rslearn 0.0.19__py3-none-any.whl → 0.0.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (45) hide show
  1. rslearn/models/anysat.py +35 -33
  2. rslearn/models/clip.py +5 -2
  3. rslearn/models/croma.py +11 -3
  4. rslearn/models/dinov3.py +2 -1
  5. rslearn/models/faster_rcnn.py +2 -1
  6. rslearn/models/galileo/galileo.py +58 -31
  7. rslearn/models/module_wrapper.py +6 -1
  8. rslearn/models/molmo.py +4 -2
  9. rslearn/models/olmoearth_pretrain/model.py +93 -29
  10. rslearn/models/olmoearth_pretrain/norm.py +5 -3
  11. rslearn/models/panopticon.py +3 -1
  12. rslearn/models/presto/presto.py +45 -15
  13. rslearn/models/prithvi.py +9 -7
  14. rslearn/models/sam2_enc.py +3 -1
  15. rslearn/models/satlaspretrain.py +4 -1
  16. rslearn/models/simple_time_series.py +36 -16
  17. rslearn/models/ssl4eo_s12.py +19 -14
  18. rslearn/models/swin.py +3 -1
  19. rslearn/models/terramind.py +5 -4
  20. rslearn/train/all_patches_dataset.py +34 -14
  21. rslearn/train/dataset.py +66 -10
  22. rslearn/train/model_context.py +35 -1
  23. rslearn/train/tasks/classification.py +8 -2
  24. rslearn/train/tasks/detection.py +3 -2
  25. rslearn/train/tasks/multi_task.py +2 -3
  26. rslearn/train/tasks/per_pixel_regression.py +14 -5
  27. rslearn/train/tasks/regression.py +8 -2
  28. rslearn/train/tasks/segmentation.py +13 -4
  29. rslearn/train/tasks/task.py +2 -2
  30. rslearn/train/transforms/concatenate.py +45 -5
  31. rslearn/train/transforms/crop.py +22 -8
  32. rslearn/train/transforms/flip.py +13 -5
  33. rslearn/train/transforms/mask.py +11 -2
  34. rslearn/train/transforms/normalize.py +46 -15
  35. rslearn/train/transforms/pad.py +15 -3
  36. rslearn/train/transforms/resize.py +18 -9
  37. rslearn/train/transforms/select_bands.py +11 -2
  38. rslearn/train/transforms/sentinel1.py +18 -3
  39. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/METADATA +1 -1
  40. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/RECORD +45 -45
  41. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/WHEEL +0 -0
  42. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/entry_points.txt +0 -0
  43. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/licenses/LICENSE +0 -0
  44. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/licenses/NOTICE +0 -0
  45. {rslearn-0.0.19.dist-info → rslearn-0.0.20.dist-info}/top_level.txt +0 -0
@@ -4,6 +4,8 @@ from typing import Any
4
4
 
5
5
  import torch
6
6
 
7
+ from rslearn.train.model_context import RasterImage
8
+
7
9
  from .transform import Transform
8
10
 
9
11
 
@@ -31,18 +33,31 @@ class Sentinel1ToDecibels(Transform):
31
33
  self.from_decibels = from_decibels
32
34
  self.epsilon = epsilon
33
35
 
34
- def apply_image(self, image: torch.Tensor) -> torch.Tensor:
36
+ def apply_image(
37
+ self, image: torch.Tensor | RasterImage
38
+ ) -> torch.Tensor | RasterImage:
35
39
  """Normalize the specified image.
36
40
 
37
41
  Args:
38
42
  image: the image to transform.
