rslearn 0.0.14__py3-none-any.whl → 0.0.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (53) hide show
  1. rslearn/config/__init__.py +2 -10
  2. rslearn/config/dataset.py +414 -420
  3. rslearn/data_sources/__init__.py +8 -31
  4. rslearn/data_sources/aws_landsat.py +13 -24
  5. rslearn/data_sources/aws_open_data.py +21 -46
  6. rslearn/data_sources/aws_sentinel1.py +3 -14
  7. rslearn/data_sources/climate_data_store.py +21 -40
  8. rslearn/data_sources/copernicus.py +30 -91
  9. rslearn/data_sources/data_source.py +26 -0
  10. rslearn/data_sources/earthdaily.py +13 -38
  11. rslearn/data_sources/earthdata_srtm.py +14 -32
  12. rslearn/data_sources/eurocrops.py +5 -9
  13. rslearn/data_sources/gcp_public_data.py +46 -43
  14. rslearn/data_sources/google_earth_engine.py +31 -44
  15. rslearn/data_sources/local_files.py +91 -100
  16. rslearn/data_sources/openstreetmap.py +21 -51
  17. rslearn/data_sources/planet.py +12 -30
  18. rslearn/data_sources/planet_basemap.py +4 -25
  19. rslearn/data_sources/planetary_computer.py +58 -141
  20. rslearn/data_sources/usda_cdl.py +15 -26
  21. rslearn/data_sources/usgs_landsat.py +4 -29
  22. rslearn/data_sources/utils.py +9 -0
  23. rslearn/data_sources/worldcereal.py +47 -54
  24. rslearn/data_sources/worldcover.py +16 -14
  25. rslearn/data_sources/worldpop.py +15 -18
  26. rslearn/data_sources/xyz_tiles.py +11 -30
  27. rslearn/dataset/dataset.py +6 -6
  28. rslearn/dataset/manage.py +28 -26
  29. rslearn/dataset/materialize.py +9 -45
  30. rslearn/lightning_cli.py +370 -1
  31. rslearn/main.py +3 -3
  32. rslearn/models/clay/clay.py +14 -1
  33. rslearn/models/concatenate_features.py +93 -0
  34. rslearn/models/croma.py +26 -3
  35. rslearn/models/satlaspretrain.py +18 -4
  36. rslearn/models/terramind.py +19 -0
  37. rslearn/tile_stores/__init__.py +0 -11
  38. rslearn/train/dataset.py +4 -12
  39. rslearn/train/prediction_writer.py +16 -32
  40. rslearn/train/tasks/classification.py +2 -1
  41. rslearn/utils/fsspec.py +20 -0
  42. rslearn/utils/jsonargparse.py +79 -0
  43. rslearn/utils/raster_format.py +1 -41
  44. rslearn/utils/vector_format.py +1 -38
  45. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/METADATA +1 -1
  46. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/RECORD +51 -52
  47. rslearn/data_sources/geotiff.py +0 -1
  48. rslearn/data_sources/raster_source.py +0 -23
  49. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/WHEEL +0 -0
