rnow 0.2.4__py3-none-any.whl → 0.3.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rnow/cli/commands.py +226 -84
- rnow/cli/test.py +536 -441
- rnow/core/__init__.py +4 -1
- rnow/core/reward.py +34 -3
- rnow/core/tool.py +29 -7
- rnow/models.py +88 -6
- rnow/templates/deepseek-aha/config.yml +1 -1
- rnow/templates/mcp-tavily/config.yml +1 -1
- rnow/templates/rl-single/config.yml +7 -7
- rnow/templates/rl-single/train.jsonl +0 -908
- rnow/templates/rl-tools/config.yml +1 -1
- rnow/templates/tutorial-reward/config.yml +7 -7
- rnow/templates/tutorial-reward/train.jsonl +0 -908
- rnow/templates/tutorial-tool/config.yml +1 -1
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/METADATA +23 -9
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/RECORD +22 -22
- /rnow/templates/rl-tools/{env.py → tools.py} +0 -0
- /rnow/templates/tutorial-tool/{env.py → tools.py} +0 -0
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/WHEEL +0 -0
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/entry_points.txt +0 -0
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/licenses/LICENSE +0 -0
- {rnow-0.2.4.dist-info → rnow-0.3.9.dist-info}/top_level.txt +0 -0
|
@@ -1,24 +1,9 @@
|
|
|
1
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine how many 1000 digit numbers \\( A \\) have the property that when any digit of \\( A \\), aside from the first, is deleted to form a 999 digit number \\( B \\), then \\( B \\) divides \\( A \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "32"}}
|
|
2
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x_0 = 1 \\), and \\( x_{n+1} = 2x_n + \\sqrt{3x_n^2 - 2} \\). Determine \\( x_{2016} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(3-\\sqrt{3})(2-\\sqrt{3})^{2016}+(3+\\sqrt{3})(2+\\sqrt{3})^{2016}}{6}\\)"}}
|
|
3
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( v \\) and \\( w \\) be two randomly chosen roots of the equation \\( z^{1997} - 1 = 0 \\). Find the probability that \\( \\sqrt{2 + \\sqrt{3}} \\le |v + w| \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{333}{1997}\\)"}}
|
|
4
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an isosceles right-angled triangle with \\(AB = AC = 1\\) and \\(\\angle CAB = 90^\\circ\\). Let \\(D\\) be the midpoint of the side \\(BC\\), and let \\(E\\) and \\(F\\) be two points on the side \\(BC\\). Let \\(M\\) be the point of intersection of the circles \\((ADE)\\) and \\((ABF)\\) (apart from \\(A\\)). Let \\(N\\) be the point of intersection of the line \\(AF\\) and the circle \\((ACE)\\) (apart from \\(A\\)). Let \\(P\\) be the point of intersection of the line \\(AD\\) and the circle \\((AMN)\\). Find the length of \\(AP\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
5
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $|...|||x^2-x|-1|-1|...-1|=x^2-2x-14$, where the number of nested absolute value units on the left side is 11."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-3"}}
|
|
6
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a cube with edges $\\overline{AB}, \\overline{BC},$ and $\\overline{CD},$ points $P, Q,$ and $R$ are on $\\overline{AB}, \\overline{BC},$ and $\\overline{CD},$ respectively, such that $AP=5, PB=15, BQ=15,$ and $CR=10.$ What is the area of the polygon that is the intersection of plane $PQR$ and the cube?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "525"}}
|
|
7
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet the product of the roots of \\( z^6 + z^4 + z^3 + z^2 + 1 = 0 \\) with positive imaginary part be \\( r(\\cos \\theta^\\circ + i \\sin \\theta^\\circ) \\). Find \\( \\theta \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "276"}}
|
|
8
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet a sequence \\( S \\) be \\( 1, 2, 3, \\cdots, 9 \\). In every move, you pick any three adjacent numbers and reverse their order. For example, \\( (1, 2, 3, 4, \\cdots) \\) changes to \\( (3, 2, 1, 4, \\cdots) \\). How many distinct sequences can you make using one or more such moves?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2880"}}
|
|
9
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the smallest number of planes needed to divide a cube into congruent tetrahedra?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
10
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a\\) and \\(b\\) be real numbers. We say that a pair \\((x, y)\\) of real numbers is 'nice' if \\((x - y)\\) is an integer multiple of 2017. Define the sequence \\(u_0 = a\\), \\(u_1 = b\\), and \\(u_{n+2} \\cdot u_n + u_{n+1} = 0\\). Find the smallest positive integer \\(M\\) such that every set of \\(M\\) positive integers contains two different numbers \\(i\\) and \\(j\\) such that the pair \\((u_i, u_j)\\) is 'nice'."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
11
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\((a, b, c, d) \\in \\mathbb{R}^4\\) such that \\(a + b + c + d = 3\\) and \\(a^2 + b^2 + c^2 + d^2 = 45\\). Find the value of \n\\[\n\\frac{a^5}{(a-b)(a-c)(a-d)} + \\frac{b^5}{(b-a)(b-c)(b-d)} + \\frac{c^5}{(c-a)(c-b)(c-d)} + \\frac{d^5}{(d-a)(d-b)(d-c)}.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "27"}}
|
|
12
1
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of \\(a^2 + b^2\\) if the equation \\(x^4 + ax^3 + bx^2 + ax + 1 = 0\\) has real roots."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4}{5}\\)"}}
|
|
13
2
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the least \\( M \\) such that the following inequality holds for positive reals \\( a, b, c \\):\n\\[ |(a-b)(b-c)|^{3} + |(b-c)(c-a)|^{3} + |(c-a)(a-b)|^{3} \\le M(a^{3} + b^{3} + c^{3})^{2} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
14
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f : \\mathbb{R}^+ \\to \\mathbb{R}^+ \\) such that \n\\[ f(x+f(y-x)) = f(x)+f(y)-x, \\ \\ \\ \\forall x,y \\in \\mathbb{R}^+, \\ y>x. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x + k \\) for \\( k \\in \\mathbb{R}^+ \\)"}}
|
|
15
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for \\( x \\) in the equation \\( 8x = 4^x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 2 \\) or \\( x \\approx 0.15495346619034528 \\)"}}
|
|
16
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be an inscribed trapezoid with \\(AB \\parallel CD\\). If \\(m(\\widehat{AOD}) = 60^\\circ\\) and the altitude of the trapezoid is \\(10\\), what is the area of the trapezoid?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(100\\sqrt{3}\\)"}}
|
|
17
3
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a right triangle \\(ABC\\) with \\(\\widehat{A} = 90^\\circ\\), \\(BI\\) and \\(CI\\) are the angle bisectors of \\(\\widehat{ABC}\\) and \\(\\widehat{ACB}\\) respectively. Given that \\(AB = 5\\) and \\(IC = 6\\), find the length of \\(BC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9"}}
|
|
18
4
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all decreasing, continuous functions \\( f \\colon \\mathbb{R} \\to \\mathbb{R} \\) such that \\( f(x+y) + f(f(x^2) + f(y^2)) = f(f(x) + f(y) + f(y^2 + f(x^2))) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 0 \\)"}}
|
|
19
5
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\( \\triangle ABC \\) with \\( \\angle B = 120^\\circ \\), there is a point \\( D \\) on segment \\( AC \\) such that \\( \\angle DCB = 2 \\angle DBC \\) and \\( AD = BC \\). Find \\( \\angle DBC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(10^\\circ\\)"}}
|
|
20
6
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of \\(xy\\) given that \\(x^2 + y^2 + z^2 = 300\\) and \\(xy + yz + zx = 130\\), where \\(x, y, z\\) are real numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-10"}}
|
|
21
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the parallelogram \\(ABCD\\), the lengths of the sides \\(AB\\) and \\(BC\\) are 10 cm and 15 cm, respectively, and \\(\\cos DAB = \\frac{3}{5}\\). Inside \\(ABCD\\), a point \\(M\\) is chosen such that \\(MC = 3\\sqrt{10}\\) and the distance from \\(M\\) to line \\(AD\\) is 5 cm. Find the length of \\(AM\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "13"}}
|
|
22
7
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum real number $k$ such that for all positive real numbers $x$ and $y$, the inequality $x^3 + y^5 + k \\ge xy$ holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{7}{3} \\cdot \\sqrt[7]{\\frac{1}{5^{10} \\cdot 3^5}}\\)"}}
|
|
23
8
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nPoles \\( A \\) and \\( B \\) are vertical line segments with their bases on the x-axis. The tops of poles \\( A \\) and \\( B \\) are at \\((0,1)\\) and \\((200,5)\\), respectively. A string \\( S \\) contains the points \\((0,1)\\) and \\((200,0)\\) and intersects another string connecting \\((0,0)\\) and \\((200,5)\\) at point \\( T \\). Pole \\( P_1 \\) is constructed with \\( T \\) as its top point. For each integer \\( i > 1 \\), pole \\( P_i \\) is constructed so that its top point is the intersection of \\( S \\) and the line segment connecting the base of \\( P_{i-1} \\) (on the x-axis) and the top of pole \\( B \\). Find the height of pole \\( P_{100} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{21}\\)"}}
|
|
24
9
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFactorize the polynomial $x^8 - 2x^4y^4 \\cos 4\\theta + y^8$ completely as a product of polynomials of smaller degree with real coefficients."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (x^2 + 2xy\\sin\\theta + y^2)(x^2 - 2xy\\sin\\theta + y^2)(x^2 + 2xy\\cos\\theta + y^2)(x^2 - 2xy\\cos\\theta + y^2) \\)"}}
|
|
@@ -27,974 +12,81 @@
|
|
|
27
12
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\( x^2 + y^2 \\) where \\( x \\) and \\( y \\) satisfy the system:\n\\[ x(x^2 - 3y^2) = \\sqrt{414} \\]\n\\[ y(y^2 - 3x^2) = 40 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt[3]{2014}\\)"}}
|
|
28
13
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x_1, x_2, x_3 \\) be the roots of the polynomial equation \\( x^3 - x^2 - 2x + 4 = 0 \\) with \\( |x_1| \\geq |x_2| \\geq |x_3| \\). Find the polynomial \\( f \\in \\mathbb{Z}[x] \\) of minimal degree that has \\( x_1^5 + x_2^3 + x_3^2 \\) as a root."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x^3 + 29x^2 + 271x + 787 \\)"}}
|
|
29
14
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor any two positive real numbers \\( x \\) and \\( y \\), the operation \\( x \\star y \\) is defined as \\( x \\star y = \\frac{x}{xy + 1} \\). Find the value of \n\\[ (((\\ldots(((100 \\star 99) \\star 98) \\star 97) \\star \\ldots) \\star 3) \\star 2) \\star 1. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{100}{495001}\\)"}}
|
|
30
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the smallest number of edges in a graph with $n$ nodes such that adding any new edge results in a 4-clique (a set of 4 nodes all pairwise connected by edges)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2n - 3 \\)"}}
|
|
31
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the set of all quadruplets $(x, y, z, w)$ of non-zero real numbers which satisfy the equation\n$$1 + \\frac{1}{x} + \\frac{2(x + 1)}{xy} + \\frac{3(x + 1)(y + 2)}{xyz} + \\frac{4(x + 1)(y + 2)(z + 3)}{xyzw} = 0.$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\{(x, y, z, w) \\mid x = -1 \\text{ or } y = -2 \\text{ or } z = -3 \\text{ or } w = -4\\}\\)"}}
|
|
32
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTwo distinct points D and E are chosen randomly from 15 points equally spaced around a circle centered at O such that each pair of points D and E has the same probability of being chosen. The probability that the perpendicular bisectors of OD and OE intersect strictly inside the circle can be expressed as a/b, where a and b are relatively prime positive integers. Find a + b."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "11"}}
|
|
33
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all parameter \\( m \\in \\mathbb{R} \\) such that the system of equations has real solutions.\n\\[\n\\left\\{\n\\begin{matrix}\nx^2 + 3xz + z^2 = 1 \\\\\n3y^2 + 3yz + z^2 = 4 \\\\\nx^2 - xy + y^2 = m\n\\end{matrix}\n\\right.\n\\]\nWhere \\( x, y, z \\) are variables."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m \\in [\\sim 0.278479..., \\sim 94.983515...] \\)"}}
