robust-mixed-dist 0.1.1__py3-none-any.whl → 0.1.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -0,0 +1,43 @@
1
+ Metadata-Version: 2.4
2
+ Name: robust-mixed-dist
3
+ Version: 0.1.3
4
+ Summary: Compute statistical robust distances for mixed data.
5
+ Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
+ Author: Fabio Scielzo Ortiz
7
+ Author-email: fabio.scielzoortiz@gmail.com
8
+ Classifier: Programming Language :: Python :: 3
9
+ Classifier: License :: OSI Approved :: MIT License
10
+ Classifier: Operating System :: OS Independent
11
+ Requires-Python: >=3.7
12
+ Description-Content-Type: text/markdown
13
+ License-File: LICENSE
14
+ Requires-Dist: polars
15
+ Requires-Dist: numpy
16
+ Requires-Dist: pandas
17
+ Requires-Dist: scipy
18
+ Dynamic: author
19
+ Dynamic: author-email
20
+ Dynamic: classifier
21
+ Dynamic: description
22
+ Dynamic: description-content-type
23
+ Dynamic: home-page
24
+ Dynamic: license-file
25
+ Dynamic: requires-dist
26
+ Dynamic: requires-python
27
+ Dynamic: summary
28
+
29
+ # robust_mixed_dist
30
+
31
+ Data scientists address real-world problems using multivariate and heterogeneous
32
+ datasets, characterized by multiple variables of different natures. Selecting a suitable
33
+ distance function between units is crucial, as many statistical techniques and machine
34
+ learning algorithms depend on this concept. Traditional distances, such as Euclidean
35
+ or Manhattan, are unsuitable for mixed-type data, and although Gower distance was
36
+ designed to handle this kind of data, it may lead to suboptimal results in the presence
37
+ of outlying units or underlying correlation structure.
38
+
39
+ In the paper ***Grané, A., Scielzo-Ortiz, F.: On generalized Gower distance for mixed-type data: extensive simulation study and new software tools. Submitted to SORT (2025)*** robust distances for mixed-type data are defined and explored, namely **robust generalized Gower** and
40
+ **robust related metric scaling**. In addition, the new Python package `robust_mixed_dist` is developed, which enables to
41
+ compute these robust proposals as well as classical ones.
42
+
43
+ The package is located in Python Package Index (PyPI), the standard repository of packages for the Python programming language: https://pypi.org/project/robust_mixed_dist/
@@ -3,8 +3,8 @@ robust_mixed_dist/binary.py,sha256=n_RIANha7PDeeP8qKTizJQtA5zTP5KoOjcIY8vDkRjE,3
3
3
  robust_mixed_dist/mixed.py,sha256=mtHjh8e3ahxq51X0ri74N1O31OMQMUpmxvzmyJbsJVc,39403
4
4
  robust_mixed_dist/multiclass.py,sha256=diUMIvP_O3BlOlMxz6Q7HIkmdDu18Pl9bbiszTHjweI,1778
5
5
  robust_mixed_dist/quantitative.py,sha256=_wiIhyuwEjHW5twlYDCCfK8qXITPT8XPFz1wBQRq7Ho,22397
6
- robust_mixed_dist-0.1.1.dist-info/licenses/LICENSE,sha256=6kbiFSfobTZ7beWiKnHpN902HgBx-Jzgcme0SvKqhKY,1091
7
- robust_mixed_dist-0.1.1.dist-info/METADATA,sha256=WAUS1SEfQmY7vd8nhIdhjEM_hsoxc7hhHyN7W5wKMhQ,1118
8
- robust_mixed_dist-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
9
- robust_mixed_dist-0.1.1.dist-info/top_level.txt,sha256=kQcI1A0TrhkUiY8uvP0QHpZMPOwuLq-KojGhJoW9cjs,18
10
- robust_mixed_dist-0.1.1.dist-info/RECORD,,
6
+ robust_mixed_dist-0.1.3.dist-info/licenses/LICENSE,sha256=6kbiFSfobTZ7beWiKnHpN902HgBx-Jzgcme0SvKqhKY,1091
7
+ robust_mixed_dist-0.1.3.dist-info/METADATA,sha256=ltEAdiaLxztwrpj-eEGv5WC95W58lrJ5K8vnzOsvHLE,2071
8
+ robust_mixed_dist-0.1.3.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
9
+ robust_mixed_dist-0.1.3.dist-info/top_level.txt,sha256=kQcI1A0TrhkUiY8uvP0QHpZMPOwuLq-KojGhJoW9cjs,18
10
+ robust_mixed_dist-0.1.3.dist-info/RECORD,,
@@ -1,32 +0,0 @@
1
- Metadata-Version: 2.4
2
- Name: robust-mixed-dist
3
- Version: 0.1.1
4
- Summary: For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
5
- Home-page: https://github.com/FabioScielzoOrtiz/robust_mixed_dist-package
6
- Author: Fabio Scielzo Ortiz
7
- Author-email: fabio.scielzoortiz@gmail.com
8
- Classifier: Programming Language :: Python :: 3
9
- Classifier: License :: OSI Approved :: MIT License
10
- Classifier: Operating System :: OS Independent
11
- Requires-Python: >=3.7
12
- Description-Content-Type: text/markdown
13
- License-File: LICENSE
14
- Requires-Dist: polars
15
- Requires-Dist: numpy
16
- Requires-Dist: pandas
17
- Requires-Dist: scipy
18
- Dynamic: author
19
- Dynamic: author-email
20
- Dynamic: classifier
21
- Dynamic: description
22
- Dynamic: description-content-type
23
- Dynamic: home-page
24
- Dynamic: license-file
25
- Dynamic: requires-dist
26
- Dynamic: requires-python
27
- Dynamic: summary
28
-
29
- # robust_mixed_dist
30
-
31
- For more information, check out the official documentation of `robust_mixed_dist` at: https://fabioscielzoortiz.github.io/robust_mixed_dist-docu/intro.html
32
-