  50. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/entry_points.txt +0 -0
  51. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/licenses/LICENSE +0 -0
  52. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/licenses/NOTICE +0 -0
  53. {rslearn-0.0.14.dist-info → rslearn-0.0.16.dist-info}/top_level.txt +0 -0
@@ -1,54 +1,53 @@
1
1
  rslearn/__init__.py,sha256=fFmAen3vxZyosEfPbG0W46IttujYGVxzrGkJ0YutmmY,73
2
2
  rslearn/arg_parser.py,sha256=GNlJncO6Ck_dCNrcg7z_SSG61I-2gKn3Ix2tAxIk9CI,1428
3
3
  rslearn/const.py,sha256=FUCfsvFAs-QarEDJ0grdy0C1HjUjLpNFYGo5I2Vpc5Y,449
4
- rslearn/lightning_cli.py,sha256=io1Agb2fr-fUu9yOODNJhP8-vJp_v9UbJJA2hkLubKA,2435
4
+ rslearn/lightning_cli.py,sha256=x8i2QJvEBaYdqh2_f0-ety7_sNEH9UCKRZUPkqWYZdU,17169
5
5
  rslearn/log_utils.py,sha256=unD9gShiuO7cx5Nnq8qqVQ4qrbOOwFVgcHxN5bXuiAo,941
6
- rslearn/main.py,sha256=JMNMhAHqpb9bDUoKzj6kN659Ft_-gZv_rKUieJcJNwI,29087
6
+ rslearn/main.py,sha256=0g1SRO975eC9DTzKqJnwlWHgVo2Pvotyr72KoJBgjew,29060
7
7
  rslearn/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  rslearn/template_params.py,sha256=Vop0Ha-S44ctCa9lvSZRjrMETznJZlR5y_gJrVIwrPg,791
9
- rslearn/config/__init__.py,sha256=Bhf2VVncdMYRC8Wfb4GsJJ13OAJYNCO_ODLSNTmBOHM,638
10
- rslearn/config/dataset.py,sha256=lIuFgJG0Hz7nxacFIpbwOyNJqjlkOlaMfWt91Chjb_M,21338
11
- rslearn/data_sources/__init__.py,sha256=8_7Pi3agKsatNoxXw74-U5G-QAP-rbdfcH8EkZfJbH4,1449
12
- rslearn/data_sources/aws_landsat.py,sha256=GA9H04KagBDm-N37jFdh_aHCX2ZneVdnqT1SNOyAwTs,20829
13
- rslearn/data_sources/aws_open_data.py,sha256=nU_D5cqc-wibxq4uyUNb0z-XD0Puf1gZ8v5FMiMAN5w,30258
14
- rslearn/data_sources/aws_sentinel1.py,sha256=cmf_ZcB7GCyFAdbwExeAwJIHqLL0JVoXtq5WcQ8UuiU,5197
15
- rslearn/data_sources/climate_data_store.py,sha256=Hct-0Ui-_CCQISOlzsqkK1dKz8684HRqfVUI-zXW2wA,11571
16
- rslearn/data_sources/copernicus.py,sha256=NBiZO3tLRqdi8lrFSrBtnv6gfobbDWGk_0eQoydizYE,36657
17
- rslearn/data_sources/data_source.py,sha256=69ptYhqa6pnKM04ux9hWvTPExN_lFNuU_0t_seYFnHE,3916
18
- rslearn/data_sources/earthdaily.py,sha256=dxOWm7Yiuh4fWVptRws_Ljh-HuNs1frf86ao91yS_80,19059
19
- rslearn/data_sources/earthdata_srtm.py,sha256=ysyVbVDLjhhLKdh7WKhQcwZezqvmTYaiPetTborW6zQ,11166
20
- rslearn/data_sources/eurocrops.py,sha256=bH_ul45RvNLLvVKU9JjZH1XMenAmgn7Lakq0pXjPXos,8861
21
- rslearn/data_sources/gcp_public_data.py,sha256=kr9stYo7ZCvz8s4E3wmoY-yAGZoLa_9RCwjS-Q5k9dM,36128
22