39
43
  """
44
+ if isinstance(image, torch.Tensor):
45
+ image_to_process = image
46
+ else:
47
+ image_to_process = image.image
40
48
  if self.from_decibels:
41
49
  # Decibels to linear scale.
42
- return torch.pow(10.0, image / 10.0)
50
+ image_to_process = torch.pow(10.0, image_to_process / 10.0)
43
51
  else:
44
52
  # Linear scale to decibels.
45
- return 10 * torch.log10(torch.clamp(image, min=self.epsilon))
53
+ image_to_process = 10 * torch.log10(
54
+ torch.clamp(image_to_process, min=self.epsilon)
55
+ )
56
+ if isinstance(image, torch.Tensor):
57
+ return image_to_process
58
+ else:
59
+ image.image = image_to_process
60
+ return image
46
61
 
47
62
  def forward(
48
63
  self, input_dict: dict[str, Any], target_dict: dict[str, Any]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: rslearn
3
- Version: 0.0.19
3
+ Version: 0.0.20
4
4
  Summary: A library for developing remote sensing datasets and models
5
5
  Author: OlmoEarth Team
6
6
  License: Apache License
@@ -45,33 +45,33 @@ rslearn/dataset/storage/__init__.py,sha256=R50AVV5LH2g7ol0-jyvGcB390VsclXGbJXz4f
45
45
  rslearn/dataset/storage/file.py,sha256=g9HZ3CD4QcgyVNsBaXhjIKQgDOAeZ4R08sJ7ntx4wo8,6815
46
46
  rslearn/dataset/storage/storage.py,sha256=DxZ7iwV938PiLwdQzb5EXSb4Mj8bRGmOTmA9fzq_Ge8,4840
47
47
  rslearn/models/__init__.py,sha256=_vWoF9d2Slah8-6XhYhdU4SRsy_CNxXjCGQTD2yvu3Q,22
48
- rslearn/models/anysat.py,sha256=-1uE2kSfR34lPld5AXEuU8KCfVIa3YAPqs-filxNiWY,8026
48
+ rslearn/models/anysat.py,sha256=nzk6hB83ltNFNXYRNA1rTvq2AQcAhwyvgBaZui1M37o,8107
49
49
  rslearn/models/attention_pooling.py,sha256=VeRoBLk0326Kpj780Pw8EiSFMU5_K9qg6HQO-B2r2PU,7044
50
- rslearn/models/clip.py,sha256=TgCPA7IEsnONFbWQxQlLguvAXzwp_Y90-Vk9MZnwXak,2337
50
+ rslearn/models/clip.py,sha256=QG1oUFqcVuNEhx7BNfJ1FnxIOMNUwRNBwXCe3CR6wFI,2415
51
51
  rslearn/models/component.py,sha256=uikFDzPYaW_LSXsrSsES1aup4IDIuWHsitWLpKgF7zU,3432
52
52
  rslearn/models/concatenate_features.py,sha256=Attemr5KurxlOojpclD0Pd5Cu2KHpNdpXe8jCSjpJ9U,3818
53
53
  rslearn/models/conv.py,sha256=dEAAfhPo4bFlZPSAQjzqZTpP-hdJ394TytYssVK-fDA,2001
54
- rslearn/models/croma.py,sha256=x8bTFOJB-yR9PydSEjCeV9WnzpalT9QLtozlICNDhyE,10820
55
- rslearn/models/dinov3.py,sha256=zlICRIeOaxREpR75bzF4nS8P-ZUvLdrJLBU3cBTYgec,6458
56
- rslearn/models/faster_rcnn.py,sha256=yYRk3attz_GyhJA6jE1ss4ybT_knbLNT1lMRrkz22PI,8614
54
+ rslearn/models/croma.py,sha256=BcKV4-D4uira6f9zvW73aslF_XitAhObnyrE_3iTcTs,11008