|
|
34
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of integers $(x,y)$ such that $6x^2y+2y^3$ is a perfect cube."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x, x), (x, -x), (x, 0)\\)"}}
|
|
35
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the number of real solutions to the equation $\\lfloor \\sin x \\rfloor = \\left\\{\\frac{x}{2\\pi}\\right\\}+\\left\\{\\frac{2x}{5\\pi}\\right\\}$, where $\\lfloor x\\rfloor$ represents the floor function and $\\{x\\}=x-\\lfloor x\\rfloor$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "infinitely many real solutions."}}
|
|
36
15
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all real numbers $x$ which satisfy \n\\[ x = \\sqrt{a - \\sqrt{a+x}} \\]\nwhere $a > 0$ is a parameter."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{-1 + \\sqrt{4a - 3}}{2} \\) if and only if \\( a \\ge 1 \\)"}}
|
|
37
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of the positive real number \\( R \\) such that there exist 9 points \\( P_1, \\ldots, P_9 \\) on a plane, where the distance between each pair of points is at least 1, and all points can be covered by a disk of radius \\( R \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\sqrt{\\frac{1}{2-\\sqrt{2}}} \\)"}}
|
|
38
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all $n \\in \\mathbb{N}$ such that $(x^{4}-1)^{n}+(x^{2}-x)^{n}$ is divisible by $x^{5}-1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 10m + 5 \\) for \\( m \\in \\mathbb{N} \\)"}}
|
|
39
16
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven two square trinomials \\( f(x) \\) and \\( g(x) \\), and real numbers \\( a, b, c, d \\) such that \\( f(a) = 2 \\), \\( f(b) = 3 \\), \\( f(c) = 7 \\), \\( f(d) = 10 \\), and \\( g(a) = 16 \\), \\( g(b) = 15 \\), \\( g(c) = 11 \\), find \\( g(d) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8"}}
|
|
40
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the strictly increasing sequences of non-negative integers $(a_n)$, where $n \\geq 1$, such that the following conditions are satisfied simultaneously:\na) For every natural number $n \\geq 2014$, the equality $a_1^3 + a_2^3 + \\cdots + a_n^3 = (a_1 + a_2 + \\cdots + a_n)^2$ holds.\nb) For every natural number $k \\geq 2015$, the sum $a_1 + a_2 + \\cdots + a_{2014}$ cannot be written as a sum of $k$ consecutive non-negative integers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a_n = n - 1\\) for all \\(n \\geq 1\\)"}}
|
|
41
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence defined by \\( u_0 > 1 \\) and \\( u_{n+1} = \\frac{u_n + 1 + \\sqrt{2(u_n^2 + 1)}}{u_n - 1} \\) for \\( n = 0, 1, 2, \\ldots \\), find \\( \\lim_{n \\to +\\infty} u_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2 + \\sqrt{3} \\)"}}
|
|
42
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the last three digits of the number \\( N = 1998^{1999^{2000}} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "248"}}
|
|
43
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the least value of \\( x > 0 \\) such that for all positive real numbers \\( a, b, c, d \\) satisfying \\( abcd = 1 \\), the inequality\n\\[ a^x + b^x + c^x + d^x \\ge \\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c} + \\frac{1}{d} \\]\nis true."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
44
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many ordered triples $(a, b, c)$ of positive integers are there such that none of $a, b, c$ exceeds $2010$ and each of $a, b, c$ divides $a + b + c$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9045"}}
|
|
45
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of positive integers $(m,n)$ such that $\\frac{m+n^5}{m^2+n^2}$ is an integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(1, 1)"}}
|
|
46
17
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be real numbers. Find the minimum value of \\(f(a, b, c) = \\max_{0 \\le x \\le 1} |x^3 + ax^2 + bx + c|\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{32}\\)"}}
|
|
47
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet pyramid \\( S.ABCD \\) have a rectangular base \\( ABCD \\) with \\( AB = 2a \\). Given that \\( SA = SB \\) and the plane \\( (SAB) \\) is perpendicular to the plane \\( (ABCD) \\). Point \\( M \\) is on \\( SD \\) such that \\( SM = MD \\). The plane \\( (ABM) \\) is perpendicular to the plane \\( (SCD) \\) and \\( AM \\) is perpendicular to \\( BD \\). Find the volume \\( V_{S.BCM} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{3}a^3\\)"}}
|
|
48
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all numbers \\( m \\) such that Euler's totient function \\( \\phi(m) \\) divides \\( m \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m = 2^a \\cdot 3^b \\) where \\( a \\geq 1 \\) and \\( b \\geq 0 \\)"}}
|
|
49
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers \\( n, x, y \\) such that \\( \\big| 2^x - n^{y+1} \\big| = 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (n, x, y) = (3, 3, 1) \\)"}}
|
|
50
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the complex plane, let points \\( A(x) \\), \\( B(y) \\), and \\( C(z) \\) be such that \\( |x| = |y| = |z| = m \\) where \\( m \\in \\mathbb{R}^+ \\), and \\( m^2 (x + y + z) = xyz \\in \\mathbb{R} \\). Find the area of triangle \\( ABC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m^2 \\)"}}
|
|
51
18
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCamila creates a pattern to write the following numbers:\n$2, 4$\n$5, 7, 9, 11$\n$12, 14, 16, 18, 20, 22$\n$23, 25, 27, 29, 31, 33, 35, 37$\n$\u2026$\nFollowing the same pattern, what is the sum of the numbers in the tenth row?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3840"}}
|
|
52
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $n$ be a positive integer, and let $[n]=\\{1,2,\\dots,n\\}$. Find the maximum possible cardinality of a subset $S$ of $[n]$ such that there are no distinct $a, b, c \\in S$ satisfying $a + b = c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\lceil \\frac{n+1}{2} \\rceil\\)"}}
|
|
53
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), points \\(D\\) and \\(E\\) are taken on side \\(AB\\) such that \\(\\angle ACD = \\angle DCE = \\angle ECB = k\\). Given the lengths of \\(AC\\), \\(BC\\), and the angle \\(k\\), find the ratio \\(CD:CE\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{CD}{CE}=\\frac{BC+2 \\cdot AC \\cdot \\cos k}{2 \\cdot BC \\cdot \\cos k + AC}\\)"}}
|
|
54
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $\\sqrt[5]{27}x^{10} - 5x^6 + \\sqrt[5]{864} = 0$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$x = \\pm \\sqrt[10]{3}$"}}
|
|
55
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe circle \u0460 touches the circle \u03a9 internally at point P. The center O of \u03a9 is outside \u0460. Let XY be a diameter of \u03a9 which is also tangent to \u0460. Assume PY > PX. Let PY intersect \u0460 at Z. If YZ = 2PZ, what is the magnitude of angle PYX in degrees?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "15 degrees"}}
|
|
56
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet set \\( T = \\{1, 2, 3, \\ldots, 2020\\} \\). Find the maximum number of elements in a subset \\( A \\) of \\( T \\) such that for any \\( a, b, c \\in A \\) with \\( a < b < c \\), the numbers \\( a, b, \\) and \\( c \\) can form the sides of a triangle."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1011"}}
|
|
57
19
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind a polynomial $f(x)$ with integer coefficients of degree $\\ge 1$ such that $f(\\sqrt{2}+\\sqrt{3}) = \\sqrt{2}-\\sqrt{3}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^3 - 10x \\)"}}
|
|
58
20
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all prime numbers \\( p \\) such that there exist positive integers \\( x, y, n \\) (with \\( n > 1 \\)) satisfying the equation:\n\\[ x^n + y^n = p^p \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All primes \\( p \\) such that \\( p \\equiv 1 \\pmod{4} \\)"}}
|
|
59
21
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a set of 2016 positive numbers where both their sum and the sum of their reciprocals are equal to 2017, find the maximum possible value of \\( x + \\frac{1}{x} \\) for one of those numbers \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{8065}{2017}\\)"}}
|
|
60
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the cycle index of a cyclic subgroup of order \\( n \\) in \\( S_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{n} \\left( t_n + \\sum_{d \\mid n, d < n} \\phi(d) t_d^{\\frac{n}{d}} \\right)\\)"}}
|
|
61
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \n\\[ f(x + y) = f(x)f(y) - c \\sin x \\sin y \\quad \\forall x, y \\in \\mathbb{R} \\]\nwhere \\( c > 1 \\) is a constant."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\cos x + \\sqrt{c-1} \\sin x \\) or \\( f(x) = \\cos x - \\sqrt{c-1} \\sin x \\)"}}
|
|
62
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the greatest power of $2$ that divides $\\sum_{n=0}^{10^{10}}\\binom{2\\cdot 10^{10}}{2n}5^n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{2 \\cdot 10^{10} - 1}\\)"}}
|
|
63
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\( n \\ge 2 \\) and \\( k \\) such that\n\\[\n(n-2)! + (n+2)! = k^2\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(n = 3, k = 11\\)"}}
|
|
64
22
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nRectangle \\(ABCD\\) has \\(AB=5\\) and \\(BC=4\\). Point \\(E\\) lies on line \\(AB\\) so that \\(EB=1\\), point \\(G\\) lies on line \\(BC\\) so that \\(CG=1\\), and point \\(F\\) lies on line \\(CD\\) so that \\(DF=2\\). Segments \\(AG\\) and \\(AC\\) intersect \\(EF\\) at \\(Q\\) and \\(P\\), respectively. What is the value of \\(\\frac{PQ}{EF}?\\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{10}{91}\\)"}}
|
|
65
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, d, e, f\\) be nonnegative reals such that \\(a + b + c + d + e + f = 6\\). Find the maximum value of \\(abc + bcd + cde + def + efa + fab\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8"}}
|
|
66
23
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute triangle \\(ABC\\), points \\(H\\), \\(G\\), and \\(M\\) are located on \\(BC\\) such that \\(AH\\), \\(AG\\), and \\(AM\\) are the height, angle bisector, and median of the triangle, respectively. It is known that \\(HG = GM\\), \\(AB = 10\\), and \\(AC = 14\\). Find the area of triangle \\(ABC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 12\\sqrt{34} \\)"}}
|
|
67
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(0 < c < 1\\) be a given real number. Determine the least constant \\(K\\) such that for all positive real \\(M > 1\\), there exists a strictly increasing sequence \\(x_0, x_1, \\ldots, x_n\\) (of arbitrary length) with \\(x_0 = 1\\) and \\(x_n \\geq M\\) satisfying\n\\[\n\\sum_{i=0}^{n-1} \\frac{(x_{i+1} - x_i)^c}{x_i^{c+1}} \\leq K.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( c^{-c}(1-c)^{-(1-c)} \\)"}}
|
|
68
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor each positive integer \\( n \\), find the number of \\( n \\)-digit positive integers such that no two consecutive digits are equal and the last digit is a prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{2}{5}(9^n - (-1)^n) \\)"}}
|
|
69
24
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. For a permutation \\( \\pi \\) of the set \\( S = \\{1, 2, \\ldots, n\\} \\), define \\( f(\\pi) = \\sum_{k=1}^{n} |k - \\pi(k)| \\). Express \\( \\sum f(\\pi) \\) in closed form, where the sum is taken over all permutations of \\( S \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(n-1)(n+1)!}{3}\\)"}}
|
|
70
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all continuous functions \\( f(x), g(x), q(x) \\) on \\( \\mathbb{R} \\) such that\n\\[ f(x^2) + f(y^2) = [q(x) - q(y)]g(x + y) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 0, g(x) = 0, q(x) = 1 \\)"}}
|
|
71
