeDataSource[SourceItem], StacDataSource):
36
33
  """A data source for Sentinel-2 L2A imagery on AWS from s3://sentinel-cogs.
37
34
 
38
35
  The S3 bucket has COGs so this data source supports direct materialization. It also
@@ -97,31 +94,36 @@ class Sentinel2(StacDataSource, TileStore):
97
94
  cache_upath.mkdir(parents=True, exist_ok=True)
98
95
 
99
96
  # Determine which assets we need based on the bands in the layer config.
100
- self.asset_bands: dict[str, list[str]]
97
+ asset_bands: dict[str, list[str]]
101
98
  if context.layer_config is not None:
102
- self.asset_bands = {}
99
+ asset_bands = {}
103
100
  for asset_key, band_names in self.ASSET_BANDS.items():
104
101
  # See if the bands provided by this asset intersect with the bands in
105
102
  # at least one configured band set.
106
103
  for band_set in context.layer_config.band_sets:
107
104
  if not set(band_set.bands).intersection(set(band_names)):
108
105
  continue
109
- self.asset_bands[asset_key] = band_names
106
+ asset_bands[asset_key] = band_names
110
107
  break
111
108
  elif assets is not None:
112
- self.asset_bands = {
109
+ asset_bands = {
113
110
  asset_key: self.ASSET_BANDS[asset_key] for asset_key in assets
114
111
  }
115
112
  else:
116
- self.asset_bands = self.ASSET_BANDS
113
+ asset_bands = dict(self.ASSET_BANDS)
114
+
115
+ # Initialize DirectMaterializeDataSource with asset_bands
116
+ DirectMaterializeDataSource.__init__(self, asset_bands=asset_bands)
117
117
 
118
- super().__init__(
118
+ # Initialize StacDataSource
119
+ StacDataSource.__init__(
120
+ self,
119
121
  endpoint=self.STAC_ENDPOINT,
120
122
  collection_name=self.COLLECTION_NAME,
121
123
  query=query,
122
124
  sort_by=sort_by,
123
125
  sort_ascending=sort_ascending,
124
- required_assets=list(self.asset_bands.keys()),
126
+ required_assets=list(asset_bands.keys()),
125
127
  cache_dir=cache_upath,
126
128
  properties_to_record=[self.HARMONIZE_PROPERTY_NAME],
127
129
  )
@@ -129,6 +131,42 @@ class Sentinel2(StacDataSource, TileStore):
129
131
  self.harmonize = harmonize
130
132
  self.timeout = timeout
131
133
 