55
+ rslearn/models/dinov3.py,sha256=-hyhkxbjns66s9xKT3bPU1dTzanPPc7qJ0dNAwV19-E,6497
56
+ rslearn/models/faster_rcnn.py,sha256=yOipLPmVHbadvYCR9xfCYgmkU9Mot6fgDK-kKicVTlo,8685
57
57
  rslearn/models/feature_center_crop.py,sha256=_Mu3E4iJLBug9I4ZIBIpB_VJo-xGterHmhtIFGaHR34,1808
58
58
  rslearn/models/fpn.py,sha256=qm7nKMgsZrCoAdz8ASmNKU2nvZ6USm5CedMfy_w_gwE,2079
59
- rslearn/models/module_wrapper.py,sha256=XjRgmhss9_beBEE77t9iySsIvYpV7R-DeyBlOBG000I,2004
60
- rslearn/models/molmo.py,sha256=pPtCy7eg-xN-iRKCtNL_hpxagfJRyYc9o3NVb-ifonI,2182
59
+ rslearn/models/module_wrapper.py,sha256=73JspaglnNabUGZB2EiCYF_dZ3-Kicg_OpoTfUWHONk,2271
60
+ rslearn/models/molmo.py,sha256=lXnevwTCNyc1XcnJUB5_pK1G2AJGYMvQYU21mZFf5u0,2246
61
61
  rslearn/models/multitask.py,sha256=bpFxvtFowRyT-tvRSdY7AKbEx_i1y7sToEzZgTMcF4s,16264
62
- rslearn/models/panopticon.py,sha256=4-KHbgAHUk-ZX04PFRIJF_BRO_euOZO0NfzjB3CEP7Y,5891
62
+ rslearn/models/panopticon.py,sha256=lXXBusXZfwdf10rBVPAQSbaGOMyKCDeEBmXShzvfMoU,5947
63
63
  rslearn/models/pick_features.py,sha256=fI9SYubqpCWOAHYGVUSg5sgD31dsnAR9mNuLmqfIeL8,1110
64
64
  rslearn/models/pooling_decoder.py,sha256=zrMH6wUExCa-XD1q9CIFD2ScgiasapyJs9plhcUxhIs,4767
65
- rslearn/models/prithvi.py,sha256=SzdWm0CjYCZIviES3yBXec6TmvrWGQ6pf37w4BaODlY,40326
65
+ rslearn/models/prithvi.py,sha256=J45eC1pd4l5AGlr19Qjrjrw5PPwvYE9bNM5qCFoznmg,40390
66
66
  rslearn/models/resize_features.py,sha256=U7ZIVwwToJJnwchFG59wLWWP9eikHDB_1c4OtpubxHU,1693
67
- rslearn/models/sam2_enc.py,sha256=iq2JBqloJ7xkg7Qz5M1HymRfEkLGGn2msF00R_nGBgM,3593
68
- rslearn/models/satlaspretrain.py,sha256=ytlke5IlxlUEhUoIRcm0pz7umppppZBskCux9YE8mVg,3281
69
- rslearn/models/simple_time_series.py,sha256=nqNAVHFugqQIv6MCmQDkiu8tiZmn8x2lqyBTSp08sYQ,13563
67
+ rslearn/models/sam2_enc.py,sha256=WZOtlp0FjaVztW4gEVIcsFQdKArS9iblRODP0b6Oc8M,3641
68
+ rslearn/models/satlaspretrain.py,sha256=2R48ulbtd44Qy2FYJCkllE2Wk35eZxkc79ruSgkmgcQ,3384
69
+ rslearn/models/simple_time_series.py,sha256=Nfk5E3d9W-4AyLQiy-P8p-JvxmFYE3FBrvOgttjXSMw,14678
70
70
  rslearn/models/singletask.py,sha256=9DM9a9-Mv3vVQqRhPOIXG2HHuVqVa_zuvgafeeYh4r0,1903
71
- rslearn/models/ssl4eo_s12.py,sha256=FTDSkHCaQxw0B-R-8NIe50lZRBYFdI-v68lk9NrnwII,3737
72
- rslearn/models/swin.py,sha256=QKiV00bu6dw9p0a9PbqDOe5zsnaFHuu6dOfEn41ms7I,6017
71
+ rslearn/models/ssl4eo_s12.py,sha256=DOlpIj6NfjIlWyJ27m9Xo8TMlovBDstFq0ARnmAJ6qY,3919
72
