rslearn 0.0.24__py3-none-any.whl → 0.0.26__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (42) hide show
  1. rslearn/config/dataset.py +30 -23
  2. rslearn/data_sources/local_files.py +2 -2
  3. rslearn/data_sources/utils.py +204 -64
  4. rslearn/dataset/materialize.py +5 -1
  5. rslearn/models/clay/clay.py +3 -3
  6. rslearn/models/detr/detr.py +4 -1
  7. rslearn/models/dinov3.py +0 -1
  8. rslearn/models/olmoearth_pretrain/model.py +3 -1
  9. rslearn/models/pooling_decoder.py +1 -1
  10. rslearn/models/prithvi.py +0 -1
  11. rslearn/models/simple_time_series.py +97 -35
  12. rslearn/train/data_module.py +5 -0
  13. rslearn/train/dataset.py +186 -49
  14. rslearn/train/dataset_index.py +156 -0
  15. rslearn/train/model_context.py +16 -0
  16. rslearn/train/tasks/detection.py +1 -18
  17. rslearn/train/tasks/per_pixel_regression.py +13 -13
  18. rslearn/train/tasks/segmentation.py +27 -32
  19. rslearn/train/transforms/concatenate.py +17 -27
  20. rslearn/train/transforms/crop.py +8 -19
  21. rslearn/train/transforms/flip.py +4 -10
  22. rslearn/train/transforms/mask.py +9 -15
  23. rslearn/train/transforms/normalize.py +31 -82
  24. rslearn/train/transforms/pad.py +7 -13
  25. rslearn/train/transforms/resize.py +5 -22
  26. rslearn/train/transforms/select_bands.py +16 -36
  27. rslearn/train/transforms/sentinel1.py +4 -16
  28. rslearn/utils/colors.py +20 -0
  29. rslearn/vis/__init__.py +1 -0
  30. rslearn/vis/normalization.py +127 -0
  31. rslearn/vis/render_raster_label.py +96 -0
  32. rslearn/vis/render_sensor_image.py +27 -0
  33. rslearn/vis/render_vector_label.py +439 -0
  34. rslearn/vis/utils.py +99 -0
  35. rslearn/vis/vis_server.py +574 -0
  36. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/METADATA +14 -1
  37. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/RECORD +42 -33
  38. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/WHEEL +1 -1
  39. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/entry_points.txt +0 -0
  40. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/licenses/LICENSE +0 -0
  41. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/licenses/NOTICE +0 -0
  42. {rslearn-0.0.24.dist-info → rslearn-0.0.26.dist-info}/top_level.txt +0 -0
@@ -7,7 +7,7 @@ rslearn/main.py,sha256=rrDEoa0xCkDflH-HN2SaHt0hb-rLfXWP-kJKISZAe9s,28714
7
7
  rslearn/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  rslearn/template_params.py,sha256=Vop0Ha-S44ctCa9lvSZRjrMETznJZlR5y_gJrVIwrPg,791
9
9
  rslearn/config/__init__.py,sha256=n1qpZ0ImshTtLYl5mC73BORYyUcjPJyHiyZkqUY1hiY,474