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f\\colon \\mathbb{N}\\to\\mathbb{N} \\) such that \n\\[ (2^m+1)f(n)f(2^{m}n) = 2^mf^2(n) + f^2(2^{m}n) + (2^m-1)^2n \\]\nfor all \\( m, n \\in \\mathbb{N} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = n + 1 \\) (under the additional constraint that \\( f \\) is increasing)"}}
|
|
72
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor each positive integer \\( n > 1 \\), if \\( n = p_1^{\\alpha_1} p_2^{\\alpha_2} \\cdots p_k^{\\alpha_k} \\) where \\( p_i \\) are pairwise different prime numbers and \\( \\alpha_i \\) are positive integers, define \\( f(n) \\) as \\( \\alpha_1 + \\alpha_2 + \\cdots + \\alpha_k \\). For \\( n = 1 \\), let \\( f(1) = 0 \\). Find all pairs of integer polynomials \\( P(x) \\) and \\( Q(x) \\) such that for any positive integer \\( m \\), \\( f(P(m)) = Q(f(m)) \\) holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = c \\cdot x^a \\) and \\( Q(x) = ax + f(c) \\)"}}
|
|
73
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be real numbers such that \\(a^2 - bc = b^2 - ca = c^2 - ab = 2\\). Find at least one triplet \\((a, b, c)\\) that satisfies these conditions."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((0, \\sqrt{2}, -\\sqrt{2})\\)"}}
|
|
74
25
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all odd divisors of $5^{2n} + 3 \\cdot 2^{5n-2}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
75
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer \\( k > 1 \\), find all positive integers \\( n \\) such that the polynomial \n\\[ P(z) = z^n + \\sum_{j=0}^{2^k-2} z^j = 1 + z + z^2 + \\cdots + z^{2^k-2} + z^n \\]\nhas a complex root \\( w \\) such that \\( |w| = 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is any odd positive integer."}}
|
|
76
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many angles $\\theta$ with $0 \\leq \\theta \\leq 2\\pi$ satisfy $\\log(\\sin(3\\theta)) + \\log(\\cos(2\\theta)) = 0$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
77
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGive an example of a second degree polynomial \\( P \\in \\mathbb{R}[x] \\) such that for all \\( x \\in \\mathbb{R} \\) with \\( |x| \\leq 1 \\),\n\\[ \\left| P(x) + \\frac{1}{x-4} \\right| \\leq 0.01. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = \\frac{1}{4} + \\frac{x}{16} + \\frac{x^2}{64} \\)"}}
|
|
78
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest real number $k$ for which the inequality\n$$(x+y+z)^2-81 \\geq k(xy+yz+zx-27)$$\nholds true for all $x, y, z > 0$ satisfying\n$$xy + yz + zx = xyz.$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{15}{4}\\)"}}
|
|
79
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P \\) be a regular \\((2n+1)\\)-gon in the plane, where \\( n \\) is a positive integer. We want to color the sides of \\( P \\) in 3 colors such that each color is used at least once. Additionally, from any point external to \\( P \\), at most 2 different colors on \\( P \\) can be seen (ignoring the vertices of \\( P \\), which are considered colorless). Find the largest positive integer \\( n \\) for which such a coloring is possible."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
80
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all quadruples $(a, b, c, d)$ of real numbers satisfying the equation\n\\[256a^3b^3c^3d^3 = (a^6+b^2+c^2+d^2)(a^2+b^6+c^2+d^2)(a^2+b^2+c^6+d^2)(a^2+b^2+c^2+d^6).\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((0, 0, 0, 0)\\), \\((1, 1, 1, 1)\\), \\((1, 1, 1, -1)\\) and permutations, \\((1, 1, -1, -1)\\) and permutations, \\((1, -1, -1, -1)\\) and permutations, \\((-1, -1, -1, -1)\\)"}}
|
|
81
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn each of 2019 boxes, there are 2019 stones numbered from 1 to 2019 with a total mass of 1 kilogram. Determine the maximum number of ways, $k$, to pick stones from different boxes with different numbers such that their total mass is at least 1 kilogram."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2018!\\)"}}
|
|
82
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\( n \\in \\mathbb{N} \\), determine how many polynomials \\( P(x) \\) there are such that its coefficients are in \\(\\{1, 2, 3, 0\\}\\) and \\( P(2) = n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left\\lfloor \\frac{n}{2} \\right\\rfloor + 1\\)"}}
|
|
83
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many real roots does the equation $x^{5} - 5x + 4 = 0$ have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
84
26
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA Hotel corridor has 10 rooms on each side. A math olympiad team leader wants to reserve 7 rooms such that, on each side of the corridor, no two rooms are adjacent. In how many ways can the reservation be made?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4352"}}
|
|
85
27
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe interior of a quadrilateral is bounded by the graphs of $(x+ay)^2=4a^2$ and $(ax-y)^2=a^2,$ where $a$ is a positive real number. What is the area of this region in terms of $a$, valid for all $a>0$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{8a^2}{a^2+1}\\)"}}
|
|
86
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the geometric locus of point \\( M \\) such that the angle \\( \\angle AMB = 45^\\circ \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Two major arcs of circles intersecting at \\( A \\) and \\( B \\) with central angle \\( 90^\\circ \\) for arc \\( AB \\)."}}
|
|
87
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a 100\u00d7100 square grid where each cell is colored either black or white, ensure that every 1\u00d72 rectangle contains at least one black cell and every 1\u00d76 rectangle contains at least two neighboring black cells. What is the minimum number of black cells required in the grid?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6000"}}
|
|
88
28
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( n \\in \\mathbb{N^{*}} \\) and \\( x_1, x_2, \\ldots, x_n > 0 \\) satisfying \\( \\sum_{i=1}^{n} \\frac{1}{x_i} = n \\), find the minimum value of \\( \\sum_{i=1}^{n} \\frac{x_i^2}{i} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\left(\\sum\\limits_{i=1}^n\\frac{1}{\\sqrt[3]{i}}\\right)^3}{n^2}\\)"}}
|
|
89
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\( k \\), if \\( P \\), \\( Q \\), \\( R \\), and \\( S \\) are points on the sides of quadrilateral \\( ABCD \\) such that \n\\[ \\frac{AP}{PB} = \\frac{BQ}{QC} = \\frac{CR}{RD} = \\frac{DS}{SA} = k, \\]\nand the area of quadrilateral \\( PQRS \\) is exactly 52% of the area of quadrilateral \\( ABCD \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k = \\frac{2}{3} \\) or \\( k = \\frac{3}{2} \\)"}}
|
|
90
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine if there exist two positive integers $a$ and $b$ such that all the terms of the following sequence are positive integers:\n\\[ x_1 = 2010, \\quad x_2 = 2011, \\quad x_{n+2} = x_n + x_{n+1} + a \\sqrt{x_n x_{n+1} + b} \\]\nfor all $n \\geq 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a = 2, b = 2011\\)"}}
|
|
91
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which natural number $n$ do there exist natural numbers $x, y_1, y_2, \\ldots, y_n$ such that\n\\[x^2 = 2(y_1^2 + y_2^2 + \\cdots + y_n^2)?\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n > 1 \\)"}}
|
|
92
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all $n$-tuples $(a_1, a_2, \\ldots, a_n)$ of positive integers such that:\n\\[\n(a_1! - 1)(a_2! - 1) \\cdots (a_n! - 1) - 16\n\\]\nis a perfect square."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$(a_1, a_2, \\ldots, a_n) = (3, 3, 2, 2, \\ldots, 2)$ with exactly two 3's and any number of 2's."}}
|
|
93
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real-coefficient polynomials $P(x)$ such that for all $x \\in \\mathbb{R}$, the equation $x\\,P(x+2) + 3P(x) = 9P(x+2) + x\\,P(x)$ holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = k(x-5)(x-7)(x-9) \\)"}}
|
|
94
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a box, there are 4 green balls, 4 blue balls, 2 red balls, 1 brown ball, 1 white ball, and 1 black ball. Balls are drawn one at a time without replacement until two balls of the same color are drawn. The probability that exactly 7 balls are drawn can be expressed as $\\frac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Compute $m+n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "437"}}
|
|
95
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven four real numbers \\( a \\ge b \\ge c \\ge d \\) satisfying \\( a + b + c - 3d = 4 \\), find the maximum value of the expression:\n\\[ T = (a - b)(b - c)(c - d)(a - d). \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
96
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor each set of five integers \\( S = \\{a_1, a_2, a_3, a_4, a_5\\} \\), let \\( P_S \\) be the product of all differences between two of the elements, namely \n\n\\[ P_S = (a_5 - a_1)(a_4 - a_1)(a_3 - a_1)(a_2 - a_1)(a_5 - a_2)(a_4 - a_2)(a_3 - a_2)(a_5 - a_3)(a_4 - a_3)(a_5 - a_4). \\]\n\nDetermine the greatest integer \\( n \\) such that given any set \\( S \\) of five integers, \\( n \\) divides \\( P_S \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "288"}}
|
|
97
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a, b, c > 0\\) and \\(ab + bc + ca = 1\\), find the minimum value of \\(\\frac{1}{a+b} + \\frac{1}{a+c} + \\frac{1}{b+c}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2.5"}}
|
|
98
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the kingdom of Oz, there are $n$ cities. You can travel from any city to any other by plane and/or train, but there does not exist a city and a mode of transport (plane or train) such that from that city you can reach any other city using only that mode. At least, how many links (railroads or air routes) do necessarily exist in Oz?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n-1 \\)"}}
|
|
99
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the complex plane, let the points $A(-1)$, $B(1)$, and $C(i)$. Find the locus of points $M(z)$ such that $MA + MB = MC$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The locus is empty."}}
|
|
100
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf $3, 3\\log_y{x}, 3\\log_z{y}, 7\\log_x{z}$ are in arithmetic progression (A.P.), find a relation between $x, y,$ and $z$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = z^{\\frac{14}{9}} \\)"}}
|
|
101
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the polynomial \\( P(x) \\) such that \\( P(x) \\) is divisible by \\( x^2 + 1 \\) and \\( P(x) + 1 \\) is divisible by \\( x^3 + x^2 + 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = (x^2 + 1)(x^3 + x^2 + 1)R(x) + x^4 + x^3 + x - 1 \\)"}}
|
|
102
29
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a convex quadrilateral with side lengths satisfying the equality:\n\\[ AB \\cdot CD = AD \\cdot BC = AC \\cdot BD. \\]\nDetermine the sum of the acute angles of quadrilateral \\(ABCD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
103
30
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( n \\geq 3 \\) and non-negative real numbers \\( a_1, a_2, \\ldots, a_n \\) and \\( x_1, x_2, \\ldots, x_n \\) such that \n\\[ \\sum_{i=1}^n a_i = 1 \\quad \\text{and} \\quad \\sum_{i=1}^n x_i = 1, \\]\nfind the maximum value \\( C_{\\text{max}} \\) such that the inequality\n\\[ \\sum_{i=1}^n a_i x_i + C \\prod_{i=1}^n x_i \\leq 1 \\]\nholds for all possible values of \\( a_1, \\ldots, a_n \\) and \\( x_1, \\ldots, x_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(n-1)^{2n-2}}{(n-2)^{n-2}}\\)"}}
|
|
104
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the ellipse $(E):\\frac{x^2}{8}+\\frac{y^2}{4}=1$. A line with slope $m$ passing through $(1,0)$ intersects $(E)$ at two points $A$ and $B$ such that $OA^2+OB^2=\\frac{110}{9}$, where $O=(0,0)$. If $m^2=\\frac{-a+b\\sqrt{c}}{d}$, where $a,b,c,d$ are positive integers with $\\gcd(a,d)=\\gcd(b,d)=1$ and $c$ is squarefree, find the value of $a+b+c+d$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "589"}}
|
|
105