+ rslearn/models/swin.py,sha256=Xqr3SswbHP6IhwT2atZMAPF2TUzQqfxvihksb8WSeRo,6065
73
73
  rslearn/models/task_embedding.py,sha256=Z6sf61BLCtvdrdnvjh8500b-KiFp3GeWbT4mOqpaCKk,9100
74
- rslearn/models/terramind.py,sha256=R_daJOIzCnaC_Z3s5n9YtBa9Gf_HgQatgCOwwy4MtSA,8732
74
+ rslearn/models/terramind.py,sha256=Ob0bmpo2YdFb__cWcIdHhyvllNfbZ8FF3dpermutqjQ,8790
75
75
  rslearn/models/trunk.py,sha256=1GCH9iyLIytoHVntLSMwfH9duQpe1W4DPmOClLpPKjc,4778
76
76
  rslearn/models/unet.py,sha256=HuuINvkB1-5w9ZOTXZCWkVxJShruPKCol8pKeA3zw_4,7251
77
77
  rslearn/models/upsample.py,sha256=JvfnktT6Dgcql3cSoySWXZ7dmkDkfpRo6vDkpz8KFAQ,1326
@@ -86,11 +86,11 @@ rslearn/models/detr/position_encoding.py,sha256=8FFoBT-Jtgqk7D4qDBTbVLOeAdmjdjtJ
86
86
  rslearn/models/detr/transformer.py,sha256=aK4HO7AkCZn7xGHP3Iq91w2iFPVshugOILYAjVjroCw,13971
87
87
  rslearn/models/detr/util.py,sha256=NMHhHbkIo7PoBUVbDqa2ZknJBTswmaxFCGHrPtFKnGg,676
88
88
  rslearn/models/galileo/__init__.py,sha256=QQa0C29nuPRva0KtGiMHQ2ZB02n9SSwj_wqTKPz18NM,112
89
- rslearn/models/galileo/galileo.py,sha256=PR90sPKxBfrpYolAfDf-AyBkNVARr6UbQmYc2XzcNPc,21365
89
+ rslearn/models/galileo/galileo.py,sha256=CTEuYGPmxhVv8YsZzFm0BeVW2yvdXp7j1GifT53EDLU,22525
90
90
  rslearn/models/galileo/single_file_galileo.py,sha256=l5tlmmdr2eieHNH-M7rVIvcptkv0Fuk3vKXFW691ezA,56143
91
91
  rslearn/models/olmoearth_pretrain/__init__.py,sha256=AjRvbjBdadCdPh-EdvySH76sVAQ8NGQaJt11Tsn1D5I,36
92
- rslearn/models/olmoearth_pretrain/model.py,sha256=Y5-cE9iWBh5MU1WGebfHM2C7_EwZVKX4iHBMel0ZIdY,14917
93
- rslearn/models/olmoearth_pretrain/norm.py,sha256=rHjFyWkpNLYMx9Ow7TsU-jGm9Sjx7FVf0p4R__ohx2c,3266
92
+ rslearn/models/olmoearth_pretrain/model.py,sha256=_HJBU2-_J49TeQ5wdctlOIOq2jiNlFH80G9Ld849pXg,17898
93
+ rslearn/models/olmoearth_pretrain/norm.py,sha256=pV-u9eBGxfiSFDMEipDwyTgKGhN1G5kSoOC5CBE1m-0,3336
94
94
  rslearn/models/panopticon_data/sensors/drone.yaml,sha256=xqWS-_QMtJyRoWXJm-igoSur9hAmCFdqkPin8DT5qpw,431
95
95
  rslearn/models/panopticon_data/sensors/enmap.yaml,sha256=b2j6bSgYR2yKR9DRm3SPIzSVYlHf51ny_p-1B4B9sB4,13431
96
96
  rslearn/models/panopticon_data/sensors/goes.yaml,sha256=o00aoWCYqam0aB1rPmXq1MKe8hsKak_qyBG7BPL27Sc,152
@@ -104,17 +104,17 @@ rslearn/models/panopticon_data/sensors/sentinel2.yaml,sha256=qYJ92x-GHO0ZdCrTtCj
104
104
  rslearn/models/panopticon_data/sensors/superdove.yaml,sha256=QpIRyopdV4hAez_EIsDwhGFT4VtTk7UgzQveyc8t8fc,795
105
105
  rslearn/models/panopticon_data/sensors/wv23.yaml,sha256=SWYSlkka6UViKAz6YI8aqwQ-Ayo-S5kmNa9rO3iGW6o,1172