- rslearn/data_sources/geotiff.py,sha256=sFUp919chaX4j6lQytNp__xnMLlDI3Ac3rfB6F8sgZ0,45
23
- rslearn/data_sources/google_earth_engine.py,sha256=hpkt74ly2lEwjRrDp8FBmGvB3MEw_mQ38Av4rQOR3_w,24246
24
- rslearn/data_sources/local_files.py,sha256=d08m6IzrUN_80VfvgpHahMJrv-n6_CI6EIocp6kyDRs,19490
25
- rslearn/data_sources/openstreetmap.py,sha256=qUSMFiIA_laJkO3meBXf9TmSI7OBD-o3i4JxqllUv3Q,19232
26
- rslearn/data_sources/planet.py,sha256=F2JoLaQ5Cb3k1cTm0hwSWTL2TPfbaAUMXZ8q4Dy7UlA,10109
27
- rslearn/data_sources/planet_basemap.py,sha256=wuWM9dHSJMdINfyWb78Zk9i-KvJHTrf9J0Q2gyEyiiA,10450
28
- rslearn/data_sources/planetary_computer.py,sha256=Vi-aBHQe-BA8NjRyPMgurMAdo3sK6PJteCK5MwXygJo,31869
29
- rslearn/data_sources/raster_source.py,sha256=b8wo55GhVLxXwx1WYLzeRAlzD_ZkE_P9tnvUOdnsfQE,689
30
- rslearn/data_sources/usda_cdl.py,sha256=2_V11AhPRgLEGd4U5Pmx3UvE2HWBPbsFXhUIQVRVFeE,7138
31
- rslearn/data_sources/usgs_landsat.py,sha256=31GmOUfmxwTE6MTiVI4psb-ciVmunuA8cfvqDuvTHPE,19312
32
- rslearn/data_sources/utils.py,sha256=oi2ybE423TLgpXlNjZ5qDQxDiwbSs7b-qD71UueQZHE,11327
9
+ rslearn/config/__init__.py,sha256=a8xTvYSnpfIzniHgcnSeob5jo5PVBfacpakA_150MME,434
10
+ rslearn/config/dataset.py,sha256=iUFuwzlM9z6n1pGCd40SmAVj3fG6zTXWrlH6eenfon8,21143
11
+ rslearn/data_sources/__init__.py,sha256=zzuZUxrlEIw84YpD2I0HJvCoLDB29LbmnKTXiJykzGU,660
12
+ rslearn/data_sources/aws_landsat.py,sha256=0ZQtmd2NCnvLy4vFSB1AlmoguJbiQB_e_T4eS1tnW9Q,20443
13
+ rslearn/data_sources/aws_open_data.py,sha256=lrHnMJTH3NAaRdNjxwCIxSq8rq90IvV4ho-qAG6Hdgc,29348
14
+ rslearn/data_sources/aws_sentinel1.py,sha256=knBg2ZdwzGRIibUPAqnhYR-DbHqFL4tLsuRVrucTWU4,4745
15
+ rslearn/data_sources/climate_data_store.py,sha256=4ZPVtwFCc35IhPVM24tqrmXTB61zABCDKYa4U4IKQhQ,11191
16
+ rslearn/data_sources/copernicus.py,sha256=DLyXwnkFo2LzbxfLKHkOvHyZcNYFg5w-yXQPeBL67_w,35049
17
+ rslearn/data_sources/data_source.py,sha256=lxdcxefETX5ui5uUdZn-ACSBhy6YVo4XDfk368EMD40,4862
18
+ rslearn/data_sources/earthdaily.py,sha256=BNP7BK_vb9yQw6LaIaJ80vjCfBZ9TeALGkjHYIet_W0,18205
19
+ rslearn/data_sources/earthdata_srtm.py,sha256=bwo8e_y9fFPliZ411tTWOiAUlEcb3AWBkeZxnkFY5SI,10633
20
+ rslearn/data_sources/eurocrops.py,sha256=FQqdBcNl43fArq6rd_-iffVJyliIDbB0lIHvNdmtQBU,8663
21
+ rslearn/data_sources/gcp_public_data.py,sha256=E3BhJqOgHMqwcfaxg7D47KNmfAwJDiDjH8-OdqNdjuI,36524
22
+ rslearn/data_sources/google_earth_engine.py,sha256=xdoSDjSVp6lPVPMv4UJZ6BRUozUA2hFbSTl1707TBoM,23523
23
+ rslearn/data_sources/local_files.py,sha256=mo5W_BxBl89EPTIHNDEpXM6qBjrP225KK0PcmNgvJZQ,19090