134
+ # --- DirectMaterializeDataSource implementation ---
135
+
136
+ def get_asset_url(self, item_name: str, asset_key: str) -> str:
137
+ """Get the URL to read the asset for the given item and asset key.
138
+
139
+ Args:
140
+ item_name: the name of the item.
141
+ asset_key: the key identifying which asset to get.
142
+
143
+ Returns:
144
+ the URL to read the asset from.
145
+ """
146
+ item = self.get_item_by_name(item_name)
147
+ return item.asset_urls[asset_key]
148
+
149
+ def get_read_callback(
150
+ self, item_name: str, asset_key: str
151
+ ) -> Callable[[npt.NDArray[Any]], npt.NDArray[Any]] | None:
152
+ """Return a callback to harmonize Sentinel-2 data if needed.
153
+
154
+ Args:
155
+ item_name: the name of the item being read.
156
+ asset_key: the key identifying which asset is being read.
157
+
158
+ Returns:
159
+ A callback function for harmonization, or None if not needed.
160
+ """
161
+ # Visual bands do not need harmonization.
162
+ if not self.harmonize or asset_key == "visual":
163
+ return None
164
+
165
+ item = self.get_item_by_name(item_name)
166
+ return self._get_harmonize_callback(item)
167
+
168
+ # --- Harmonization helpers ---
169
+
132
170
  def _get_harmonize_callback(
133
171
  self, item: SourceItem
134
172
  ) -> Callable[[npt.NDArray], npt.NDArray] | None:
@@ -223,152 +261,3 @@ class Sentinel2(StacDataSource, TileStore):
223
261
  item.name,
224
262
  asset_key,
225
263
  )
226
-
227
- def is_raster_ready(
228
- self, layer_name: str, item_name: str, bands: list[str]
229
- ) -> bool:
230
- """Checks if this raster has been written to the store.
231
-
232
- Args:
233
- layer_name: the layer name or alias.
234
- item_name: the item.
235
- bands: the list of bands identifying which specific raster to read.
236
-
237
- Returns:
238
- whether there is a raster in the store matching the source, item, and
239
- bands.
240
- """
241
- # Always ready since we wrap accesses to underlying API.
242
- return True
243
-
244
- def get_raster_bands(self, layer_name: str, item_name: str) -> list[list[str]]:
245
- """Get the sets of bands that have been stored for the specified item.
246
-
247
- Args:
248
- layer_name: the layer name or alias.
249
- item_name: the item.
250
-
251
- Returns:
252
- a list of lists of bands that are in the tile store (with one raster
253
- stored corresponding to each inner list). If no rasters are ready for
254
- this item, returns empty list.
255
- """
256
- return list(self.asset_bands.values())
257
-
258
- def _get_asset_by_band(self, bands: list[str]) -> str:
259
- """Get the name of the asset based on the band names."""
260
- for asset_key, asset_bands in self.asset_bands.items():
261
- if bands == asset_bands:
262
- return asset_key
263
-
264
- raise ValueError(f"no known asset with bands {bands}")
265
-
266
- def get_raster_bounds(
267
- self, layer_name: str, item_name: str, bands: list[str], projection: Projection
268
- ) -> PixelBounds:
269
- """Get the bounds of the raster in the specified projection.
270
-
271
- Args:
272
- layer_name: the layer name or alias.
273
- item_name: the item to check.
274
- bands: the list of bands identifying which specific raster to read. These
275
- bands must match the bands of a stored raster.
276
- projection: the projection to get the raster's bounds in.
277
-
278
- Returns:
279
- the bounds of the raster in the projection.
280
- """
281
- item = self.get_item_by_name(item_name)
282
- geom = item.geometry.to_projection(projection)
283
- return (
284
- int(geom.shp.bounds[0]),
285
- int(geom.shp.bounds[1]),
286
- int(geom.shp.bounds[2]),
287
- int(geom.shp.bounds[3]),
288
- )
289
-
290
- def read_raster(
291
- self,
292
- layer_name: str,
293
- item_name: str,
294
- bands: list[str],
295
- projection: Projection,
296
- bounds: PixelBounds,
297
- resampling: Resampling = Resampling.bilinear,
298
- ) -> npt.NDArray[Any]:
299
- """Read raster data from the store.
300
-
301
- Args:
302
- layer_name: the layer name or alias.
303
- item_name: the item to read.
304
- bands: the list of bands identifying which specific raster to read. These
305
- bands must match the bands of a stored raster.
306
- projection: the projection to read in.
307
- bounds: the bounds to read.
308
- resampling: the resampling method to use in case reprojection is needed.
309
-
310
- Returns:
311
- the raster data
312
- """
313
- asset_key = self._get_asset_by_band(bands)
314
- item = self.get_item_by_name(item_name)
315
- asset_url = item.asset_urls[asset_key]
316
-
317
- # Construct the transform to use for the warped dataset.
318
- wanted_transform = affine.Affine(
319
- projection.x_resolution,
320
- 0,
321
- bounds[0] * projection.x_resolution,
322
- 0,
323
- projection.y_resolution,
324
- bounds[1] * projection.y_resolution,
325
- )
326
-
327
- # Read from the raster under the specified projection/bounds.
328
- with rasterio.open(asset_url) as src:
329
- with rasterio.vrt.WarpedVRT(
330
- src,
331
- crs=projection.crs,
332
- transform=wanted_transform,
333
- width=bounds[2] - bounds[0],
334
- height=bounds[3] - bounds[1],
335
- resampling=resampling,
336
- ) as vrt:
337
- raw_data = vrt.read()
338
-
339
- # We can return the data now if harmonization is not needed.
340
- if not self.harmonize or bands == self.ASSET_BANDS["visual"]:
341
- return raw_data
342
-
343
- # Otherwise we apply the harmonize_callback.
344
- item = self.get_item_by_name(item_name)
345
- harmonize_callback = self._get_harmonize_callback(item)
346
-
347
- if harmonize_callback is None:
348
- return raw_data
349
-
350
- array = harmonize_callback(raw_data)
351
- return array
352
-
353
- def materialize(
354
- self,
355
- window: Window,
356
- item_groups: list[list[SourceItem]],
357
- layer_name: str,
358
- layer_cfg: LayerConfig,
359
- ) -> None:
360
- """Materialize data for the window.
361
-
362
- Args:
363
- window: the window to materialize
364
- item_groups: the items from get_items
365
- layer_name: the name of this layer
366
- layer_cfg: the config of this layer
367
- """
368
- RasterMaterializer().materialize(
369
- TileStoreWithLayer(self, layer_name),
370
- window,
371
- layer_name,
372
- layer_cfg,
373
- item_groups,
374
- )
@@ -3,7 +3,6 @@
3
3
  import os
4
4
  import tempfile
5
5
  from datetime import UTC, datetime
6
- from typing import Any
7
6
 