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine which is greater between $\\binom{n}{3}$ and $2^n$, and find the minimum natural number $n$ for which the inequality holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(n = 3\\)"}}
|
|
106
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( x_1, x_2, \\ldots > 0 \\) such that \\( \\sum_{i=1}^{n} x_i^2 < x_{n+1}^2 \\) for any \\( n = 1, 2, \\ldots \\), find the minimum \\( C > 0 \\) such that \\( \\sum_{i=1}^{n} x_i < C x_{n+1} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2} + 1\\)"}}
|
|
107
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the largest positive integer $m$ such that we can partition the $m \\times m$ square into $7$ rectangles for which every pair of them has no common interior points and their lengths and widths form the following sequence:\n$$1,2,3,4,5,6,7,8,9,10,11,12,13,14.$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "22"}}
|
|
108
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( P(x) \\) and \\( Q(x) \\) are polynomials, and \\( Q(x) = P'(x) \\), what are all possible degrees of \\( P(Q(x)) \\)? Of \\( Q(P(x)) \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\deg(Q(x))^2 + \\deg(Q(x))\\)"}}
|
|
109
31
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the value of $\\displaystyle \\mathop{\\sum\\sum}_{0 \\leq i < j \\leq n}j\\binom{n}{i}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n(3n+1)2^{n-3} \\)"}}
|
|
110
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\ge 2 \\) be a positive integer. Numbers \\(\\{1, 2, 3, \\ldots, n\\}\\) are written in a row in an arbitrary order. Determine the smallest positive integer \\( k \\) such that it is always possible to delete \\( k \\) numbers from those written on the table, so that the remaining numbers are either in an increasing or decreasing order."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n - \\lceil \\sqrt{n} \\rceil \\)"}}
|
|
111
32
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f(x) = (x + a)(x + b) \\) where \\( a, b > 0 \\). For any reals \\( x_1, x_2, \\ldots, x_n \\geq 0 \\) satisfying \\( x_1 + x_2 + \\ldots + x_n = 1 \\), find the maximum of \\( F = \\sum_{1 \\leq i < j \\leq n} \\min \\{ f(x_i), f(x_j) \\} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{{(n - 1)}}{{2n}} \\left( na + 1 \\right) \\left( nb + 1 \\right)\\)"}}
|
|
112
33
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a non-isosceles triangle \\(ABC\\), let \\(H\\) be the orthocenter, \\(O\\) the circumcenter, and \\(M\\) the midpoint of \\(BC\\). Let \\(D\\) be the intersection of \\(HM\\) and \\(AO\\). Let \\(P\\), \\(Q\\), \\(R\\), and \\(S\\) be the midpoints of \\(AB\\), \\(CD\\), \\(AC\\), and \\(BD\\) respectively. Let \\(X\\) be the intersection of \\(PQ\\) and \\(RS\\). Calculate the ratio \\(\\frac{AH}{OX}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
113
34
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA sphere passes through all the vertices of one face of a cube and is tangent to all the edges of the opposite face of the cube. Find the ratio of the volume of the sphere to the volume of the cube."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{41\\pi\\sqrt{41}}{384}\\)"}}
|
|
114
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the set of real numbers for the system of equations:\n\\[\n\\begin{cases}\n& \\sqrt[8]{2\\sqrt[5]{7} - \\sqrt[10]{y}} + (17 - \\sqrt{37})z^2 = 544 - 32\\sqrt{37} \\\\\n& x(9\\sqrt{1 + x^2} + 13\\sqrt{1 - x^2}) + 4\\sqrt{y} = 912 \\\\\n& \\sqrt{(10\\sqrt{5} + 20)x(1 - x)} + z\\sqrt[6]{8} = 10 \n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{2\\sqrt{5}}{5}, 50176, 4\\sqrt{2}\\right)\\)"}}
|
|
115
35
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nExpand \\(\\left( x + 2x^2 + 3x^3 + \\cdots + nx^n \\right)^2 = a_0 + a_1 x + \\cdots + a_{2n} x^{2n}\\), and express the sum \\(a_{n+1} + a_{n+2} + \\cdots + a_{2n}\\) in terms of \\(n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n(n + 1)(5 n^2 + 5 n + 2)}{24}\\)"}}
|
|
116
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P(x) \\in \\mathbb{R}[x] \\) such that \\( P^2(x) + P^2(x-1) + 1 = 2[P(x) - x]^2 \\) for all real \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = x^2 + 2x + 1 \\)"}}
|
|
117
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \n\\[ 2f(x+y) - f(x-y) - (1-y)f(x) = yf(x^2 + 6x + y). \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = a \\) for all \\( x \\in \\mathbb{R} \\) and \\( a \\in \\mathbb{R} \\)"}}
|
|
118
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nEvaluate the sum \n\n\\[1_3 + (10_3 + 11_3) + (100_3 + 101_3 + 110_3 + 111_3) + \\cdots + (1000\\ldots000_3 + 1000\\ldots001_3 + 1000\\ldots010_3 + \\cdots + 1111\\ldots110_3 + 1111\\ldots111_3)\\]\n\nwhere the numbers in the last parenthesis all contain \\( n+1 \\) digits (i.e., \\( 1000\\ldots000_3 = 3^n \\))."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{n-1}\\left(3^{n+1}-1\\right)\\)"}}
|
|
119
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe diagonals of parallelogram \\(ABCD\\) intersect at \\(E\\). The bisectors of \\(\\angle DAE\\) and \\(\\angle EBC\\) intersect at \\(F\\). Assume \\(ECFD\\) is a parallelogram. Determine the ratio \\(AB:AD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{3}\\)"}}
|
|
120
36
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA $20 \\times 20 \\times 20$ block is cut into 8000 unit cubes, each assigned a number. In each column of 20 cubes parallel to any edge, the sum of the numbers is 1. One of the unit cubes has the number 10. Three $1 \\times 20 \\times 20$ slices parallel to the faces of the block contain this unit cube. Find the sum of all numbers of the cubes outside these slices."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "333"}}
|
|
121
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Beto writes a list of \\( n \\) non-negative integers on the board. Then he performs a succession of moves (two steps) of the following type:\nFirst, for each \\( i = 1, 2, \\ldots, n \\), he counts how many numbers on the board are less than or equal to \\( i \\). Let \\( a_i \\) be the number obtained for each \\( i = 1, 2, \\ldots, n \\).\nNext, he erases all the numbers from the board and writes the numbers \\( a_1, a_2, \\ldots, a_n \\).\nFind (as a function of \\( n \\)) the minimum value of \\( k \\) such that, for any initial configuration, the moves made from move number \\( k \\) will not change the numbers on the board."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2n\\)"}}
|
|
122
37
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a square. Points \\(F\\) and \\(E\\) are chosen inside the square such that \\(AF\\) is perpendicular to \\(FD\\) and \\(BE\\) is perpendicular to \\(EC\\). If \\(AF = 10\\) and \\(EC = 8\\), find the sum of the areas of triangles \\(AFB\\) and \\(EDC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "82"}}
|
|
123
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nOn a $({2^n}-1) \\times ({2^n}-1)$ board, each unit square is written with either +1 or -1. A distribution is called \"heavy\" if every number is equal to the product of the numbers written on its neighboring unit squares (two squares are neighbors if they share a side). What is the number of heavy distributions?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
124
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all non-negative integers \\(a, b, c, d, n\\) such that \\(a^2 + b^2 + c^2 + d^2 = 7 \\cdot 4^n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((a,b,c,d,n)=(3*2^t,3*2^t,3*2^t,2^t,t+1),(5*2^t,2^t,2^t,2^t,t+1),(2^t,2^t,2^t,2^{t+1},t)\\) and permutations, where \\(t\\) - nonnegative integer"}}
|
|
125
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation:\n$$\\{x\\}[x]=2005x$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = 0\\) or \\(x = -\\frac{1}{2006}\\)"}}
|
|
126
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle $ABC$, we have $|AB|=1$ and $\\angle ABC=120^\\circ$. The perpendicular line to $AB$ at $B$ meets $AC$ at $D$ such that $|DC|=1$. Find the length of $AD$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt[3]{2}\\)"}}
|
|
127
38
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence $\\{ a_{n}\\}$ where $a_{1}=\\sqrt{2}$ and $a_{n+1}=\\sqrt{2+a_{n}}$, and the sequence $\\{ b_{n}\\}$ where $b_{n}=\\sqrt{2-a_{n}}$, find $b_{n}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( b_n = 2 \\sin \\left( \\frac{\\pi}{2^{n+2}} \\right) \\)"}}
|
|
128
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the right triangle \\(ABC\\) with \\(\\angle BAC = 90^\\circ\\) and \\(AC = 2AB\\). Let \\(P\\) and \\(Q\\) be the midpoints of \\(AB\\) and \\(AC\\), respectively. Let \\(M\\) and \\(N\\) be points on side \\(BC\\) such that \\(CM = BN = x\\). Given that \\(2 \\times \\text{Area}[MNPQ] = \\text{Area}[ABC]\\), determine \\(x\\) in terms of \\(AB\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{\\sqrt{5}}{4}AB \\)"}}
|
|
129
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nEvaluate the sum $\\sum_{i=0}^{\\infty} \\sum_{j=0}^{\\infty} \\sum_{k=0}^{\\infty} \\frac{1}{3^i \\cdot 3^j \\cdot 3^k}$ where $i \\neq j \\neq k$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{81}{208}\\)"}}
|
|
130
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( H \\) and \\( O \\) be the orthocenter and circumcenter of triangle \\( ABC \\). It is known that \\( \\angle BAO = \\frac{1}{3} \\angle BAC \\) and \\( CO = CH \\). Determine the angles of triangle \\( ABC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 90^\\circ, 30^\\circ, 60^\\circ \\)"}}
|
|
131
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum possible value for the expression \\(xy + yz + zx + \\frac{1}{x} + \\frac{2}{y} + \\frac{5}{z}\\) where \\(x, y, z\\) are positive real numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(3\\sqrt[3]{36}\\)"}}
|
|
132
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs $(m, n) \\in \\mathbb{N} \\times \\mathbb{N}$ such that the equation $z^m + z^n + 1 = 0$ has a root with absolute value equal to 1."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m, n) = (3k + 1, 3l + 2) \\text{ or } (3k + 2, 3l + 1)\\) for \\(k, l \\in \\mathbb{N}\\)."}}
|
|
133
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nExpress in a closed form the sum of the $m$-th powers of the primitive roots modulo $p$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\phi((m,p-1)) \\cdot \\mu\\left(\\frac{p-1}{(m,p-1)}\\right) \\)"}}
|
|
134
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all real numbers $(a, b, c)$ such that for all real numbers $x$ and $y$ satisfying $x^2 + y^2 \\leq 4$, the inequality $|ax + by + c - \\sqrt{4 - x^2 - y^2}| \\leq 1$ holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a = 0\\), \\(b = 0\\), \\(c = 1\\)"}}
|
|
135
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum value of \\( 26x^3 + 27xyz \\) for real numbers \\( x, y, z \\) where \\( x^3 + y^3 + z^3 = 3 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "81"}}
|
|
136
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a tournament where every team plays exactly once against every other team, one won match earns $3$ points for the winner and $0$ for the loser, and a draw earns $1$ point for each team. At the end of the tournament, all teams together have achieved $15$ points. The last team on the final list scored exactly $1$ point, and the second to last team has not lost a match. How many points did the team in second place in the final ranking score?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
137
39
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe lengths of two sides of an acute-angled triangle and the perpendicular height from the third side of the triangle are $12, 13,$ and $15$ (not necessarily in that order). What is the area of the triangle?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "84"}}
|
|
138
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for \\( x \\) in the equation:\n\\[ \\frac{4(\\sin x + \\sqrt{3} \\cos x) - 4\\sqrt{3} \\sin x \\cos x - 3}{4 \\cos^2 x - 1} = 1 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{\\pi}{6} + 2k\\pi, \\quad k \\in \\mathbb{Z} \\)"}}
|
|
139
40