24
+ rslearn/data_sources/openstreetmap.py,sha256=TzZfouc2Z4_xjx2v_uv7aPn4tVW3flRVQN4qBfl507E,18161
25
+ rslearn/data_sources/planet.py,sha256=6FWQ0bl1k3jwvwp4EVGi2qs3OD1QhnKOKP36mN4HELI,9446
26
+ rslearn/data_sources/planet_basemap.py,sha256=e9R6FlagJjg8Z6Rc1dC6zK3xMkCohz8eohXqXmd29xg,9670
27
+ rslearn/data_sources/planetary_computer.py,sha256=qgvGe_hQDxAIrRVB9szvJZL5IvE2jTo8UWuKCMzx7jM,29773
28
+ rslearn/data_sources/usda_cdl.py,sha256=_WvxZkm0fbXfniRs6NT8iVCbTTmVPflDhsFT2ci6_Dk,6879
29
+ rslearn/data_sources/usgs_landsat.py,sha256=kPOb3hsZe5-guUcFZZkwzcRpYZ3Zo7Bk4E829q_xiyU,18516
30
+ rslearn/data_sources/utils.py,sha256=v_90ALOuts7RHNcx-j8o-aQ_aFjh8ZhXrmsaa9uEGDA,11651
33
31
  rslearn/data_sources/vector_source.py,sha256=NCa7CxIrGKe9yRT0NyyFKFQboDGDZ1h7663PV9OfMOM,44
34
- rslearn/data_sources/worldcereal.py,sha256=Psdf3EF3REj1WDltHWyMaICY3--KAJO_nEqpF0Gl_G8,21808
35
- rslearn/data_sources/worldcover.py,sha256=rimHJpQN9a56GaYxyHTOGXKzE3bkWKgd1UbH5A4aaGs,6097
36
- rslearn/data_sources/worldpop.py,sha256=HZrDJjz_5gXlHG6IOGIzVaL0Y4rO6FKF4FELMEX-lk4,5856
37
- rslearn/data_sources/xyz_tiles.py,sha256=SJV8TB6WUP6DTPr2d3LXRKVjFxda7bdR9IM84VvaRto,14618
32
+ rslearn/data_sources/worldcereal.py,sha256=rGGxwJAC3pAASVBQoUhwS3qL-qcmF6W__Tb53qWCEmE,21501
33
+ rslearn/data_sources/worldcover.py,sha256=n7gi-JRytxkvkUhKT--dVziMcWSSyMbZA7ZCzLT2MJY,6037
34
+ rslearn/data_sources/worldpop.py,sha256=S3RSc5kTwSs2bcREjNarBsqf3MBX5CN0eHj7Qkx4K74,5625
35
+ rslearn/data_sources/xyz_tiles.py,sha256=P601CvUmoVDC_ZRVhPKaIoPYYCq5UhZ-v7DaGlN5y_0,13797
38
36
  rslearn/dataset/__init__.py,sha256=bHtBlEEBCekO-gaJqiww0-VjvZTE5ahx0llleo8bfP8,289
39
37
  rslearn/dataset/add_windows.py,sha256=pwCEvwLE1jQCoqQxw6CJ-sP46ayWppFa2hGYIB6VVkc,8494
40
- rslearn/dataset/dataset.py,sha256=bjf9nI55j-MF0bIQWSNPjNbpfqnLK4jy-96TAcwO0MM,5214
38
+ rslearn/dataset/dataset.py,sha256=qmZmFfQOHoKVx6_sBYtBR5H4GTNMgETvq0S4XrqafQU,5165
41
39
  rslearn/dataset/handler_summaries.py,sha256=wI99RDk5erCWkzl1A7Uc4chatQ9KWIr4F_0Hxr9Co6s,2607
42
40
  rslearn/dataset/index.py,sha256=Wni5m6h4gisRB54fPLnCfUrRTEsJ5EvwS0fs9sYc2wg,6025
43
- rslearn/dataset/manage.py,sha256=owelBiBqvoIQYLhFMDK4ULzcoGBNE27JV8kl68jf3wg,18563
44
- rslearn/dataset/materialize.py,sha256=-z47svc_JqGhzkp8kq5Hd9fykWNqFEUCQezo887TWBw,22056
41
+ rslearn/dataset/manage.py,sha256=-lGSIgk6Z7-verF_POwe4n5w9eSpgyt4nEOcOj382rc,18971
42