8
7
  import cdsapi
9
8
  import netCDF4
@@ -160,9 +159,8 @@ class ERA5Land(DataSource):
160
159
 
161
160
  return all_groups
162
161
 
163
- def deserialize_item(self, serialized_item: Any) -> Item:
162
+ def deserialize_item(self, serialized_item: dict) -> Item:
164
163
  """Deserializes an item from JSON-decoded data."""
165
- assert isinstance(serialized_item, dict)
166
164
  return Item.deserialize(serialized_item)
167
165
 
168
166
  def _convert_nc_to_tif(self, nc_path: UPath, tif_path: UPath) -> None:
@@ -353,9 +353,8 @@ class Copernicus(DataSource):
353
353
  self.username = os.environ["COPERNICUS_USERNAME"]
354
354
  self.password = os.environ["COPERNICUS_PASSWORD"]
355
355
 
356
- def deserialize_item(self, serialized_item: Any) -> CopernicusItem:
356
+ def deserialize_item(self, serialized_item: dict) -> CopernicusItem:
357
357
  """Deserializes an item from JSON-decoded data."""
358
- assert isinstance(serialized_item, dict)
359
358
  return CopernicusItem.deserialize(serialized_item)
360
359
 
361
360
  def _get(self, path: str) -> dict[str, Any]:
@@ -76,7 +76,7 @@ class DataSource(Generic[ItemType]):
76
76
  """
77
77
  raise NotImplementedError
78
78
 
79
- def deserialize_item(self, serialized_item: Any) -> ItemType:
79
+ def deserialize_item(self, serialized_item: dict) -> ItemType:
80
80
  """Deserializes an item from JSON-decoded data."""
81
81
  raise NotImplementedError
82
82
 