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn rectangle $ABCD$ with $AB=32$ and $BC=24$, point $F$ is taken on line $AB$ and point $E$ is taken on line $CD$ such that $AFCE$ is a rhombus. Find the length of $EF$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "30"}}
|
|
140
41
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x_n = \\sqrt{n + \\sqrt{n^2 - 1}} \\) for all \\( n \\geq 1 \\). Express \\( \\frac{1}{x_1} + \\frac{1}{x_2} + \\cdots + \\frac{1}{x_{49}} \\) as \\( a + b\\sqrt{2} \\) for some integers \\( a \\) and \\( b \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(5 + 3\\sqrt{2}\\)"}}
|
|
141
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a triangle \\(ABC\\) with circumcircle centered at \\(O\\), and the extensions of the angle bisectors from points \\(A\\), \\(B\\), and \\(C\\) intersecting the circumcircle at points \\(A'\\), \\(B'\\), and \\(C'\\) respectively, find the value of \\(\\frac{AA' \\cos \\frac{A}{2} + BB' \\cos \\frac{B}{2} + CC' \\cos \\frac{C}{2}}{\\sin A + \\sin B + \\sin C}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2R\\)"}}
|
|
142
42
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum value of $\\sum \\frac{a^{2}}{b^{2}+(a+c)^{2}}$ for positive real numbers $a, b, c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
143
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(2a^2 + b^2 = 1\\). Find the minimum value of \\(E = \\sqrt{1 + 2a} + \\sqrt{1 + 2b}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{1 + \\sqrt{\\frac{3}{2}}}\\)"}}
|
|
144
43
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of distinct integers that can be formed using the digits 2, 2, 3, 3, 4, 5, 5, 5, 6, 7 such that the digits are non-decreasing."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "287"}}
|
|
145
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\rightarrow \\mathbb{R} \\) such that\n\\[ f(x + f(y + z)) + f(f(x + y) + z) = 2y, \\quad \\forall x, y, z \\in \\mathbb{R}. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = a - x \\)"}}
|
|
146
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of \\( x + y \\) where \\( |3 - x| + |2x - 3| + |2 + y| + |y^2 - 3y + 1| = 10 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(-\\dfrac{5}{12}\\)"}}
|
|
147
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a $2n \\times 2n$ chessboard with $2n^2$ coins placed such that at most one coin is on each square, let $T$ be the number of pairs of coins that lie on the same row or the same column. What is the maximum possible value of $T$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n^2(3n-2) \\)"}}
|
|
148
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $ABCDE$ be a pentagon such that the triangles $ABC$, $BCD$, $CDE$, $DEA$, and $EAB$ each have an area of 1. What is the area of the pentagon $ABCDE$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{5+\\sqrt{5}}{2}\\)"}}
|
|
149
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x, y, z \\) be positive real numbers such that \\( xyz = \\frac{1}{2} \\) and \\( x^2 + y^2 + z^2 \\le 2 \\). Find the maximum value of \\( x^4 + y^4 + z^4 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{2}\\)"}}
|
|
150
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many prime numbers less than $100$ can be represented as the sum of squares of consecutive positive integers?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "5"}}
|
|
151
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDefine a sequence \\( x_1, x_2, \\ldots, x_n \\) to be an **Energetic Sequence** of common logarithm \\( d \\) if \\( d = \\log_{x_k} x_{k+1} \\) for \\( k = 1, 2, \\ldots, n-1 \\).\n\nLet \\( P(x) \\) denote the sum of 10 terms of an **Energetic Sequence** of common logarithm 2 with the first term \\( x \\).\n\nLet \\( Q(x) \\) denote the sum of 6 terms of an **Energetic Sequence** of common logarithm 3 with the first term \\( x \\).\n\nDefine two sets \\( A \\) and \\( B \\) as follows:\n\\[ A = \\{ x : x \\in \\mathbb{N}, 1 < x < 2020, P(x) + 1 \\text{ is a composite number} \\} \\]\n\\[ B = \\{ x : x \\in \\mathbb{N}, 1 < x < 2021, Q(x) + 1 \\text{ is a composite number} \\} \\]\n\nFind the sum total of all elements in both sets \\( A \\) and \\( B \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2020^2 - 2\\)"}}
|
|
152
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence \\( u_n \\) defined by:\n\\[ u_1 = 2019 \\]\n\\[ u_{n+1} = \\sqrt[n+1]{u_n^n + \\frac{1}{2019^n}} \\quad \\text{for} \\quad n \\geq 1, \\]\nfind the form of \\( u_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( u_n = \\sqrt[n]{2019 + \\frac{1 - \\frac{1}{2019^n}}{2018}} \\)"}}
|
|
153
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f \\) be a function defined along the rational numbers such that \\( f\\left(\\frac{m}{n}\\right) = \\frac{1}{n} \\) for all relatively prime positive integers \\( m \\) and \\( n \\). The product of all rational numbers \\( 0 < x < 1 \\) such that \n\\[ f\\left(\\frac{x - f(x)}{1 - f(x)}\\right) = f(x) + \\frac{9}{52} \\]\ncan be written in the form \\( \\frac{p}{q} \\) for positive relatively prime integers \\( p \\) and \\( q \\). Find \\( p + q \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "209"}}
|
|
154
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider a sequence \\(a_1, a_2, \\ldots, a_{100}\\) of integers where \\(a_1 = 0\\) and \\(a_{100} = 0\\). For each \\(i\\) from 2 to 99, \\(a_i\\) is larger than the average of its neighbors \\(a_{i-1}\\) and \\(a_{i+1}\\). What is the smallest possible value for the term \\(a_{19}\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "729"}}
|
|
155
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of permutations of $\\{1,2,...,n\\}$ such that for each $1 \\leq i \\leq n$, $a_i$ divides $2i$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{\\lfloor \\frac{n}{2} \\rfloor}\\)"}}
|
|
156
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\) with \\(AB \\neq AC\\), point \\(I\\) is the incenter. The lines \\(BI\\) and \\(CI\\) intersect sides \\(AC\\) and \\(AB\\) at points \\(D\\) and \\(E\\), respectively. If \\(DI = EI\\), what is the measure of angle \\(BAC\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 60^\\circ \\)"}}
|
|
157
44
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{N}^{\\ast} \\rightarrow \\mathbb{N}^{\\ast} \\) with the properties:\n(a) \\( f(m+n) - 1 \\mid f(m) + f(n) \\) for all \\( m, n \\in \\mathbb{N}^{\\ast} \\)\n(b) \\( n^2 - f(n) \\) is a square for all \\( n \\in \\mathbb{N}^{\\ast} \\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = 2n - 1 \\)"}}
|
|
158
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the smallest positive integer \\( k \\geq 2 \\) for which there exists a polynomial \\( f(x) \\) of degree \\( k \\) with integer coefficients and a leading coefficient of \\( 1 \\) such that for any two integers \\( m \\) and \\( n \\), if \\( f(m) - f(n) \\) is a multiple of \\( 31 \\), then \\( m - n \\) is a multiple of \\( 31 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
159
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all prime numbers \\( p \\) such that if \\( a \\) is a lucky integer, then \\( pa \\) is an unlucky integer (an integer that cannot be written as the sum of two squares)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p = 4k + 3 \\) for all integers \\( k \\)."}}
|
|
160
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P$ with real coefficients such that $(x+y)^4 - P(x) - P(y)$ is divisible by $xy - x - y$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = x^4 + 4x^3 + 10x^2 + 20x \\)"}}
|
|
161
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nUsing an ample supply of identical 1 \u00d7 1 and identical 2 \u00d7 2 tiles, how many ways are there to tile a 3 \u00d7 8 grid?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "171"}}
|
|
162
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTwo magicians are performing a game with a chessboard of size $n \\times n$. Initially, a spectator places a black or white token on each square. The first magician then asks the spectator to choose a square $C$. The first magician then chooses a square $D$ and flips the token on $D$. The second magician, who has been isolated from the process, is then shown the modified chessboard and must correctly identify the square $C$. For what value of $n$ do the magicians have a strategy to ensure the second magician guesses correctly?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 2^\\alpha \\)"}}
|
|
163
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real-valued functions \\( f(x) \\) on the rationals such that:\n1. \\( f(x + y) - y f(x) - x f(y) = f(x) f(y) - x - y + xy \\) for all \\( x, y \\),\n2. \\( f(x) = 2 f(x+1) + 2 + x \\) for all \\( x \\),\n3. \\( f(1) + 1 > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{2^x} - x \\)"}}
|
|
164
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum value of $n$ such that $n$ divides $p^4 - 1$ for all primes $p \\ge 4$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "48"}}
|
|
165
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[\n\\left\\{\n\\begin{matrix}\n3^x + 4^y + 5^z = 16 \\\\\n9^x + 16^y + 25^z = 110 \\\\\n27^x + 64^y + 125^z = 862\n\\end{matrix}\n\\right.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((\\log_3 2, \\log_4 5, 2 \\log_5 3), (\\log_3 2, 2 \\log_4 3, 1), \\left(\\log_3 5, \\frac{1}{2}, 2 \\log_5 3\\right), (\\log_3 5, 2 \\log_4 3, \\log_5 2), \\left(2, \\frac{1}{2}, 1\\right), (2, \\log_4 5, \\log_5 2)\\)"}}
|
|
166
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor a fixed number $m$ of girls, what is the minimum number $n$ of boys such that $n$ boys and $m$ girls can be lined up in a row holding hands such that no one is holding hands with two girls?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = \\begin{cases} \nm - 2 & \\text{if } m \\text{ is even} \\\\\nm - 1 & \\text{if } m \\text{ is odd}\n\\end{cases} \\)"}}
|
|
167
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind integers \\( m \\) and \\( n \\) such that the sum of their cubes is equal to the square of their sum."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m, n) = (0,0), (1,0), (0,1), (2,1), (1,2), (2,2), (t, -t) \\quad \\text{for any integer } t.\\)"}}
|
|
168
45
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $\\alpha, \\beta$ be real numbers such that $\\cos(\\alpha + \\beta) = \\cos \\alpha + \\cos \\beta$. Find the maximum value of $\\cos \\alpha$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{3} - 1\\)"}}
|
|
169
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle ABC, AB=13, AC=14, and BC=15. Let M be the midpoint of AC. Point P is placed on line segment BM such that AP is perpendicular to PC. If the area of triangle APC can be written in the form \\(\\frac{p\\sqrt{q}}{r}\\) where \\(p\\) and \\(r\\) are relatively prime and \\(q\\) is square-free, what is \\(p+q+r\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "368"}}
|
|
170
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nEvaluate the expression \\(\\Omega=\\left(\\sum_{0\\le i\\le j\\le k}^{\\infty} \\frac{1}{3^i\\cdot4^j\\cdot5^k}\\right)\\left(\\mathop{{\\sum_{i=0}^{\\infty}\\sum_{j=0}^{\\infty}\\sum_{k=0}^{\\infty}}}_{i\\neq j\\neq k}\\frac{1}{3^i\\cdot3^j\\cdot3^k}\\right)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\dfrac{30\\,375}{58\\,292}\\)"}}
|
|
171
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a football tournament with $2n$ teams, every round consists of $n$ pairs of teams that haven't played with each other yet. Determine the minimal positive integer $k$ such that after $k$ rounds, it's impossible to schedule the next round."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2\\left\\lfloor \\dfrac{n}{2}\\right\\rfloor + 1 \\)"}}
|
|
172
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a real number \\( c > 0 \\), a sequence \\( (x_n) \\) of real numbers is defined by \\( x_{n+1} = \\sqrt{c - \\sqrt{c + x_n}} \\) for \\( n \\ge 0 \\). Find all values of \\( c \\) such that for each initial value \\( x_0 \\) in \\( (0, c) \\), the sequence \\( (x_n) \\) is defined for all \\( n \\) and has a finite limit \\( \\lim_{n \\to +\\infty} x_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( c \\geq 2 \\)"}}