+ rslearn/dataset/materialize.py,sha256=x7FewmdqFUviLtPZGZIfAcw1rd0wfKZhk_N-uN-tQms,20922
45
43
  rslearn/dataset/remap.py,sha256=6MaImsY02GNACpvRM81RvWmjZWRfAHxo_R3Ox6XLF6A,2723
46
44
  rslearn/dataset/window.py,sha256=I5RqZ12jlIXhohw4qews1x_I4tSDpml709DZRtLiN24,12546
47
45
  rslearn/models/__init__.py,sha256=_vWoF9d2Slah8-6XhYhdU4SRsy_CNxXjCGQTD2yvu3Q,22
48
46
  rslearn/models/anysat.py,sha256=3Oh2gWxicVdUzOjevBEZf0PuolmCy0KC5Ad7JY-0Plc,7949
49
47
  rslearn/models/clip.py,sha256=u5aqYnVB4Jag7o1h8EzPDAc1t2BAHeALA9FcUwP5tfo,2238
48
+ rslearn/models/concatenate_features.py,sha256=qQPwKF-wz18hC1EA1OS81C6RPjYggPrZ5grCuHIM4aY,3434
50
49
  rslearn/models/conv.py,sha256=fWyByeswIOKKzyPmP3erYUlZaKEV0huWHA4CyKTBbfY,1703
51
- rslearn/models/croma.py,sha256=cOazTp3l2PNJltKrmPqD5Gy4pi3CI03-X9G4T10cX2k,9529
50
+ rslearn/models/croma.py,sha256=n7yunpT7lo8vWWaOpx4yt8jZSXjgWqfgZcZKFW5zuEQ,10591
52
51
  rslearn/models/dinov3.py,sha256=9k9kNlXCorQQwKjLGptooANd48TUBsITQ1e4fUomlM4,6337
53
52
  rslearn/models/faster_rcnn.py,sha256=uaxX6-E1f0BibaA9sorEg3be83C7kTdTc39pC5jRqwE,8286
54
53
  rslearn/models/feature_center_crop.py,sha256=24eOrvLEGGVWPw7kPHyUes5HtYNAX7GZ_NpqDGMILEY,1553
@@ -63,18 +62,18 @@ rslearn/models/prithvi.py,sha256=AIzcO5xk1ggR0MjbfhIzqPVgUKFN7odxygmgyAelfW8,401
63
62
  rslearn/models/registry.py,sha256=yCcrOvLkbn07Xtln1j7hAB_kmGw0MGsiR2TloJq9Bmk,504
64
63
  rslearn/models/resize_features.py,sha256=asKXWrLHIBrU6GaAV0Ory9YuK7IK104XjhkB4ljzI3A,1289
65
64
  rslearn/models/sam2_enc.py,sha256=gNlPokr7eNxO2KvnzDMXNxYM2WRO0YkQPjR4110n6cw,3508
66
- rslearn/models/satlaspretrain.py,sha256=YpjXl-uClhTZMDmyhN64Fg3AszzT-ymZgJB0fO9RyoY,2419
65
+ rslearn/models/satlaspretrain.py,sha256=b6FR_il6MnWU4UpB9OxInZSK9n0IS0PcQuLrWH4YD8g,3046
67
66
  rslearn/models/simple_time_series.py,sha256=oTg_akabYFBExJu7JCpbuM211-ZgQS4WerG2nEYrIZY,12774
68
67
  rslearn/models/singletask.py,sha256=z4vN9Yvzz0I-U4KJdVZxLJK2ZV-MIv9tzwCGcOWoUPY,1604
69
68
  rslearn/models/ssl4eo_s12.py,sha256=sOGEHcDo-rNdmEyoLu2AVEqfxRM_cv6zpfAmyn5c6tw,3553
70
69
  rslearn/models/swin.py,sha256=bMlGePXMFou4A_YSUZzjHgN9NniGXaCWdGQ31xHDKis,5511
71
70
  rslearn/models/task_embedding.py,sha256=Z6sf61BLCtvdrdnvjh8500b-KiFp3GeWbT4mOqpaCKk,9100
72
- rslearn/models/terramind.py,sha256=kipar8sMaHJJ3b8vIgL0-s4qhHcA0Vb854vmlZ9cWh4,7524
71
+ rslearn/models/terramind.py,sha256=5POVk_y29LlbVswa6ojd9gdB70iO41yB9Y2aqVY4WdQ,8327
73
72
  rslearn/models/trunk.py,sha256=H1QPQGAKsmocq3OiF66GW8MQI4LffupTDrgZR4Ta7QM,4708
74