10
- rslearn/config/dataset.py,sha256=AJlS-41B70E2Y4ST545J2P3Kz83jrFCRdkZecKZ7sQY,23255
10
+ rslearn/config/dataset.py,sha256=abxIUFDAYmCd4pzGnkPnW_pYyws1yhXFWJ5HnVU4WHo,23942
11
11
  rslearn/data_sources/__init__.py,sha256=zzuZUxrlEIw84YpD2I0HJvCoLDB29LbmnKTXiJykzGU,660
12
12
  rslearn/data_sources/aws_landsat.py,sha256=0ZQtmd2NCnvLy4vFSB1AlmoguJbiQB_e_T4eS1tnW9Q,20443
13
13
  rslearn/data_sources/aws_open_data.py,sha256=rDE9VZXXA669fD9jfOizxpN41lmvvJc-skZz3LettJU,29197
@@ -21,7 +21,7 @@ rslearn/data_sources/earthdata_srtm.py,sha256=bwo8e_y9fFPliZ411tTWOiAUlEcb3AWBke
21
21
  rslearn/data_sources/eurocrops.py,sha256=FQqdBcNl43fArq6rd_-iffVJyliIDbB0lIHvNdmtQBU,8663
22
22
  rslearn/data_sources/gcp_public_data.py,sha256=qXWFQ4y0cCVBla68H4bpolG0FKW9_vLyTlA-0mJc1Y0,37349
23
23
  rslearn/data_sources/google_earth_engine.py,sha256=xdoSDjSVp6lPVPMv4UJZ6BRUozUA2hFbSTl1707TBoM,23523
24
- rslearn/data_sources/local_files.py,sha256=mo5W_BxBl89EPTIHNDEpXM6qBjrP225KK0PcmNgvJZQ,19090
24
+ rslearn/data_sources/local_files.py,sha256=xg3IqMVXi6s_Kpnp91QGF7hSiTw4y-vgoe2bQNglWcs,19064
25
25
  rslearn/data_sources/openstreetmap.py,sha256=TzZfouc2Z4_xjx2v_uv7aPn4tVW3flRVQN4qBfl507E,18161
26
26
  rslearn/data_sources/planet.py,sha256=6FWQ0bl1k3jwvwp4EVGi2qs3OD1QhnKOKP36mN4HELI,9446
27
27
  rslearn/data_sources/planet_basemap.py,sha256=e9R6FlagJjg8Z6Rc1dC6zK3xMkCohz8eohXqXmd29xg,9670
@@ -30,7 +30,7 @@ rslearn/data_sources/soilgrids.py,sha256=rwO4goFPQ7lx420FvYBHYFXdihnZqn_-IjdqtxQ
30
30
  rslearn/data_sources/stac.py,sha256=Xty1JDueAAonNVLRo8vfNBhlHrVLjhmZ-uRBYbrGvtA,10753
31
31
  rslearn/data_sources/usda_cdl.py,sha256=_WvxZkm0fbXfniRs6NT8iVCbTTmVPflDhsFT2ci6_Dk,6879
32
32
  rslearn/data_sources/usgs_landsat.py,sha256=kPOb3hsZe5-guUcFZZkwzcRpYZ3Zo7Bk4E829q_xiyU,18516
33
- rslearn/data_sources/utils.py,sha256=v_90ALOuts7RHNcx-j8o-aQ_aFjh8ZhXrmsaa9uEGDA,11651
33
+ rslearn/data_sources/utils.py,sha256=NOC0qOyYVS6f8EUrSeP4mH0XZbSrtTLV-gKGbCC6ccg,16586
34
34
  rslearn/data_sources/vector_source.py,sha256=NCa7CxIrGKe9yRT0NyyFKFQboDGDZ1h7663PV9OfMOM,44
35
35
  rslearn/data_sources/worldcereal.py,sha256=rGGxwJAC3pAASVBQoUhwS3qL-qcmF6W__Tb53qWCEmE,21501
36
36
  rslearn/data_sources/worldcover.py,sha256=n7gi-JRytxkvkUhKT--dVziMcWSSyMbZA7ZCzLT2MJY,6037
@@ -41,7 +41,7 @@ rslearn/dataset/add_windows.py,sha256=NwIvku6zxCJ9kgVFa5phJc0Gj1Y1bCzh6TLb9nEGl0
41
41
  rslearn/dataset/dataset.py,sha256=YyGFy_VGUaOPfrEQqBl0Fp5JAsH3KNCqo6ZTu3TW4yY,3223
42
42
  rslearn/dataset/handler_summaries.py,sha256=wI99RDk5erCWkzl1A7Uc4chatQ9KWIr4F_0Hxr9Co6s,2607