|
|
173
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality: $\\log_{|x-1|}|x+1| > \\log_{|x+1|}|x-1|$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$x\\in(-2,-\\sqrt 2)\\cup(0,1)\\cup(1,\\sqrt 2)\\cup(2,+\\infty)$"}}
|
|
174
46
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \n\\[ f(x^2 + f(y)) = y - x^2. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = c - x \\)"}}
|
|
175
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a permutation \\((x_{1}, x_{2}, \\ldots, x_{n})\\) of the set \\(\\{1, 2, \\ldots, n\\}\\), a pair \\((x_{i}, x_{j})\\) is called discordant if \\(i < j\\) and \\(x_{i} > x_{j}\\). Let \\(d(n, k)\\) be the number of such permutations with exactly \\(k\\) discordant pairs. Find \\(d(n, 2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\binom{n}{2} - 1 \\)"}}
|
|
176
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor each positive integer $k$, let $a_k$ be the greatest integer not exceeding $\\sqrt{k}$ and let $b_k$ be the greatest integer not exceeding $\\sqrt[3]{k}$. Calculate $$\\sum_{k=1}^{2003} (a_k-b_k).$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "40842"}}
|
|
177
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P(x) \\) be a polynomial with real coefficients of degree \\( n \\). For any \\( x \\in (0,1] \\), we have \\( x \\cdot P^2(x) \\le 1 \\). Find the maximum value of \\( P(0) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2n + 1 \\)"}}
|
|
178
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhich two transformations transform the graph of $y=f(x)$ to that of $y=f(2x+1)$? Does the order of these transformations matter?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Horizontal contraction by a factor of 2 followed by a horizontal translation of 1 unit to the left. Order matters."}}
|
|
179
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f: \\mathbb{C} \\to \\mathbb{C} \\) such that:\n1. There are only finitely many complex numbers \\( x \\) with \\( f(x) = 0 \\).\n2. For all complex numbers \\( x, y, z \\) satisfying \\( f(x) = yz \\), we have \\( zf(x + y) = yf(x + z) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^2 + bx + c \\) for \\( b, c \\in \\mathbb{C} \\)"}}
|
|
180
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the system of equations:\n$$(3x + y + 4)(x + 3y + 4) \\sqrt{xy + x + y + 1} = \\frac{63}{4}$$\n$$(x + y + 2)(x^2 + y^2 + 14xy + 16x + 16y + 16) = \\frac{65}{2}$$\nFind \\( |x - y| \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
181
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTriangle $ABC$ has sides $AB=9$, $BC = 5\\sqrt{3}$, and $AC=12$. Points $A=P_0, P_1, P_2, \\dots, P_{2450} = B$ are on segment $\\overline{AB}$ with $P_k$ between $P_{k-1}$ and $P_{k+1}$ for $k=1,2,\\dots,2449$, and points $A=Q_0, Q_1, Q_2, \\dots, Q_{2450} = C$ for $k=1,2,\\dots,2449$. Each segment $\\overline{P_kQ_k}$ for $k=1,2,\\dots,2449$ is parallel to $\\overline{BC}$. The segments cut the triangle into $2450$ regions, consisting of $2449$ trapezoids and $1$ triangle, each with the same area. Find the number of segments $\\overline{P_kQ_k}$ that have rational length."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "20"}}
|
|
182
47
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe center of the circumcircle of triangle $ABC$ lies on its inscribed circle. Find the sum of the cosines of the angles of triangle $ABC$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
183
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of positive integers $(m,n)$ for which there exist relatively prime integers $a$ and $b$ greater than $1$ such that\n$$\\frac{a^m+b^m}{a^n+b^n}$$\nis an integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m,n) = ((2k-1)n,n)\\) where \\(n\\) and \\(k\\) are positive integers."}}
|
|
184
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are $2022$ different lamps spaced evenly around a circle. On the first day, a subset of the lamps are lit. On any subsequent day, a lamp is lit if and only if exactly one of its two neighbors was lit the previous day. Otherwise, it is unlit. Find the number of possible subsets of lamps that can be lit on the first day such that the subset of lit lamps on any subsequent day will not coincide with the subset of lit lamps on the first day."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 3 \\cdot 2^{2020} \\)"}}
|
|
185
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\(a_n + i \\cdot b_n = (1 + 17i)^n\\) where \\(a_n\\) and \\(b_n\\) are real sequences and \\(c_n = \\gcd(a_n, b_n)\\), determine the last 3 digits of \\(c_{2007}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "008"}}
|
|
186
48
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDenote \\( S_n := 1 + \\frac{1}{2} + \\ldots + \\frac{1}{n} \\). Also denote \\( F_{n, m} := S_n + S_m - S_{nm} \\). Find \\( \\inf\\{F_{n, m} \\mid n, m \\in \\mathbb{N}\\} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\gamma\\)"}}
|
|
187
49
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a round-robin tournament with 23 teams (where there are no ties), what is the largest number of cyclic 3-sets that can occur? A cyclic 3-set is a set \\(\\{a, b, c\\}\\) of three teams where \\(a\\) beats \\(b\\), \\(b\\) beats \\(c\\), and \\(c\\) beats \\(a\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "506"}}
|
|
188
50
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which values of \\( n \\) can the prongs of a plug be numbered such that at least one prong matches the number of the corresponding hole when the plug is inserted into a socket with \\( n \\) holes arranged in a circle?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) must be odd."}}
|
|
189
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\( n \\) such that both \\( n+3 \\) and \\( n^2+3 \\) are perfect cubes."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No solution."}}
|
|
190
51
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA trapezoid ABCD has AB parallel to DC, and DC = AB + 100. The line joining the midpoints of AD and BC divides the trapezoid into two regions with areas in the ratio 2 : 3. Find the length of the segment parallel to DC that joins AD and BC and divides the trapezoid into two regions of equal area."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 25\\sqrt{29} \\)"}}
|
|
191
52
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a right triangle \\(ABC\\) with \\(\\angle B = 90^\\circ\\), a point \\(D\\) is taken on the extension of line \\(AC\\) from \\(C\\) such that \\(AB = CD\\) and \\(\\angle CBD = 30^\\circ\\). Find the ratio \\(\\frac{AC}{CD}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt[3]{2}\\)"}}
|
|
192
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the last 4 digits of \\(2^{4^{8^{16^{.^{.^{.}}}}}}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0336"}}
|
|
193
53
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTwelve people with different heights are to be placed in two parallel lines, each with 6 people. Determine the total number of possibilities if the people should be in ascending order from left to right in each line and no person should have in front of them a person with greater stature."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "132"}}
|
|
194
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer solutions to the equation \\( p^3 = q^3 + 2q^2 - 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((p, q) = (0, -1), (-2, 0), (-1, -2), (-1, 0)\\)"}}
|
|
195
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P(x) = x^{2^{2024}} + x^{2024} + 1 \\) and \\( A = \\{ c \\in \\mathbb{C} : P(c) = 0, \\Re(c) > 0, \\text{ and } \\Im(c) > 0 \\} \\). Determine the cardinality of \\( A \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^{2022} \\)"}}
|
|
196
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose that $a$ is a real number. For any real number $b$, it holds that $\\max_{x\\in [0,1]}|x^2+ax+b|\\geq 1$. Find the range of values for $a$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a \\geq 1 \\) or \\( a \\leq -3 \\)"}}
|
|
197
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : \\mathbb{R} \\to \\mathbb{R} \\) such that for all \\( x, y \\in \\mathbb{R} \\):\n\\[ f(x + yf(x)) = f(xf(y)) - x + f(y + f(x)). \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 1 - x \\)"}}
|
|
198
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f \\) from the integers to the integers such that \\( f(m^2 + n) = f(n^2 + m) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\begin{cases} \np & \\text{if } x \\text{ is even} \\\\\nq & \\text{if } x \\text{ is odd}\n\\end{cases} \\)"}}
|
|
199
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the range of real values of \\( p \\) for which the equation \\( 3x^3 + x^2 - 7x + p = 0 \\) has two distinct real roots in the interval \\([0,1]\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 3 \\le p < \\frac{833}{243} \\)"}}
|
|
200
54
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a_1, a_2, \\ldots, a_{2016}\\) be real numbers such that \\(9a_i \\ge 11a_{i+1}^2\\) for \\(i = 1, 2, \\ldots, 2015\\). Find the maximum value of \\((a_1 - a_2^2)(a_2 - a_3^2) \\cdots (a_{2015} - a_{2016}^2)(a_{2016} - a_1^2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{4^{2016}}\\)"}}
|
|
201
55
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(a, b, c\\) are positive real numbers and \\(ab + bc + ca = 1\\), find the minimum value of the expression:\n\n\\[ P = \\frac{1}{\\sqrt{a^2 + bc}} + \\frac{1}{\\sqrt{b^2 + ac}} + \\frac{1}{\\sqrt{c^2 + ab}} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2\\sqrt{2} \\)"}}
|
|
202
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhich number is bigger: $(1.01)^{1000}$ or $1000$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((1.01)^{1000}\\) is bigger."}}
|
|
203
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that $\\gcd(a, b) = 1$, find all pairs of integers $(m, n)$ such that $a^m + b^m \\mid a^n + b^n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m, (2k+1)m)\\) for any integer \\(k\\)."}}
|
|
204
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind $d(n, 2)$, the number of permutations of the set $\\{1, 2, \\dots, n\\}$ with exactly 2 discordant pairs."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n(n-1)}{2} - 1\\)"}}
|
|
205
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the summation of the series:\n\\[ \\frac{1}{1 \\cdot 2 \\cdot 3 \\cdot 4} + \\frac{1}{5 \\cdot 6 \\cdot 7 \\cdot 8} + \\cdots \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{24}(6\\ln{2}-\\pi)\\)"}}
|
|
206
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all non-negative integers \\(a\\), \\(b\\), \\(c\\), \\(d\\), and \\(n\\) such that \\(a^2 + b^2 + c^2 + d^2 = 7 \\cdot 4^n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((2^n, 2^n, 2^n, 2^{n+1}, n)\\) and \\((5 \\cdot 2^m, 2^m, 2^m, 2^m, n)\\) and \\((3 \\cdot 2^m, 3 \\cdot 2^m, 3 \\cdot 2^m, 2^m, n)\\) and their permutations, where \\( n > m \\)."}}
|
|
207
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S_r(n) = 1^r + 2^r + \\cdots + n^r \\) where \\( n \\) is a positive integer and \\( r \\) is a rational number. If \\( S_a(n) = (S_b(n))^c \\) for all positive integers \\( n \\) where \\( a, b \\) are positive rationals and \\( c \\) is a positive integer, then we call \\((a, b, c)\\) a nice triple. Find all nice triples."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((k, k, 1)\\) for any positive rational \\(k\\) and \\((3, 1, 2)\\)."}}
|
|
208
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFrom 8 distinct colors, a cube is painted so that no two faces sharing a common vertex are painted with the same color. If the number of such different colorings is \\( N \\), find the largest 2-digit factor of \\( N \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "96"}}
|
|
209
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a quadrilateral with \\(AD \\parallel BC\\). Given that \\(BC = BD = 1\\), \\(AB = AC\\), \\(CD < 1\\), and \\(\\angle BAC + \\angle BDC = 180^\\circ\\), find \\(CD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2} - 1\\)"}}