73
  rslearn/models/unet.py,sha256=WUgLgvvlgV8l_6MIDBl6aX1HNOkb24DfnVRIyYXHCjo,6865
75
74
  rslearn/models/upsample.py,sha256=3kWbyWZIk56JJxj8en9pieitbrk3XnbIsTKlEkiDQQY,938
76
75
  rslearn/models/use_croma.py,sha256=OSBqMuLp-pDtqPNWAVBfmX4wckmyYCKtUDdGCjJk_K8,17966
77
- rslearn/models/clay/clay.py,sha256=5RO5H8EM0tKjCwWMQ4xDkKkUCwKpm2K_Yw1alnhvVhU,7773
76
+ rslearn/models/clay/clay.py,sha256=29CGCOysx9duEX4Y6LUNHXck_sHjCFrlV4w8CP_hKmI,8460
78
77
  rslearn/models/clay/configs/metadata.yaml,sha256=rZTFh4Yb9htEfbQNOPl4HTbFogEhzwIRqFzG-1uT01Y,4652
79
78
  rslearn/models/detr/__init__.py,sha256=GGAnTIhyuvl34IRrJ_4gXjm_01OlM5rbQQ3c3TGfbK8,84
80
79
  rslearn/models/detr/box_ops.py,sha256=ORCF6EwMpMBB_VgQT05SjR47dCR2rN2gPhL_gsuUWJs,3236
@@ -104,16 +103,16 @@ rslearn/models/panopticon_data/sensors/wv23.yaml,sha256=SWYSlkka6UViKAz6YI8aqwQ-
104
103
  rslearn/models/presto/__init__.py,sha256=eZrB-XKi_vYqZhpyAOwppJi4dRuMtYVAdbq7KRygze0,64
105
104
  rslearn/models/presto/presto.py,sha256=8mZnc0jk_r_JikybHQNyyHg6t7JNPmoPmgoivyNf-U8,9177
106
105
  rslearn/models/presto/single_file_presto.py,sha256=Kbwp8V7pO8HHM2vlCPpjekQiFiDryW8zQkWmt1g05BY,30381
107
- rslearn/tile_stores/__init__.py,sha256=o_tWVKu6UwFzZbO9jn_3cmIDqc_Q3qDd6tA9If0T_Qk,2050
106
+ rslearn/tile_stores/__init__.py,sha256=-cW1J7So60SEP5ZLHCPdaFBV5CxvV3QlOhaFnUkhTJ0,1675
108
107
  rslearn/tile_stores/default.py,sha256=PYaDNvBxhJTDKJGw0EjDTSE1OKajR7_iJpMbOjj-mE8,15054
109
108
  rslearn/tile_stores/tile_store.py,sha256=9AeYduDYPp_Ia2NMlq6osptpz_AFGIOQcLJrqZ_m-z0,10469
110
109
  rslearn/train/__init__.py,sha256=fnJyY4aHs5zQqbDKSfXsJZXY_M9fbTsf7dRYaPwZr2M,30
111
110
  rslearn/train/all_patches_dataset.py,sha256=xFJ96HU3CodrUBzXTsgrmEShosKH79T2SxI0xDVSH3Q,18217
112
111
  rslearn/train/data_module.py,sha256=pgut8rEWHIieZ7RR8dUvhtlNqk0egEdznYF3tCvqdHg,23552
113
- rslearn/train/dataset.py,sha256=8F3bpus25g_NG0-CwMCuznwKxOvBDClNBCOEvDbMyN8,34312
112
+ rslearn/train/dataset.py,sha256=OLPBtVf7tmHodoMnB_gI-jLQq2xQ9aXz38Hq8kBgbp0,33944
114
113
  rslearn/train/lightning_module.py,sha256=ZLBiId3secUlVs2yzkN-mwVv4rMdh5TkdZYl4vv_Cw0,14466
115
114
  rslearn/train/optimizer.py,sha256=EKSqkmERalDA0bF32Gey7n6z69KLyaUWKlRsGJfKBmE,927
116
- rslearn/train/prediction_writer.py,sha256=mDvREwEB5k5_tNuBnYIvAGnxS3sYFWQYvV07V3UEe2k,14106
115
+ rslearn/train/prediction_writer.py,sha256=D2CCLlwlElMoMxnPiI6B9Q9HafGspuwoqYD8TKq98pk,13173
117
116
  rslearn/train/scheduler.py,sha256=wFbmycMHgL6nRYeYalDjb0G8YVo8VD3T3sABS61jJ7c,2318