43
43
  rslearn/dataset/manage.py,sha256=-lGSIgk6Z7-verF_POwe4n5w9eSpgyt4nEOcOj382rc,18971
44
- rslearn/dataset/materialize.py,sha256=o05OeLk_wWEOsw15oc5yjpD4J-twGCTfXAtxyAQsQ9I,20974
44
+ rslearn/dataset/materialize.py,sha256=VoL5Qf5pGcQV4QMlO5vrcu7w0Sl1NdIRLUVk0kSCMOY,21225
45
45
  rslearn/dataset/remap.py,sha256=6MaImsY02GNACpvRM81RvWmjZWRfAHxo_R3Ox6XLF6A,2723
46
46
  rslearn/dataset/window.py,sha256=X4q8YzcSOTtwKxCPf71QLMoyKUtYMSnZu0kPnmVSUx4,10644
47
47
  rslearn/dataset/storage/__init__.py,sha256=R50AVV5LH2g7ol0-jyvGcB390VsclXGbJXz4fmkn9as,52
@@ -55,7 +55,7 @@ rslearn/models/component.py,sha256=uikFDzPYaW_LSXsrSsES1aup4IDIuWHsitWLpKgF7zU,3
55
55
  rslearn/models/concatenate_features.py,sha256=Attemr5KurxlOojpclD0Pd5Cu2KHpNdpXe8jCSjpJ9U,3818
56
56
  rslearn/models/conv.py,sha256=dEAAfhPo4bFlZPSAQjzqZTpP-hdJ394TytYssVK-fDA,2001
57
57
  rslearn/models/croma.py,sha256=BcKV4-D4uira6f9zvW73aslF_XitAhObnyrE_3iTcTs,11008
58
- rslearn/models/dinov3.py,sha256=-hyhkxbjns66s9xKT3bPU1dTzanPPc7qJ0dNAwV19-E,6497
58
+ rslearn/models/dinov3.py,sha256=Q9X7VTwzjllLSEvc235C9BY_jMnIoSybsiOkeA58uHo,6472
59
59
  rslearn/models/faster_rcnn.py,sha256=yOipLPmVHbadvYCR9xfCYgmkU9Mot6fgDK-kKicVTlo,8685
60
60
  rslearn/models/feature_center_crop.py,sha256=_Mu3E4iJLBug9I4ZIBIpB_VJo-xGterHmhtIFGaHR34,1808
61
61
  rslearn/models/fpn.py,sha256=qm7nKMgsZrCoAdz8ASmNKU2nvZ6USm5CedMfy_w_gwE,2079
@@ -64,12 +64,12 @@ rslearn/models/molmo.py,sha256=lXnevwTCNyc1XcnJUB5_pK1G2AJGYMvQYU21mZFf5u0,2246
64
64
  rslearn/models/multitask.py,sha256=bpFxvtFowRyT-tvRSdY7AKbEx_i1y7sToEzZgTMcF4s,16264
65
65
  rslearn/models/panopticon.py,sha256=lXXBusXZfwdf10rBVPAQSbaGOMyKCDeEBmXShzvfMoU,5947
66
66
  rslearn/models/pick_features.py,sha256=fI9SYubqpCWOAHYGVUSg5sgD31dsnAR9mNuLmqfIeL8,1110
67
- rslearn/models/pooling_decoder.py,sha256=zrMH6wUExCa-XD1q9CIFD2ScgiasapyJs9plhcUxhIs,4767
68
- rslearn/models/prithvi.py,sha256=J45eC1pd4l5AGlr19Qjrjrw5PPwvYE9bNM5qCFoznmg,40390
67
+ rslearn/models/pooling_decoder.py,sha256=tsRYihOPxhKUEnzbVueZ9Vr2pNXkt4fAkrbXC9Hftxw,4773
68
+ rslearn/models/prithvi.py,sha256=YTc26hBDJd6e5lky9Vqkz9x6tA2ZiY-GH2X3EFhJ0Zs,40347
69
69
  rslearn/models/resize_features.py,sha256=U7ZIVwwToJJnwchFG59wLWWP9eikHDB_1c4OtpubxHU,1693
70
70
  rslearn/models/sam2_enc.py,sha256=WZOtlp0FjaVztW4gEVIcsFQdKArS9iblRODP0b6Oc8M,3641
71
71
  rslearn/models/satlaspretrain.py,sha256=2R48ulbtd44Qy2FYJCkllE2Wk35eZxkc79ruSgkmgcQ,3384
72
- rslearn/models/simple_time_series.py,sha256=farQwt_nJVyAbgaM2UzdyqpDuIO0SLmHr9e9EVPSWCE,14678