106
106
  rslearn/models/presto/__init__.py,sha256=eZrB-XKi_vYqZhpyAOwppJi4dRuMtYVAdbq7KRygze0,64
107
- rslearn/models/presto/presto.py,sha256=SQCxY-jibe_PQs5yvoEOzjUhv8jaCoEkDE0pvSVhEUY,9542
107
+ rslearn/models/presto/presto.py,sha256=fkyHB85Hfx5L-4yejSFAFv83gk9VFqAR1GTgggtq0EA,11049
108
108
  rslearn/models/presto/single_file_presto.py,sha256=-P00xjhj9dx3O6HqWpQmG9dPk_i6bT_t8vhX4uQm5tA,30242
109
109
  rslearn/tile_stores/__init__.py,sha256=-cW1J7So60SEP5ZLHCPdaFBV5CxvV3QlOhaFnUkhTJ0,1675
110
110
  rslearn/tile_stores/default.py,sha256=PYaDNvBxhJTDKJGw0EjDTSE1OKajR7_iJpMbOjj-mE8,15054
111
111
  rslearn/tile_stores/tile_store.py,sha256=9AeYduDYPp_Ia2NMlq6osptpz_AFGIOQcLJrqZ_m-z0,10469
112
112
  rslearn/train/__init__.py,sha256=fnJyY4aHs5zQqbDKSfXsJZXY_M9fbTsf7dRYaPwZr2M,30
113
- rslearn/train/all_patches_dataset.py,sha256=w3X2eJ2BdskgnMsNasfqBUPnGkcNcBuyLcWL_I9DcFM,20667
113
+ rslearn/train/all_patches_dataset.py,sha256=EVoYCmS3g4OfWPt5CZzwHVx9isbnWh5HIGA0RBqPFeA,21145
114
114
  rslearn/train/data_module.py,sha256=pgut8rEWHIieZ7RR8dUvhtlNqk0egEdznYF3tCvqdHg,23552
115
- rslearn/train/dataset.py,sha256=Lit9l7Ed2zNB-K7dTsFXB7CwMPi138b5cYyu3DDTZi0,34186
115
+ rslearn/train/dataset.py,sha256=eL4lxyvrEsojeo0-HnTpHG0J9IdeBHkCVkiuIhBRLgk,36643
116
116
  rslearn/train/lightning_module.py,sha256=HA9e-74oUZR5s7piQP9Mwxwz0vw0-p4HdmijfgBSpU0,14776
117
- rslearn/train/model_context.py,sha256=TJHCw8xXLZrRHqGzJr30QARATgG_pJLbMBmyiIcZXRM,1449
117
+ rslearn/train/model_context.py,sha256=6o66BY6okBK-D5e0JUwPd7fxD_XehVaqxdQkJJKmQ3E,2580
118
118
  rslearn/train/optimizer.py,sha256=EKSqkmERalDA0bF32Gey7n6z69KLyaUWKlRsGJfKBmE,927
119
119
  rslearn/train/prediction_writer.py,sha256=rW0BUaYT_F1QqmpnQlbrLiLya1iBfC5Pb78G_NlF-vA,15956
120
120
  rslearn/train/scheduler.py,sha256=Yyq2fMHH08OyGt9qWD7iLc92XNIBbZHLtzlLR-f732s,2728
@@ -124,24 +124,24 @@ rslearn/train/callbacks/freeze_unfreeze.py,sha256=8fIzBMhCKKjpTffIeAdhdSjsBd8NjT
124
124
  rslearn/train/callbacks/gradients.py,sha256=4YqCf0tBb6E5FnyFYbveXfQFlgNPyxIXb2FCWX4-6qs,5075
125
125
  rslearn/train/callbacks/peft.py,sha256=wEOKsS3RhsRaZTXn_Kz2wdsZdIiIaZPdCJWtdJBurT8,4156
126
126
  rslearn/train/tasks/__init__.py,sha256=dag1u72x1-me6y0YcOubUo5MYZ0Tjf6-dOir9UeFNMs,75
127
- rslearn/train/tasks/classification.py,sha256=2_Iz3g9ifdtMo6a2sRtnAoYGP2Om8JPP7rm2AfwoDLc,14190
128
- rslearn/train/tasks/detection.py,sha256=DrPLF_63WU99Qh1yILxSJWrYrl_2mCGxlTX2SznCei0,21938