|
|
210
56
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the positive rational root (not an integer) of the cubic equation \\(4x^3 - (a-2)x - (a+4) = 0\\) where \\(a \\in \\mathbb{Z}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{2}\\)"}}
|
|
211
57
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the relation between the sequence \\( B_{0}, B_{1}, B_{2}, \\ldots \\) and the Fibonacci sequence \\( F_{0}, F_{1}, F_{2}, \\ldots \\) defined by \\( F_{0} = 0 \\), \\( F_{1} = 1 \\), and \\( F_{n} = F_{n-1} + F_{n-2} \\) for \\( n \\geq 2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( B_{n} = F_{n+1} \\)"}}
|
|
212
58
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven $n$ planets in space, each a perfect sphere with radius $R$, a point on the surface of a planet is called private if it cannot be seen from any other planet. What is the total area of the private area on all planets?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 4\\pi R^2 \\)"}}
|
|
213
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $S$ be a set of $2016$ points in the plane, no three of which are collinear. Determine the maximum possible number of right triangles with all three vertices in $S$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2030112"}}
|
|
214
59
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the probability, in an infinite sequence of tosses of a fair coin, to obtain exactly one occurrence of the sequence HHH and never have more than three consecutive heads (H)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
215
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many roots does the equation $\\sin x + |\\sin x| = 0.12x$ have? Here $|x|$ denotes the absolute value of $x$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
216
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind integers \\( x, y, z \\) such that \\( 7^x + 12^y = 13^z \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 0, y = 1, z = 1 \\)"}}
|
|
217
60
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA sequence is defined as \\( a_n = 13a_{n-1} - 30a_{n-2} \\). Let \\( a_0 = 10 \\) and \\( a_1 = 58 \\). The product of the units digits of \\( a_{2023} \\), \\( a_{2024} \\), and \\( a_{2025} \\) can be expressed as \\( n \\). Find \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "96"}}
|
|
218
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence $(u_n)$ defined by $u_0 = 0$, $u_1 = 1$, and $u_{n+2} = 2u_{n+1} + 2u_n$ for all $n \\ge 0$, find $v_3(u_{2022^{2023}})$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2023"}}
|
|
219
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations \\((x,y) \\in \\mathbb{R}^2\\):\n\\[\n\\begin{cases}\n\\sqrt{x+y} + 2(2x^2 - 5x - 3) = y(1 - y - 5x) + \\sqrt{3} \\\\\n\\dfrac{1}{16x^4 + 2x(12x + 1) + 2(y + 2)} + \\dfrac{1}{16y^4 + 2y(12y + 1) + 2(x + 2)} = \\dfrac{2}{145}\n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{3}{2}, \\frac{3}{2}\\right)\\)"}}
|
|
220
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers \\( n \\) such that when \\( n \\) is alternately divided by \\( 29 \\), \\( 41 \\), and \\( 59 \\), the sum of the three nonzero remainders equals \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "114"}}
|
|
221
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of terminal zeros in the decimal representation of the product $1 \\cdot 4 \\cdot 7 \\cdot \\ldots \\cdot 1000$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "85"}}
|
|
222
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the numbers \\( S_1 = 2^2, S_2 = 2^4, \\ldots, S_n = 2^{2n} \\), a rectangle \\( OABC \\) is constructed on the Cartesian plane such that points \\( A_1, A_2, \\ldots, A_n \\) are marked along the \\( Ox \\) axis and points \\( C_1, C_2, \\ldots, C_n \\) are marked along the \\( Oy \\) axis. For each \\( k \\) from 1 to \\( n \\), the lengths of the segments \\( A_{k-1}A_k = x_k \\) and \\( C_{k-1}C_k = y_k \\) are positive integers, and \\( x_k \\cdot y_k = S_k \\). Find the maximal possible value of the area of the rectangle \\( OABC \\) and all pairs of sets \\( (x_1, x_2, \\ldots, x_n) \\) and \\( (y_1, y_2, \\ldots, y_n) \\) at which this maximal area is achieved."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((2^{2n} + n - 1) \\cdot \\frac{4^n - 1}{3}\\)"}}
|
|
223
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c \\geq 0\\) such that \\(a + b + c = 3\\). Find the minimum value of \\(P = a^5 + b^5 + c^5 - 3(a^4 + b^4 + c^4)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(-\\frac{81}{4}\\)"}}
|
|
224
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nAsli will distribute 100 candies among her brother and 18 friends of him. Asli splits the friends into several groups and distributes all the candies into these groups such that each child in a group takes the same number of candies, and this number is the largest possible. Asli's brother then takes the remaining candies from each group. What is the maximum number of candies Asli's brother can have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "16"}}
|
|
225
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are \\( n \\) students, each with an equal number of candies. In each move, one student distributes some of their candies equally among the other students. After a finite number of moves, one student has 36 candies and another has 21 candies. How many different values of \\( n \\) are possible?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
226
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $2\\sin^3x - 3 = (3\\sin^2x + 2\\sin x - 3)\\tan x$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = \\pm \\frac{2\\pi}{3} + 2k\\pi\\)"}}
|
|
227
61
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a tournament with $n$ players of equal strength, where each player plays against each other exactly once, find the probability that each player wins at least one game."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 - \\frac{n}{2^{n-1}} \\)"}}
|
|
228
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x, y, z > 0 \\) such that \\( xy = 1 + z(x + y) \\). Find the maximum of\n\\[ \\frac{2xy(xy+1)}{(1+x^2)(1+y^2)} + \\frac{z}{(1+z^2)}. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 + \\frac{3\\sqrt{3}}{4} \\)"}}
|
|
229
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all real numbers $x$ between $0$ and $180$ such that it is possible to partition an equilateral triangle into finitely many triangles, each of which has an angle of $x^\\circ$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in (0, 120] \\)"}}
|
|
230
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor some positive integer \\( n \\), there exist \\( n \\) different positive integers \\( a_1, a_2, \\ldots, a_n \\) such that:\n1. \\( a_1 = 1 \\) and \\( a_n = 2000 \\)\n2. For all \\( i \\in \\mathbb{Z} \\) such that \\( 2 \\le i \\le n \\), \\( a_i - a_{i-1} \\in \\{-3, 5\\} \\)\n\nDetermine the maximum value of \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1996"}}
|
|
231
62
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be non-negative numbers such that \\(a^2 + b^2 + c^2 = 1\\). Find the minimum value of \\(\\sqrt{\\frac{a+b}{2}} + \\sqrt{\\frac{b+c}{2}} + \\sqrt{\\frac{c+a}{2}}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
232
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for $x$ in the equation $[x] + [2x] + [3x] + [4x] + [5x] = 220$, where $[x]$ denotes the greatest integer less than or equal to $x$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 14.8 \\le x < 15 \\)"}}
|
|
233
63
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b,\\) and \\(c\\) be three real numbers such that\n\\[\n\\frac{a(b-c)}{b(c-a)} = \\frac{b(c-a)}{c(b-a)} = k > 0\n\\]\nfor some constant \\(k\\). Find the greatest integer less than or equal to \\(k\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
234
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many possible paths can Alessia make to reach the intersection of coordinates $(a, b)$ without ever crossing the river, starting from the crossroad $(0, 0)$ and proceeding only north or east?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$\\binom{a+b}{a} - \\binom{a+b}{a+1}$"}}
|
|
235
64
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\n$E$ is a point inside a square $ABCD$ such that $AE=BE$. If $\\angle AEB=150^\\circ$, find $\\angle CED$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
236
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $2^{\\sin^{2}{x}} \\cdot \\cos{x} = 1$ in the set of real numbers $R$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in \\left\\lbrace \\pm \\frac{\\pi}{4} + 2k\\pi \\right\\rbrace_{k \\in \\mathbb{Z}} \\cup \\{2k\\pi\\}_{k \\in \\mathbb{Z}} \\)"}}
|
|
237
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the greatest possible jersey number of the reserve player who substituted the goal-keeper with jersey number 1, such that the sums of the jersey numbers of each team are exactly equal after the substitution."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "122"}}
|
|
238
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of real numbers $(a, b)$ that satisfy the equation $a[bn] = b[an]$ for all positive integers $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((a, a)\\) for any \\(a \\in \\mathbb{R}\\) and \\((a, b)\\) for any \\(a, b \\in \\mathbb{Z}\\)."}}
|
|
239
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P(x)$ with integer coefficients such that for all pairs of coprime positive integers $(m,n)$, $|P(m)|$ and $|P(n)|$ are coprime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = \\pm x^k \\) for any non-negative integer \\( k \\)"}}
|
|
240
65
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all continuous functions $f:\\mathbb{R}\\rightarrow \\mathbb{R}$ that satisfy the condition:\n\\[ xf(x^3) + f(1-x^2) = -x^{10} + x^6 - 2x \\quad \\forall x \\in \\mathbb{R} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = -x^3 + 3x - 2 \\)"}}
|
|
241
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer solutions $(a_1, a_2, \\dots, a_{2008})$ of the equation:\n\n\\[\n(2008 - a_1)^2 + (a_1 - a_2)^2 + \\dots + (a_{2007} - a_{2008})^2 + a_{2008}^2 = 2008\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a_1 = 2007, a_2 = 2006, \\dots, a_{2008} = 0\\)"}}
|
|
242
66
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of solutions of $\\theta$ in the interval $[0,2\\pi]$ for the equation \n\n\\[\n\\left(\\frac{\\log(\\tan(\\theta))}{\\log(\\sqrt{3})}\\right)\\sqrt{\\frac{\\log(3)}{\\log(\\tan(\\theta))}+\\frac{\\log(3\\sqrt{3})}{\\log(\\sqrt{3})}} = -1.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
243
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( p(x) \\in \\mathbb{R}[x] \\) such that\n\\[ xp(x)p(1-x) + x^3 + 100 \\geq 0. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p(x) = x + b, -5 \\leq b \\leq 4 \\) or \\( p(x) = -x + b, -4 \\leq b \\leq 5 \\)"}}
|
|
244
67
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDefine \\( H_{n} \\) to be the set of all numbers of the form:\n\\[ 2 \\pm \\sqrt{ 2 \\pm \\sqrt{2 \\pm \\ldots \\sqrt{2}}} \\]\nwhere the number of square roots is \\( n \\). Find the product of all elements in \\( H_{n} \\) for each \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
245
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( a > 3b > 0 \\), find the maximum value of \\(\\frac{3a + 8a^2b - 16ab^2}{8b^2 - 4ab}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(-4\\sqrt{3}\\)"}}
|
|
246
68
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a \\) and \\( b \\) be the sides, and \\( r \\) be the inradius of \\( \\triangle ABC \\). Find the minimum value of \\( \\frac{ab}{r^2} \\) and determine when this minimum value is achieved."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{11 + 5\\sqrt{5}}{2} \\)"}}
|
|
247
69
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor what values of \\( m \\) does the equation \\( (1+m)x^2 - 2(1+3m)x + 1 + 8m = 0 \\) have at least one root negative?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( -1 < m < -\\frac{1}{8} \\)"}}