72
+ rslearn/models/simple_time_series.py,sha256=CvJYMIC0cw26TnnwzJn5YTywi-NYEnGRzNb2a0bMf4E,18045
73
73
  rslearn/models/singletask.py,sha256=9DM9a9-Mv3vVQqRhPOIXG2HHuVqVa_zuvgafeeYh4r0,1903
74
74
  rslearn/models/ssl4eo_s12.py,sha256=DOlpIj6NfjIlWyJ27m9Xo8TMlovBDstFq0ARnmAJ6qY,3919
75
75
  rslearn/models/swin.py,sha256=Xqr3SswbHP6IhwT2atZMAPF2TUzQqfxvihksb8WSeRo,6065
@@ -79,11 +79,11 @@ rslearn/models/trunk.py,sha256=1GCH9iyLIytoHVntLSMwfH9duQpe1W4DPmOClLpPKjc,4778
79
79
  rslearn/models/unet.py,sha256=HuuINvkB1-5w9ZOTXZCWkVxJShruPKCol8pKeA3zw_4,7251
80
80
  rslearn/models/upsample.py,sha256=JvfnktT6Dgcql3cSoySWXZ7dmkDkfpRo6vDkpz8KFAQ,1326
81
81
  rslearn/models/use_croma.py,sha256=OSBqMuLp-pDtqPNWAVBfmX4wckmyYCKtUDdGCjJk_K8,17966
82
- rslearn/models/clay/clay.py,sha256=q2vcqyRFhCJvzLHwHLxHfWGyvVt819Xmk7TzuhXdPFI,8478
82
+ rslearn/models/clay/clay.py,sha256=L8pdT3v6cH6H8Kz_JB_851vpZF1Sj8jHz68MkiZbd44,8474
83
83
  rslearn/models/clay/configs/metadata.yaml,sha256=rZTFh4Yb9htEfbQNOPl4HTbFogEhzwIRqFzG-1uT01Y,4652
84
84
  rslearn/models/detr/__init__.py,sha256=GGAnTIhyuvl34IRrJ_4gXjm_01OlM5rbQQ3c3TGfbK8,84
85
85
  rslearn/models/detr/box_ops.py,sha256=ORCF6EwMpMBB_VgQT05SjR47dCR2rN2gPhL_gsuUWJs,3236
86
- rslearn/models/detr/detr.py,sha256=ZiYNwJ3zWqZdvvzc0CXDzdvcwSCO_wSOCWlChemTsX8,19178
86
+ rslearn/models/detr/detr.py,sha256=dmc9YEkQk5WyfQTQI47sv5yDxzJoeZFW_j6F03OkvLA,19236
87
87
  rslearn/models/detr/matcher.py,sha256=4h_xFlgTMEJvJ6aLZUamrKZ72L5hDk9wPglNZ81JBg8,4533
88
88
  rslearn/models/detr/position_encoding.py,sha256=8FFoBT-Jtgqk7D4qDBTbVLOeAdmjdjtJTC608TaX6yY,3869
89
89
  rslearn/models/detr/transformer.py,sha256=aK4HO7AkCZn7xGHP3Iq91w2iFPVshugOILYAjVjroCw,13971
@@ -92,7 +92,7 @@ rslearn/models/galileo/__init__.py,sha256=QQa0C29nuPRva0KtGiMHQ2ZB02n9SSwj_wqTKP
92
92
  rslearn/models/galileo/galileo.py,sha256=CTEuYGPmxhVv8YsZzFm0BeVW2yvdXp7j1GifT53EDLU,22525
93
93
  rslearn/models/galileo/single_file_galileo.py,sha256=l5tlmmdr2eieHNH-M7rVIvcptkv0Fuk3vKXFW691ezA,56143
94
94
  rslearn/models/olmoearth_pretrain/__init__.py,sha256=AjRvbjBdadCdPh-EdvySH76sVAQ8NGQaJt11Tsn1D5I,36
95
- rslearn/models/olmoearth_pretrain/model.py,sha256=Mfq7mv438zhOHBsU2jT19NMslNlslWm1-sCE06wVlbo,17829
95
+ rslearn/models/olmoearth_pretrain/model.py,sha256=wFWiNX4vyu49cYtjgb0VQMEZBk1LnaIEhTJnvzHduMY,17902
96
96
  rslearn/models/olmoearth_pretrain/norm.py,sha256=pV-u9eBGxfiSFDMEipDwyTgKGhN1G5kSoOC5CBE1m-0,3336
97
97
  rslearn/models/panopticon_data/sensors/drone.yaml,sha256=xqWS-_QMtJyRoWXJm-igoSur9hAmCFdqkPin8DT5qpw,431
98