127
+ rslearn/train/tasks/classification.py,sha256=72ZBcbunMsdPYQN53S-4GfiLIDrr1X3Hni07dBJ0pu0,14261
128
+ rslearn/train/tasks/detection.py,sha256=B0tfB7UGIbRtjnye3PhzLmfeQ4X7ImO3A-_LeNhBA54,21988
129
129
  rslearn/train/tasks/embedding.py,sha256=98ykdmfaxQjsH0UrUdTGmz1f0hCMPcNYTzt1YFqNQwQ,3869
130
- rslearn/train/tasks/multi_task.py,sha256=piauvjg4j6eBEZnIFrKKxyYPWKdAJ4yUCFxt_ngsxDY,6125
131
- rslearn/train/tasks/per_pixel_regression.py,sha256=jME-AFC74dfNAF5cBBmdmIgOV-KfkHt_z1GIOifuPJw,9975
132
- rslearn/train/tasks/regression.py,sha256=8U0bcSofefmP9Drpbo7PO9xAkVptAuso2rOQyPOUhzo,12624
133
- rslearn/train/tasks/segmentation.py,sha256=D9VaxsuiF0R8nvOKL821wPHey2GTMCgIqm8rZtnAXdk,22778
134
- rslearn/train/tasks/task.py,sha256=CwGEFXquSjWXoJqbpBE1mQFCJl7NmMvgreAydphvu6U,3942
130
+ rslearn/train/tasks/multi_task.py,sha256=1ML9mZ-kM3JfElisLOWBUn4k12gsKTFjoYYgamnyxt8,6124
131
+ rslearn/train/tasks/per_pixel_regression.py,sha256=znCLFaZbGx8lvIkntDXjcX7yy7giyyBdWN-TwTGaPV4,10197
132
+ rslearn/train/tasks/regression.py,sha256=bVS_ApZSpbL0NaaM8Mu5Bsu4SBUyLpVtrPslulvvZHs,12695
133
+ rslearn/train/tasks/segmentation.py,sha256=ie9ZV-sklLjQs35caiEglC1xff6dxeug_N-f_A8VosA,23034
134
+ rslearn/train/tasks/task.py,sha256=B-z5XheXPTDaKauYzwze5ZD_O43R9uF76awgEk05bGE,3954
135
135
  rslearn/train/transforms/__init__.py,sha256=BkCAzm4f-8TEhPIuyvCj7eJGh36aMkZFYlq-H_jkSvY,778
136
- rslearn/train/transforms/concatenate.py,sha256=sdVLJIyr9Nj2tzXEzvWFQnjJjyRSuhR_Faf6UlMIvbg,1568
137
- rslearn/train/transforms/crop.py,sha256=4jA3JJsC0ghicPHbfsNJ0d3WpChyvftY73ONiwQaif0,4214
138
- rslearn/train/transforms/flip.py,sha256=lkTeje3T8gNn2gt6957morXq1fGNho-apSpCvNp0_9o,3480
139
- rslearn/train/transforms/mask.py,sha256=pwt33XXWLwldLiar-PgVgBQzQd1qfL18SPz3LYQMoYM,2111
140
- rslearn/train/transforms/normalize.py,sha256=uyv2hE5hw5B2kCRHa4JIx0tfowm-C7bgumwINvvfyts,5014
141
- rslearn/train/transforms/pad.py,sha256=pj4Ql8GSRrhg8KOZTNPB40Qq8CoCCHdGo04uficik84,4698
142
- rslearn/train/transforms/resize.py,sha256=GTjM7RTjqe7miU7el4goX75lCTh7rGIXwC7t_3ZkJAk,2275
143
- rslearn/train/transforms/select_bands.py,sha256=uDfD9G8Z4VTt88QZsjj1FB20QEmzSefhKf7uDXYn77M,2441
144
- rslearn/train/transforms/sentinel1.py,sha256=FrLaYZs2AjqWQCun8DTFtgo1l0xLxqaFKtDNIehtpDg,1913
136
+ rslearn/train/transforms/concatenate.py,sha256=hVVBaxIdk1Cx8JHPirj54TGpbWAJx5y_xD7k1rmGmT0,3166
137
