robust-mixed-dist 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- robust_mixed_dist-0.1.3.dist-info/METADATA +43 -0
- {robust_mixed_dist-0.1.1.dist-info → robust_mixed_dist-0.1.3.dist-info}/RECORD +5 -5
- robust_mixed_dist-0.1.1.dist-info/METADATA +0 -32
- {robust_mixed_dist-0.1.1.dist-info → robust_mixed_dist-0.1.3.dist-info}/WHEEL +0 -0
- {robust_mixed_dist-0.1.1.dist-info → robust_mixed_dist-0.1.3.dist-info}/licenses/LICENSE +0 -0
- {robust_mixed_dist-0.1.1.dist-info → robust_mixed_dist-0.1.3.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,43 @@
|
|
|
1
|
+
Metadata-Version: 2.4
|
|
2
|
+
Name: robust-mixed-dist
|
|
3
|
+
Version: 0.1.3
|
|
4
|
+
Summary: Compute statistical robust distances for mixed data.
|
|
5
|
+
Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
|
|
6
|
+
Author: Fabio Scielzo Ortiz
|
|
7
|
+
Author-email: fabio.scielzoortiz@gmail.com
|
|
8
|
+
Classifier: Programming Language :: Python :: 3
|
|
9
|
+
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
+
Classifier: Operating System :: OS Independent
|
|
11
|
+
Requires-Python: >=3.7
|
|
12
|
+
Description-Content-Type: text/markdown
|
|
13
|
+
License-File: LICENSE
|
|
14
|
+
Requires-Dist: polars
|
|
15
|
+
Requires-Dist: numpy
|
|
16
|
+
Requires-Dist: pandas
|
|
17
|
+
Requires-Dist: scipy
|
|
18
|
+
Dynamic: author
|
|
19
|
+
Dynamic: author-email
|
|
20
|
+
Dynamic: classifier
|
|
21
|
+
Dynamic: description
|
|
22
|
+
Dynamic: description-content-type
|
|
23
|
+
Dynamic: home-page
|
|
24
|
+
Dynamic: license-file
|
|
25
|
+
Dynamic: requires-dist
|
|
26
|
+
Dynamic: requires-python
|
|
27
|
+
Dynamic: summary
|
|
28
|
+
|
|
29
|
+
# robust_mixed_dist
|
|
30
|
+
|
|
31
|
+
Data scientists address real-world problems using multivariate and heterogeneous
|
|
32
|
+
datasets, characterized by multiple variables of different natures. Selecting a suitable
|
|
33
|
+
distance function between units is crucial, as many statistical techniques and machine
|
|
34
|
+
learning algorithms depend on this concept. Traditional distances, such as Euclidean
|
|
35
|
+
or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
|
|
36
|
+
designed to handle this kind of data, it may lead to suboptimal results in the presence
|
|
37
|
+
of outlying units or underlying correlation structure.
|
|
38
|
+
|
|
39
|
+
In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
|
|
40
|
+
**robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
|
|
41
|
+
compute these robust proposals as well as classical ones.
|
|
42
|
+
|
|
43
|
+
The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
|
|
@@ -3,8 +3,8 @@ robust_mixed_dist/binary.py,sha256=n_RIANha7PDeeP8qKTizJQtA5zTP5KoOjcIY8vDkRjE,3
|
|
|
3
3
|
robust_mixed_dist/mixed.py,sha256=mtHjh8e3ahxq51X0ri74N1O31OMQMUpmxvzmyJbsJVc,39403
|
|
4
4
|
robust_mixed_dist/multiclass.py,sha256=diUMIvP_O3BlOlMxz6Q7HIkmdDu18Pl9bbiszTHjweI,1778
|
|
5
5
|
robust_mixed_dist/quantitative.py,sha256=_wiIhyuwEjHW5twlYDCCfK8qXITPT8XPFz1wBQRq7Ho,22397
|
|
6
|
-
robust_mixed_dist-0.1.
|
|
7
|
-
robust_mixed_dist-0.1.
|
|
8
|
-
robust_mixed_dist-0.1.
|
|
9
|
-
robust_mixed_dist-0.1.
|
|
10
|
-
robust_mixed_dist-0.1.
|
|
6
|
+
robust_mixed_dist-0.1.3.dist-info/licenses/LICENSE,sha256=6kbiFSfobTZ7beWiKnHpN902HgBx-Jzgcme0SvKqhKY,1091
|
|
7
|
+
robust_mixed_dist-0.1.3.dist-info/METADATA,sha256=ltEAdiaLxztwrpj-eEGv5WC95W58lrJ5K8vnzOsvHLE,2071
|
|
8
|
+
robust_mixed_dist-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
9
|
+
robust_mixed_dist-0.1.3.dist-info/top_level.txt,sha256=kQcI1A0TrhkUiY8uvP0QHpZMPOwuLq-KojGhJoW9cjs,18
|
|
10
|
+
robust_mixed_dist-0.1.3.dist-info/RECORD,,
|
|
@@ -1,32 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: robust-mixed-dist
|
|
3
|
-
Version: 0.1.1
|
|
4
|
-
Summary: For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
|
|
5
|
-
Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
|
|
6
|
-
Author: Fabio Scielzo Ortiz
|
|
7
|
-
Author-email: fabio.scielzoortiz@gmail.com
|
|
8
|
-
Classifier: Programming Language :: Python :: 3
|
|
9
|
-
Classifier: License :: OSI Approved :: MIT License
|
|
10
|
-
Classifier: Operating System :: OS Independent
|
|
11
|
-
Requires-Python: >=3.7
|
|
12
|
-
Description-Content-Type: text/markdown
|
|
13
|
-
License-File: LICENSE
|
|
14
|
-
Requires-Dist: polars
|
|
15
|
-
Requires-Dist: numpy
|
|
16
|
-
Requires-Dist: pandas
|
|
17
|
-
Requires-Dist: scipy
|
|
18
|
-
Dynamic: author
|
|
19
|
-
Dynamic: author-email
|
|
20
|
-
Dynamic: classifier
|
|
21
|
-
Dynamic: description
|
|
22
|
-
Dynamic: description-content-type
|
|
23
|
-
Dynamic: home-page
|
|
24
|
-
Dynamic: license-file
|
|
25
|
-
Dynamic: requires-dist
|
|
26
|
-
Dynamic: requires-python
|
|
27
|
-
Dynamic: summary
|
|
28
|
-
|
|
29
|
-
# robust_mixed_dist
|
|
30
|
-
|
|
31
|
-
For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
|
|
32
|
-
|
|
File without changes
|
|
File without changes
|
|
File without changes
|