98
  rslearn/models/panopticon_data/sensors/enmap.yaml,sha256=b2j6bSgYR2yKR9DRm3SPIzSVYlHf51ny_p-1B4B9sB4,13431
@@ -114,10 +114,11 @@ rslearn/tile_stores/default.py,sha256=PYaDNvBxhJTDKJGw0EjDTSE1OKajR7_iJpMbOjj-mE
114
114
  rslearn/tile_stores/tile_store.py,sha256=9AeYduDYPp_Ia2NMlq6osptpz_AFGIOQcLJrqZ_m-z0,10469
115
115
  rslearn/train/__init__.py,sha256=fnJyY4aHs5zQqbDKSfXsJZXY_M9fbTsf7dRYaPwZr2M,30
116
116
  rslearn/train/all_patches_dataset.py,sha256=EVoYCmS3g4OfWPt5CZzwHVx9isbnWh5HIGA0RBqPFeA,21145
117
- rslearn/train/data_module.py,sha256=pgut8rEWHIieZ7RR8dUvhtlNqk0egEdznYF3tCvqdHg,23552
118
- rslearn/train/dataset.py,sha256=Jy1jU3GigfHaFeX9rbveX9bqy2Pd5Wh_vquD6_aFnS8,36522
117
+ rslearn/train/data_module.py,sha256=gar7RsyurdBLtbd1y8llkbMrRU7_RTX2tonp45qPIns,23784
118
+ rslearn/train/dataset.py,sha256=a4ehgAiPbEWJQ8T8JJuhfF62CN9KKr6iOW67U6WLPmY,41380
119
+ rslearn/train/dataset_index.py,sha256=S5iXhQga5gnnkDqThXXlyjIwkJBPVWiUfDPx3iVs-pw,5306
119
120
  rslearn/train/lightning_module.py,sha256=V4YoEg9PrwrgG4q9Dmv_9OBrSIK-SRPzjWtZRIfmPFg,15366
120
- rslearn/train/model_context.py,sha256=6o66BY6okBK-D5e0JUwPd7fxD_XehVaqxdQkJJKmQ3E,2580
121
+ rslearn/train/model_context.py,sha256=FCHPHLrQ57RjJpsWi3u1HV0tZc-gf0tzvx4lpdEf6gU,3204
121
122
  rslearn/train/optimizer.py,sha256=EKSqkmERalDA0bF32Gey7n6z69KLyaUWKlRsGJfKBmE,927
122
123
  rslearn/train/prediction_writer.py,sha256=rW0BUaYT_F1QqmpnQlbrLiLya1iBfC5Pb78G_NlF-vA,15956
123
124
  rslearn/train/scheduler.py,sha256=Yyq2fMHH08OyGt9qWD7iLc92XNIBbZHLtzlLR-f732s,2728
@@ -128,26 +129,27 @@ rslearn/train/callbacks/gradients.py,sha256=4YqCf0tBb6E5FnyFYbveXfQFlgNPyxIXb2FC
128
129
  rslearn/train/callbacks/peft.py,sha256=wEOKsS3RhsRaZTXn_Kz2wdsZdIiIaZPdCJWtdJBurT8,4156
129
130
  rslearn/train/tasks/__init__.py,sha256=dag1u72x1-me6y0YcOubUo5MYZ0Tjf6-dOir9UeFNMs,75
130
131
  rslearn/train/tasks/classification.py,sha256=72ZBcbunMsdPYQN53S-4GfiLIDrr1X3Hni07dBJ0pu0,14261
131
- rslearn/train/tasks/detection.py,sha256=B0tfB7UGIbRtjnye3PhzLmfeQ4X7ImO3A-_LeNhBA54,21988
132
+ rslearn/train/tasks/detection.py,sha256=8nxa90ht0-xlcO_gsI-zR02nL82-wJXq4LpXNFvg5Lw,21730
132
133
  rslearn/train/tasks/embedding.py,sha256=NdJEAaDWlWYzvOBVf7eIHfFOzqTgavfFH1J1gMbAMVo,3891
133
134
  rslearn/train/tasks/multi_task.py,sha256=32hvwyVsHqt7N_M3zXsTErK1K7-0-BPHzt7iGNehyaI,6314
134
- rslearn/train/tasks/per_pixel_regression.py,sha256=Clrod6LQGjgNC0IAR4HLY7eCGWMHj2mk4d4moZCl4Qc,10209
135
+ rslearn/train/tasks/per_pixel_regression.py,sha256=njShN-U9fx3SPcCxGgbDlZAp3DT_GlTt0BRZS416gnw,10387