@@ -0,0 +1,336 @@
1
+ """Base class for data sources that support direct materialization via TileStore."""
2
+
3
+ from abc import abstractmethod
4
+ from collections.abc import Callable
5
+ from typing import Any, Generic
6
+
7
+ import affine
8
+ import numpy.typing as npt
9
+ import rasterio
10
+ import rasterio.vrt
11
+ from rasterio.enums import Resampling
12
+
13
+ from rslearn.config import LayerConfig
14
+ from rslearn.data_sources.data_source import DataSource, ItemType
15
+ from rslearn.dataset import Window
16
+ from rslearn.dataset.materialize import RasterMaterializer
17
+ from rslearn.tile_stores import TileStore, TileStoreWithLayer
18
+ from rslearn.utils.geometry import PixelBounds, Projection
19
+
20
+
21
+ class DirectMaterializeDataSource(DataSource[ItemType], TileStore, Generic[ItemType]):
22
+ """Base class for data sources that support direct materialization via TileStore.
23
+
24
+ This class provides common TileStore functionality for data sources that can read
25
+ raster data on-demand from remote sources (like cloud buckets or APIs) without
26
+ first ingesting into a local tile store.
27
+
28
+ Subclasses must implement:
29
+ - get_asset_url(): Get the URL for an asset given item name and bands
30
+ - get_item_by_name(): Get an item by its name
31
+
32
+ Subclasses may optionally override:
33
+ - get_raster_bands(): By default, we assume that items have all assets. If
34
+ items may have a subset of assets, override get_raster_bands to return
35
+ the sets of bands available for that item.
36
+ - get_read_callback(): Returns a callback to transform the raster array,
37
+ for post-processing like Sentinel-2 harmonization.
38
+ """
39
+
40
+ def __init__(self, asset_bands: dict[str, list[str]]):
41
+ """Initialize the DirectMaterializeDataSource.
42
+
43
+ Args:
44
+ asset_bands: mapping from asset key to the list of band names in that asset.
45
+ """
46
+ self.asset_bands = asset_bands
47
+
48
+ def _get_asset_key_by_bands(self, bands: list[str]) -> str:
49
+ """Get the asset key based on the band names.
50
+
51
+ Args:
52
+ bands: list of band names to look up.
53
+
54
+ Returns:
55
+ the asset key that provides those bands.
56
+
57
+ Raises:
58
+ ValueError: if no asset provides those bands.
59
+ """
60
+ for asset_key, asset_bands in self.asset_bands.items():
61
+ if bands == asset_bands:
62
+ return asset_key
63
+ raise ValueError(f"no known asset with bands {bands}")
64
+
65
+ # --- Methods that subclasses must implement ---
66
+
67
+ @abstractmethod
68
+ def get_asset_url(self, item_name: str, asset_key: str) -> str:
69
+ """Get the URL to read the asset for the given item and asset key.
70
+
71
+ Args:
72
+ item_name: the name of the item.
73
+ asset_key: the key identifying which asset to get.
74
+
75
+ Returns:
76
+ the URL to read the asset from (must be readable by rasterio).
77
+ """
78
+ raise NotImplementedError
79
+
80
+ def get_item_by_name(self, name: str) -> ItemType:
81
+ """Get an item by its name.
82
+
83
+ Subclasses must implement this method, either directly or by inheriting from
84
+ a class that provides it (e.g., StacDataSource).
85
+
86
+ Args:
87
+ name: the name of the item to get.
88
+
89
+ Returns:
90
+ the item object.
91
+ """
92
+ raise NotImplementedError
93
+
94
+ # --- Optional hooks for subclasses ---
95
+
96
+ def get_read_callback(
97
+ self, item_name: str, asset_key: str
98
+ ) -> Callable[[npt.NDArray[Any]], npt.NDArray[Any]] | None:
99
+ """Return a callback to post-process raster data (e.g., harmonization).
100
+
101
+ Subclasses can override this to apply transformations to the raw raster data
102
+ after reading, such as harmonization for Sentinel-2 data.
103
+
104
+ Args:
105
+ item_name: the name of the item being read.
106
+ asset_key: the key identifying which asset is being read.
107
+
108
+ Returns:
109
+ A callback function that takes an array and returns a modified array,
110
+ or None if no post-processing is needed.
111
+ """
112
+ return None
113
+
114
+ # --- TileStore implementation ---
115
+
116
+ def is_raster_ready(
117
+ self, layer_name: str, item_name: str, bands: list[str]
118
+ ) -> bool:
119
+ """Checks if this raster has been written to the store.
120
+
121
+ For remote-backed tile stores, this always returns True since data is
122
+ read on-demand from the remote source.
123
+
124
+ Args:
125
+ layer_name: the layer name or alias.
126
+ item_name: the item.
127
+ bands: the list of bands identifying which specific raster to read.
128
+
129
+ Returns:
130
+ True, since data is always available from the remote source.
131
+ """
132
+ return True
133
+
134
+ def get_raster_bands(self, layer_name: str, item_name: str) -> list[list[str]]:
135
+ """Get the sets of bands that have been stored for the specified item.
136
+
137
+ By default, returns all band sets from the asset_bands configuration.
138
+ Subclasses can override this if not all items have all assets.
139
+
140
+ Args:
141
+ layer_name: the layer name or alias.
142
+ item_name: the item.
143
+
144
+ Returns:
145
+ a list of lists of bands available for this item.
146
+ """
147
+ return list(self.asset_bands.values())
148
+
149
+ def get_raster_bounds(
150
+ self, layer_name: str, item_name: str, bands: list[str], projection: Projection
151
+ ) -> PixelBounds:
152
+ """Get the bounds of the raster in the specified projection.
153
+
154
+ Args:
155
+ layer_name: the layer name or alias.
156