118
117
  rslearn/train/callbacks/__init__.py,sha256=VNV0ArZyYMvl3dGK2wl6F046khYJ1dEBlJS6G_SYNm0,47
119
118
  rslearn/train/callbacks/adapters.py,sha256=yfv8nyCj3jmo2_dNkFrjukKxh0MHsf2xKqWwMF0QUtY,1869
@@ -121,7 +120,7 @@ rslearn/train/callbacks/freeze_unfreeze.py,sha256=8fIzBMhCKKjpTffIeAdhdSjsBd8NjT
121
120
  rslearn/train/callbacks/gradients.py,sha256=4YqCf0tBb6E5FnyFYbveXfQFlgNPyxIXb2FCWX4-6qs,5075
122
121
  rslearn/train/callbacks/peft.py,sha256=wEOKsS3RhsRaZTXn_Kz2wdsZdIiIaZPdCJWtdJBurT8,4156
123
122
  rslearn/train/tasks/__init__.py,sha256=dag1u72x1-me6y0YcOubUo5MYZ0Tjf6-dOir9UeFNMs,75
124
- rslearn/train/tasks/classification.py,sha256=kahVdXPU6fDwDCdqlrjZGb9uA-PYG74DbQQ0kJUt-Eg,13186
123
+ rslearn/train/tasks/classification.py,sha256=8nSv0caf2PzV3Pmme_iN4WQIac4ry3hdW6FRHbh4L1M,13152
125
124
  rslearn/train/tasks/detection.py,sha256=9j9webusrjGexvUmZ7gl3NTBS63Qq511VFlB2WbLi5Y,22302
126
125
  rslearn/train/tasks/embedding.py,sha256=DK3l1aQ3d5gQUT1h3cD6vcUaNKvSsH26RHx2Bbzutbg,3667
127
126
  rslearn/train/tasks/multi_task.py,sha256=dBWsnbvQ0CReNsbDHmZ_-sXjUE0H4S2OPcbJwMquG9g,6016
@@ -142,22 +141,22 @@ rslearn/train/transforms/transform.py,sha256=n1Qzqix2dVvej-Q7iPzHeOQbqH79IBlvqPo
142
141
  rslearn/utils/__init__.py,sha256=GNvdTUmXakiEMnLdje7k1fe5aC7SFVqP757kbpN6Fzw,558
143
142
  rslearn/utils/array.py,sha256=RC7ygtPnQwU6Lb9kwORvNxatJcaJ76JPsykQvndAfes,2444
144
143
  rslearn/utils/feature.py,sha256=lsg0WThZDJzo1mrbaL04dXYI5G3x-n5FG9aEjj7uUaI,1649
145
- rslearn/utils/fsspec.py,sha256=9QwN46heBhjUnth3qFeRNE3W6Wlr6dM3twYVswPnS9o,5300
144
+ rslearn/utils/fsspec.py,sha256=h3fER_bkewzR9liEAULXguTIvXLUXA17pC_yZoWN5Tk,5902
146
145
  rslearn/utils/geometry.py,sha256=oZllq1aBFcDewTTDYAMnTeP1xR0EdB5Xz3ILmfASo-8,18455
147
146
  rslearn/utils/get_utm_ups_crs.py,sha256=kUrcyjCK7KWvuP1XR-nURPeRqYeRO-3L8QUJ1QTF9Ps,3599
148
147
  rslearn/utils/grid_index.py,sha256=hRmrtgpqN1pLa-djnZtgSXqKJlbgGyttGnCEmPLD0zo,2347
149
- rslearn/utils/jsonargparse.py,sha256=JcTKQoZ6jgwag-kSeTIEVBO9AsRj0X1oEJBsoaCazH4,658
148
+ rslearn/utils/jsonargparse.py,sha256=gpGbo5KOrF1_1_sgHFEzAA1c_-SZCATOg6hLju8jxUs,2697
150
149
  rslearn/utils/mp.py,sha256=XYmVckI5TOQuCKc49NJyirDJyFgvb4AI-gGypG2j680,1399
151
- rslearn/utils/raster_format.py,sha256=RDzDPnWUJunqcj-F4oXKBl-rKFBUpRjvq7mMYhid3iU,27413
150
+ rslearn/utils/raster_format.py,sha256=qZpbODF4I7BsOxf43O6vTmH2TSNw6N8PP0wsFUVvdIw,26267
152
151