135
136
  rslearn/train/tasks/regression.py,sha256=bVS_ApZSpbL0NaaM8Mu5Bsu4SBUyLpVtrPslulvvZHs,12695
136
- rslearn/train/tasks/segmentation.py,sha256=LZeuveHhMQsjNOQfMcwqSI4Ux3k9zfa58A2eZHSif8Y,29391
137
+ rslearn/train/tasks/segmentation.py,sha256=dn1yo1dIArKvW9Giw8-LZyIZ87q76eslL0mk58GyApo,29663
137
138
  rslearn/train/tasks/task.py,sha256=nMPunl9OlnOimr48saeTnwKMQ7Du4syGrwNKVQq4FL4,4110
138
139
  rslearn/train/transforms/__init__.py,sha256=BkCAzm4f-8TEhPIuyvCj7eJGh36aMkZFYlq-H_jkSvY,778
139
- rslearn/train/transforms/concatenate.py,sha256=hVVBaxIdk1Cx8JHPirj54TGpbWAJx5y_xD7k1rmGmT0,3166
140
- rslearn/train/transforms/crop.py,sha256=d5mrC8k7g4zz9J0RJrjz_pS1q06HfhUdzH6dUlL3Wqc,4668
141
- rslearn/train/transforms/flip.py,sha256=KjMoZ4eFbu8119IlUDU4BBK06U76WjWEFmvqr9oiOMk,3836
142
- rslearn/train/transforms/mask.py,sha256=KMz-KeC4cuahA8CdRWXK9omeMfwheEM8avhj6yXGmm8,2407
143
- rslearn/train/transforms/normalize.py,sha256=H9hAYDVA__v0IpqC-7q_PyZ05qG6YTsORVQ7DTiLP6o,6382
144
- rslearn/train/transforms/pad.py,sha256=5Mks7Vp8_hRlsRjw9PERsQ7mVVKTAfg7Q6jUguXMhGY,5109
145
- rslearn/train/transforms/resize.py,sha256=AeMuhMlG-G7NRIMNucPESethohGe1ZKew-EVK2HzeSM,2636
146
- rslearn/train/transforms/select_bands.py,sha256=vqerph1UUS9i2G9xwyH6_5AoOuH9tLER8zppR4XiZs4,2802
147
- rslearn/train/transforms/sentinel1.py,sha256=PMMFo4RysMpZS7PBZ3yHGzJ5JADPZAOZpCbGhqL5vsc,2384
140
+ rslearn/train/transforms/concatenate.py,sha256=S8f1svzwb5UmeAgzXe4Af_hFvt5o0tQctIE6t3QYuPI,2625
141
+ rslearn/train/transforms/crop.py,sha256=_3Ca1KcIcZDD9x3WpFWIN54GrGosgg9b0xJiCboIOzs,4299
142
+ rslearn/train/transforms/flip.py,sha256=ptdbbelMWy6uI3vfXWY7flKGScGmv1hvWCJcAWnvuEo,3555
143
+ rslearn/train/transforms/mask.py,sha256=UnUeQp9HNab18EUgWJKieeMU0V7Fvgmoqg15INIkIeU,2348
144
+ rslearn/train/transforms/normalize.py,sha256=HXiVHBUxOsVYt9VeEs7KbfPFJxMxz_lh_RczLUcKlEw,3687
145
+ rslearn/train/transforms/pad.py,sha256=N2m4ni_TgeAmpzL9xwD8Qedmq7HbnundvBRMIp1TmAY,4817
146
+ rslearn/train/transforms/resize.py,sha256=LPXCD6NS8Xi1uPOtHxRWtT5CAkpEzsVafHkHIQ6PEO8,1959
147
+ rslearn/train/transforms/select_bands.py,sha256=owxMOvWEp8lRZhj6pQ1qFYebKZCQJZZCW8sBrK_T9-I,1868
148
+ rslearn/train/transforms/sentinel1.py,sha256=zYwT3amv1M7BYZIfkIX3J2Rzh161d-ngCqp3ypO9gBE,2011
148
149
  rslearn/train/transforms/transform.py,sha256=n1Qzqix2dVvej-Q7iPzHeOQbqH79IBlvqPoymxhNVpE,4446
149
150
  rslearn/utils/__init__.py,sha256=GNvdTUmXakiEMnLdje7k1fe5aC7SFVqP757kbpN6Fzw,558
150
151
  rslearn/utils/array.py,sha256=RC7ygtPnQwU6Lb9kwORvNxatJcaJ76JPsykQvndAfes,2444
152