+ rslearn/train/transforms/crop.py,sha256=d5mrC8k7g4zz9J0RJrjz_pS1q06HfhUdzH6dUlL3Wqc,4668
138
+ rslearn/train/transforms/flip.py,sha256=KjMoZ4eFbu8119IlUDU4BBK06U76WjWEFmvqr9oiOMk,3836
139
+ rslearn/train/transforms/mask.py,sha256=KMz-KeC4cuahA8CdRWXK9omeMfwheEM8avhj6yXGmm8,2407
140
+ rslearn/train/transforms/normalize.py,sha256=H9hAYDVA__v0IpqC-7q_PyZ05qG6YTsORVQ7DTiLP6o,6382
141
+ rslearn/train/transforms/pad.py,sha256=5Mks7Vp8_hRlsRjw9PERsQ7mVVKTAfg7Q6jUguXMhGY,5109
142
+ rslearn/train/transforms/resize.py,sha256=AeMuhMlG-G7NRIMNucPESethohGe1ZKew-EVK2HzeSM,2636
143
+ rslearn/train/transforms/select_bands.py,sha256=vqerph1UUS9i2G9xwyH6_5AoOuH9tLER8zppR4XiZs4,2802
144
+ rslearn/train/transforms/sentinel1.py,sha256=PMMFo4RysMpZS7PBZ3yHGzJ5JADPZAOZpCbGhqL5vsc,2384
145
145
  rslearn/train/transforms/transform.py,sha256=n1Qzqix2dVvej-Q7iPzHeOQbqH79IBlvqPoymxhNVpE,4446
146
146
  rslearn/utils/__init__.py,sha256=GNvdTUmXakiEMnLdje7k1fe5aC7SFVqP757kbpN6Fzw,558
147
147
  rslearn/utils/array.py,sha256=RC7ygtPnQwU6Lb9kwORvNxatJcaJ76JPsykQvndAfes,2444
@@ -158,10 +158,10 @@ rslearn/utils/spatial_index.py,sha256=eomJAUgzmjir8j9HZnSgQoJHwN9H0wGTjmJkMkLLfs
158
158
  rslearn/utils/sqlite_index.py,sha256=YGOJi66544e6JNtfSft6YIlHklFdSJO2duxQ4TJ2iu4,2920
159
159
  rslearn/utils/time.py,sha256=2ilSLG94_sxLP3y5RSV5L5CG8CoND_dbdzYEHVtN-I8,387
160
160
  rslearn/utils/vector_format.py,sha256=4ZDYpfBLLxguJkiIaavTagiQK2Sv4Rz9NumbHlq-3Lw,15041
161
- rslearn-0.0.19.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
162
- rslearn-0.0.19.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
163
- rslearn-0.0.19.dist-info/METADATA,sha256=SAt7NSIBjEYAzBTXmYN-QnSWx-UhKW2YwIc-sTSI8Ko,37853
164
- rslearn-0.0.19.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
165
- rslearn-0.0.19.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
166
- rslearn-0.0.19.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
167
- rslearn-0.0.19.dist-info/RECORD,,
161
+ rslearn-0.0.20.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
162
+ rslearn-0.0.20.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
163
+ rslearn-0.0.20.dist-info/METADATA,sha256=w_zdOSh-sXrRxlWj5SyRG6y01AoekEuF5W4AHjpRJVs,37853
164
+ rslearn-0.0.20.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
165
+ rslearn-0.0.20.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
166
+ rslearn-0.0.20.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
167
+ rslearn-0.0.20.dist-info/RECORD,,