  rslearn/utils/rtree_index.py,sha256=j0Zwrq3pXuAJ-hKpiRFQ7VNtvO3fZYk-Em2uBPAqfx4,6460
153
152
  rslearn/utils/spatial_index.py,sha256=eomJAUgzmjir8j9HZnSgQoJHwN9H0wGTjmJkMkLLfsU,762
154
153
  rslearn/utils/sqlite_index.py,sha256=YGOJi66544e6JNtfSft6YIlHklFdSJO2duxQ4TJ2iu4,2920
155
154
  rslearn/utils/time.py,sha256=2ilSLG94_sxLP3y5RSV5L5CG8CoND_dbdzYEHVtN-I8,387
156
- rslearn/utils/vector_format.py,sha256=EIChYCL6GLOILS2TO2JBkca1TuaWsSubWv6iRS3P2ds,16139
157
- rslearn-0.0.14.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
158
- rslearn-0.0.14.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
159
- rslearn-0.0.14.dist-info/METADATA,sha256=Jbm6ySbM4gkT_5o-RWbRr8APS8TYXq3Q-bWyeda-Uc8,36319
160
- rslearn-0.0.14.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
161
- rslearn-0.0.14.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
162
- rslearn-0.0.14.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
163
- rslearn-0.0.14.dist-info/RECORD,,
155
+ rslearn/utils/vector_format.py,sha256=4ZDYpfBLLxguJkiIaavTagiQK2Sv4Rz9NumbHlq-3Lw,15041
156
+ rslearn-0.0.16.dist-info/licenses/LICENSE,sha256=_99ZWPoLdlUbqZoSC5DF4ihiNwl5rTEmBaq2fACecdg,11352
157
+ rslearn-0.0.16.dist-info/licenses/NOTICE,sha256=wLPr6rwV_jCg-xEknNGwhnkfRfuoOE9MZ-lru2yZyLI,5070
158
+ rslearn-0.0.16.dist-info/METADATA,sha256=h0p9V4jlSLDsrC2_owCn0xEKL7Kka74mEsE_pj-tJf0,36319
159
+ rslearn-0.0.16.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
160
+ rslearn-0.0.16.dist-info/entry_points.txt,sha256=doTBQ57NT7nq-dgYGgTTw6mafcGWb_4PWYtYR4rGm50,46
161
+ rslearn-0.0.16.dist-info/top_level.txt,sha256=XDKo90WBH8P9RQumHxo0giLJsoufT4r9odv-WE6Ahk4,8
162
+ rslearn-0.0.16.dist-info/RECORD,,
@@ -1 +0,0 @@
1
- """Placeholder for a GeoTIFF data source."""
@@ -1,23 +0,0 @@
1
- """Helper functions for raster data sources."""
2
-
3
- from rslearn.config import BandSetConfig
4
- from rslearn.log_utils import get_logger
5
-
6
- logger = get_logger(__name__)
7
-
8
-
9
- def is_raster_needed(raster_bands: list[str], band_sets: list[BandSetConfig]) -> bool:
10
- """Check if the raster by comparing its bands to the configured bands.
11
-
12
- Args:
13
- raster_bands: the list of bands in the raster in question.
14
- band_sets: the band sets configured in the dataset.
15
-
16
- Returns:
17
- whether the raster is needed for the dataset.
18
- """
19
- for band_set in band_sets:
20
- for band in band_set.bands:
21
- if band in raster_bands:
22
- return True
23
- return False