+ item_name: the item to check.
157
+ bands: the list of bands identifying which specific raster to read.
158
+ projection: the projection to get the raster's bounds in.
159
+
160
+ Returns:
161
+ the bounds of the raster in the projection.
162
+ """
163
+ item = self.get_item_by_name(item_name)
164
+ geom = item.geometry.to_projection(projection)
165
+ return (
166
+ int(geom.shp.bounds[0]),
167
+ int(geom.shp.bounds[1]),
168
+ int(geom.shp.bounds[2]),
169
+ int(geom.shp.bounds[3]),
170
+ )
171
+
172
+ def _read_raster_from_url(
173
+ self,
174
+ url: str,
175
+ projection: Projection,
176
+ bounds: PixelBounds,
177
+ resampling: Resampling,
178
+ ) -> npt.NDArray[Any]:
179
+ """Read raster data from a URL with reprojection.
180
+
181
+ This is the common logic for reading raster data from a URL and reprojecting
182
+ it to the target projection and bounds using rasterio's WarpedVRT.
183
+
184
+ Args:
185
+ url: the URL to read from (must be readable by rasterio).
186
+ projection: the projection to read in.
187
+ bounds: the bounds to read.
188
+ resampling: the resampling method to use.
189
+
190
+ Returns:
191
+ the raster data as a numpy array.
192
+ """
193
+ # Construct the transform to use for the warped dataset.
194
+ wanted_transform = affine.Affine(
195
+ projection.x_resolution,
196
+ 0,
197
+ bounds[0] * projection.x_resolution,
198
+ 0,
199
+ projection.y_resolution,
200
+ bounds[1] * projection.y_resolution,
201
+ )
202
+
203
+ with rasterio.open(url) as src:
204
+ with rasterio.vrt.WarpedVRT(
205
+ src,
206
+ crs=projection.crs,
207
+ transform=wanted_transform,
208
+ width=bounds[2] - bounds[0],
209
+ height=bounds[3] - bounds[1],
210
+ resampling=resampling,
211
+ ) as vrt:
212
+ return vrt.read()
213
+
214
+ def read_raster(
215
+ self,
216
+ layer_name: str,
217
+ item_name: str,
218
+ bands: list[str],
219
+ projection: Projection,
220
+ bounds: PixelBounds,
221
+ resampling: Resampling = Resampling.bilinear,
222
+ ) -> npt.NDArray[Any]:
223
+ """Read raster data from the store.
224
+
225
+ Args:
226
+ layer_name: the layer name or alias.
227
+ item_name: the item to read.
228
+ bands: the list of bands identifying which specific raster to read.
229
+ projection: the projection to read in.
230
+ bounds: the bounds to read.
231
+ resampling: the resampling method to use in case reprojection is needed.
232
+
233
+ Returns:
234
+ the raster data as a numpy array.
235
+ """
236
+ # Get the asset key for the requested bands
237
+ asset_key = self._get_asset_key_by_bands(bands)
238
+
239
+ # Get the asset URL from the subclass
240
+ asset_url = self.get_asset_url(item_name, asset_key)
241
+
242
+ # Read the raster data
243
+ raw_data = self._read_raster_from_url(asset_url, projection, bounds, resampling)
244
+
245
+ # Apply any post-processing callback
246
+ callback = self.get_read_callback(item_name, asset_key)
247
+ if callback is not None:
248
+ raw_data = callback(raw_data)
249
+
250
+ return raw_data
251
+
252
+ def materialize(
253
+ self,
254
+ window: Window,
255
+ item_groups: list[list[ItemType]],
256
+ layer_name: str,
257
+ layer_cfg: LayerConfig,
258
+ ) -> None:
259
+ """Materialize data for the window.
260
+
261
+ Args:
262
+ window: the window to materialize.
263
+ item_groups: the items from get_items.
264
+ layer_name: the name of this layer.
265
+ layer_cfg: the config of this layer.
266
+ """
267
+ RasterMaterializer().materialize(
268
+ TileStoreWithLayer(self, layer_name),
269
+ window,
270
+ layer_name,
271
+ layer_cfg,
272
+ item_groups,
273
+ )
274
+
275
+ # --- TileStore methods that are not supported ---
276
+
277
+ def write_raster(
278
+ self,
279
+ layer_name: str,
280
+ item_name: str,
281
+ bands: list[str],
282
+ projection: Projection,
283
+ bounds: PixelBounds,
284
+ array: npt.NDArray[Any],
285
+ ) -> None:
286
+ """Write raster data to the store.
287
+
288
+ This is not supported for remote-backed tile stores.
289
+ """
290
+ raise NotImplementedError(
291
+ "DirectMaterializeDataSource does not support writing raster data"
292
+ )
293
+
294
+ def write_raster_file(
295
+ self, layer_name: str, item_name: str, bands: list[str], fname: Any
296
+ ) -> None:
297
+ """Write raster data to the store.
298
+
299
+ This is not supported for remote-backed tile stores.
300
+ """
301
+ raise NotImplementedError(
302
+ "DirectMaterializeDataSource does not support writing raster files"
303
+ )
304
+
305
+ def is_vector_ready(self, layer_name: str, item_name: str) -> bool:
306
+ """Checks if this vector item has been written to the store.
307
+
308
+ This is not supported for remote-backed tile stores.
309
+ """
310
+ raise NotImplementedError(
311
+ "DirectMaterializeDataSource does not support vector operations"
312
+ )
313
+
314
+ def read_vector(
315
+ self,
316
+ layer_name: str,
317
+ item_name: str,
318
+ projection: Projection,
319
+ bounds: PixelBounds,
320
+ ) -> Any:
321
+ """Read vector data from the store.
322
+
323
+ This is not supported for remote-backed tile stores.
324
+ """
325
+ raise NotImplementedError(
326
+ "DirectMaterializeDataSource does not support vector operations"
327
+ )
328
+
329
+ def write_vector(self, layer_name: str, item_name: str, features: Any) -> None:
330
+ """Write vector data to the store.
331
+
332
+ This is not supported for remote-backed tile stores.
333
+ """
334
+ raise NotImplementedError(
335
+ "DirectMaterializeDataSource does not support vector operations"
336
+ )