+ rslearn/utils/colors.py,sha256=ELY9_buH06TOVPLrDAyf2S0G--ZiOxnnP8Ujim6_3ig,369
151
153
  rslearn/utils/feature.py,sha256=lsg0WThZDJzo1mrbaL04dXYI5G3x-n5FG9aEjj7uUaI,1649
152
154
  rslearn/utils/fsspec.py,sha256=h3fER_bkewzR9liEAULXguTIvXLUXA17pC_yZoWN5Tk,5902
153
155
  rslearn/utils/geometry.py,sha256=S60uEvCQ3SyR2-3TJ1yUucFmGRM_rcoIT_gH83PN3RE,21485
@@ -162,10 +164,17 @@ rslearn/utils/sqlite_index.py,sha256=YGOJi66544e6JNtfSft6YIlHklFdSJO2duxQ4TJ2iu4
162
164
  rslearn/utils/stac.py,sha256=c8NwOCKWvUwA-FSKlxZn-t7RZYweuye53OufT0bAK4A,5996
163
165
  rslearn/utils/time.py,sha256=2ilSLG94_sxLP3y5RSV5L5CG8CoND_dbdzYEHVtN-I8,387
164
166
  rslearn/utils/vector_format.py,sha256=4ZDYpfBLLxguJkiIaavTagiQK2Sv4Rz9NumbHlq-3Lw,15041
165
- rslearn-0.0.24.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
166
- rslearn-0.0.24.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
167
- rslearn-0.0.24.dist-info/METADATA,sha256=gV5mgeYPYiKWrEu7D8acOubWvg76Nn_4ICvlD7iTpcs,37936
168
- rslearn-0.0.24.dist-info/WHEEL,sha256=qELbo2s1Yzl39ZmrAibXA2jjPLUYfnVhUNTlyF1rq0Y,92
169
- rslearn-0.0.24.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
170
- rslearn-0.0.24.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
171
- rslearn-0.0.24.dist-info/RECORD,,
167
+ rslearn/vis/__init__.py,sha256=1tqz1zuWorous4UqFB_x2kvzIbywX-qqHFYA37tsDFc,49
168
+ rslearn/vis/normalization.py,sha256=Dv_H_XOUwF_LEQHzIhBDHYn9aBTjoPWoPtXBnKSCowQ,3678
169
+ rslearn/vis/render_raster_label.py,sha256=3ZN6o0taymENKeBCkB9BtesmdEOi2_H2ziQ79BbuDI4,3104
170
+ rslearn/vis/render_sensor_image.py,sha256=D0ynK6ABPV046970lIKwF98klpSCtrsUvZTwtZaNQeI,767
171
+ rslearn/vis/render_vector_label.py,sha256=ncwgRKCYCJCK1-wTpjgksOiDDebku37LpAyq6wsg4jg,14939
172
+ rslearn/vis/utils.py,sha256=Zop3dEmyaXUYhPiGdYzrTO8BRXWscP2dEZy2myQUnNk,2765
173
+ rslearn/vis/vis_server.py,sha256=kIGnhTy-yfu5lBOVCoo8VVG259i974JPszudCePbzfI,20157
174
+ rslearn-0.0.26.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
175
+ rslearn-0.0.26.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
176
+ rslearn-0.0.26.dist-info/METADATA,sha256=ZkFWiVzrI_4J1qtC6zSF1dxGDtW4a8wPKdYaZbmGsoQ,38576
177
+ rslearn-0.0.26.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
178
+ rslearn-0.0.26.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
179
+ rslearn-0.0.26.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
180
+ rslearn-0.0.26.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (80.10.1)
2
+ Generator: setuptools (80.10.2)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5