|
|
248
70
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which positive integers \\( k \\), is it true that there are infinitely many pairs of positive integers \\( (m, n) \\) such that\n\\[\n\\frac{(m + n - k)!}{m!n!}\n\\]\nis an integer?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All positive integers \\( k \\)."}}
|
|
249
71
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA trapezoid has perpendicular diagonals, a height of 4, and one diagonal of length 5. Find the area of the trapezoid."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{50}{3}\\)"}}
|
|
250
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nPentagon $ABCDE$ with $AB=BC=CD=DE \\neq AE$ is inscribed in a circle. If $2\\cos^2 {\\angle ACE} + \\cos{\\angle ABC} = 1$, find all possible values of $\\angle CED$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "30 degrees"}}
|
|
251
72
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an equilateral triangle. Extend side \\(\\overline{AB}\\) beyond \\(B\\) to a point \\(B'\\) so that \\(BB' = 3 \\cdot AB\\). Similarly, extend side \\(\\overline{BC}\\) beyond \\(C\\) to a point \\(C'\\) so that \\(CC' = 3 \\cdot BC\\), and extend side \\(\\overline{CA}\\) beyond \\(A\\) to a point \\(A'\\) so that \\(AA' = 3 \\cdot CA\\). What is the ratio of the area of \\(\\triangle A'B'C'\\) to the area of \\(\\triangle ABC\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "37"}}
|
|
252
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nOleksiy wrote several distinct positive integers on the board and calculated all their pairwise sums. It turned out that all digits from $0$ to $9$ appear among the last digits of these sums. What could be the smallest number of integers that Oleksiy wrote?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
253
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the function \\( g(x) = (px + q)^2 (2x^2 - 5x - 3) \\) where \\( p \\) and \\( q \\) are constants, given that when \\( g(x) \\) is divided by \\( (x - 2)^2 \\), the remainder is \\( -39 - 3x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p = 1, q = 1 \\) or \\( p = -1, q = -1 \\)"}}
|
|
254
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), medians \\(AD\\) and \\(CE\\) are drawn. If \\(AD = 5\\), \\(\\angle DAC = \\frac{\\pi}{8}\\), and \\(\\angle ACE = \\frac{\\pi}{4}\\), then what is the area of triangle \\(ABC\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{25}{3}\\)"}}
|
|
255
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Find\n\\[\n\\sum_{k=1}^{n-1}\\frac{1}{\\sin^2\\frac{(2k+1)\\pi}{2n}}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n^2 - \\frac{1}{\\sin^2 \\frac{\\pi}{2n}} \\)"}}
|
|
256
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(a, b, c, d,\\) and \\(S\\) are non-zero, non-one real numbers such that \\(a + b + c + d = S\\) and \\(\\frac{1}{a} + \\frac{1}{b} + \\frac{1}{c} + \\frac{1}{d} = S\\), solve for \\(S\\) given that \\(\\frac{1}{1-a} + \\frac{1}{1-b} + \\frac{1}{1-c} + \\frac{1}{1-d} = S\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
257
73
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the largest positive real number \\( k \\) such that the inequality\n\\[\n\\frac{a^2+b^2+c^2}{ab+bc+ca}+\\frac{8abc}{(a+b)(b+c)(c+a)} \\geqslant 2 + \\frac{k(a-b)^2(b-c)^2(c-a)^2}{(a+b)^2(b+c)^2(c+a)^2},\n\\]\nholds for all non-negative real numbers \\( a, b, c \\) with \\( ab+bc+ca > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
258
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all prime numbers \\( p \\) and \\( q \\) such that \\( pq \\) divides \\( 5^p + 5^q \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((5, 5), (5, 2), (2, 5), (3, 2), (2, 3), (313, 5), (5, 313)\\)"}}
|
|
259
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n > 1 \\) be an integer and \\( X = \\{1, 2, \\cdots, n^2\\} \\). Find the least possible value of \\( k \\) such that in any subset of \\( X \\) with \\( k \\) elements, there exist \\( x \\) and \\( y \\) such that \\( x^2 \\mid y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n^2 - n + 1 \\)"}}
|
|
260
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\) with \\(\\angle BAC = 40^\\circ\\) and \\(\\angle ABC = 60^\\circ\\), points \\(D\\) and \\(E\\) are on \\(AC\\) and \\(AB\\) respectively such that \\(\\angle CBD = 40^\\circ\\) and \\(\\angle BCE = 70^\\circ\\). \\(BD\\) and \\(CE\\) intersect at point \\(F\\), and \\(AF\\) intersects \\(BC\\) at point \\(G\\). Find the measure of \\(\\angle GFC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(20^\\circ\\)"}}
|
|
261
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the system \\( |z^2 + az + 1| = 1 \\) and \\( |z| = 1 \\) where \\( a \\) and \\( z \\) are complex numbers. Let \\( S \\) be the set of all points in the complex plane such that if \\( a \\) is in \\( S \\), then there is a solution for \\( z \\). If \\( A \\) is the area of \\( S \\) graphed in the complex plane, find \\( \\lfloor 10A \\rfloor \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "111"}}
|
|
262
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind prime numbers \\( p \\) and \\( q \\) such that \\((5^p - 2^p)(5^q - 2^q)\\) is divisible by \\( pq \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (p, q) = (3, 3) \\) or \\( (3, 13) \\) or \\( (13, 3) \\)"}}
|
|
263
74
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven positive real numbers \\(X, Y, Z\\) such that \\(XYZ = 1\\), find the least value of \\(\\frac{1}{X+1} + \\frac{1}{Y+1} + \\frac{1}{Z+1}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
264
75
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the longest boat of length $c$ and negligible width that can pass through a right-angle bend in a river, where the banks are parallel and $a$ units apart, and the bend forms a square with the river flowing in across one side and out across an adjacent side?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2a\\sqrt{2} \\)"}}
|
|
265
76
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor how many three-element sets of positive integers \\(\\{a, b, c\\}\\) is it true that \\(a \\times b \\times c = 2310\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "40"}}
|
|
266
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn how many ways can we paint 16 seats in a row, each red or green, such that the number of consecutive seats painted in the same color is always odd?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1974"}}
|
|
267
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), points \\(E\\) and \\(D\\) are on \\(AB\\) and \\(AC\\) respectively. The measures of the angles \\(BAC\\), \\(ACE\\), \\(BCE\\), and \\(ABD\\) are \\(20^\\circ\\), \\(30^\\circ\\), \\(10^\\circ\\), and \\(60^\\circ\\) respectively. Find the measure of \\(\\angle BDE\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(20^\\circ\\)"}}
|
|
268
77
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA bee starts flying from point \\( P_0 \\). She flies 1 inch due east to point \\( P_1 \\). For \\( j \\ge 1 \\), once the bee reaches point \\( P_j \\), she turns \\( 30^\\circ \\) counterclockwise and then flies \\( j+1 \\) inches straight to point \\( P_{j+1} \\). When the bee reaches \\( P_{2015} \\), she is exactly \\( a\\sqrt{b} + c\\sqrt{d} \\) inches away from \\( P_0 \\), where \\( a \\), \\( b \\), \\( c \\), and \\( d \\) are positive integers and \\( b \\) and \\( d \\) are not divisible by the square of any prime. What is \\( a + b + c + d \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2024"}}
|
|
269
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P(x) \\) such that for every real \\( x \\):\n\\[ (x-1)P(x+1) - (x+2)P(x) = 0 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = a(x^3 - x) \\)"}}
|
|
270
78
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the polynomial \\( P(x) = x(x^2-1)(x^2-a) - 1 \\) for \\( a \\geq 5 \\), let the roots of \\( P(x) \\) be \\( x_1, x_2, x_3, x_4, x_5 \\). Calculate \\( T = \\sum_{i=1}^5 \\frac{1}{x_i^4 - x_i^2} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(-a^2\\)"}}
|
|
271
79
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the last three digits of $1993^{1994^{1995^{\\cdot^{\\cdot^{\\cdot^{10000}}}}}}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "401"}}
|
|
272
80
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the plane, given are 4 fixed points \\( A(-1, 0) \\), \\( B(1, 0) \\), \\( C\\left(\\frac{1}{a}, 0\\right) \\), and \\( D(a, 0) \\), and a point \\( P \\) which is not on the \\( x \\)-axis, moves under the constraint \\( (a-1)|\\overrightarrow{AP}| = (a+1)|\\overrightarrow{BP}| \\) where \\( a > 1 \\). Find the maximum area of \\( \\triangle PCD \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(a - a^{-1})^2}{4}\\)"}}
|
|
273
81
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many regular polygons are possible such that the sum of their sides is 2016 units and no side can be smaller than 10 units?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "199"}}
|
|
274
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven three permutations \\(a_1, a_2, \\cdots, a_6\\), \\(b_1, b_2, \\cdots, b_6\\), and \\(c_1, c_2, \\cdots, c_6\\) of the set \\(\\{1, 2, \\cdots, 6\\}\\), find the minimum value of the expression\n\\[a_1b_1 + a_2b_2 + \\cdots + a_6b_6 + b_1c_1 + b_2c_2 + \\cdots + b_6c_6 + c_1a_1 + c_2a_2 + \\cdots + c_6a_6.\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "195"}}
|
|
275
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a, b, c, P, Q, R \\in \\mathbb{N}^+ \\) and \\( A = \\{ (x, y, z) \\mid 1 \\le x \\le a, 1 \\le y \\le b, 1 \\le z \\le c \\} \\). We can select \\( M \\) different elements of \\( A \\) such that for any subsets \\( S_1 \\subseteq \\{1, 2, \\ldots, a\\} \\) with \\( |S_1| = P \\), \\( S_2 \\subseteq \\{1, 2, \\ldots, b\\} \\) with \\( |S_2| = Q \\), and \\( S_3 \\subseteq \\{1, 2, \\ldots, c\\} \\) with \\( |S_3| = R \\), the set \\( \\{ (x, y, z) \\mid (x, y, z) \\in A, x \\in S_1, y \\in S_2, z \\in S_3 \\} \\) always contains at least one element we choose. Find the minimum value of \\( M \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((a - P + 1)(b - Q + 1)(c - R + 1)\\)"}}
|
|
276
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCDEF\\) be a regular hexagon with side length 1. A circle passes through points \\(A\\) and \\(B\\) and is tangent to sides \\(CD\\) and \\(EF\\). Find the radius of the circle."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{3} - \\frac{\\sqrt{6}}{3}\\)"}}
|
|
277
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the equation of the parabola whose focus is at $(1,1)$ and whose tangent line has the equation $x + y = 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x-y)^2 - 4x - 4y + 4 = 0\\)"}}
|
|
278
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{N} \\to \\mathbb{N} \\) such that \\( f(1) = 1 \\) and \\( f(n+1) = \\left[ f(n) + \\sqrt{f(n)} + \\frac{1}{2} \\right] \\) for \\( n \\in \\mathbb{N} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = \\left\\lfloor \\frac{n}{2} \\right\\rfloor \\left\\lceil \\frac{n}{2} \\right\\rceil + 1 \\)"}}
|
|
279
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence defined by \\(a(n + 3) = a(n + 2) \\cdot (a(n + 1) + a(n))\\) for \\(n > 0\\) and \\(a(6) = 8820\\), find \\(a(7)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2469600"}}
|
|
280
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Z} \\times \\mathbb{Z} \\rightarrow \\mathbb{Z} \\) such that for all \\( m, n \\in \\mathbb{Z} \\) we have:\n\\[ 2f(m,n) = f(m-n, n-m) + m + n = f(m+1, n) + f(m, n+1) - 1 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x,y) = c(x-y) + y \\) for any \\( c \\in \\mathbb{Z} \\)"}}
|
|
281
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA square is drawn inside a triangle with sides 3, 4, and 5 such that one corner of the square touches the side of length 3, another corner touches the side of length 4, and the base of the square rests on the longest side of the triangle. What is the side length of the square?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{60}{37}\\)"}}
|
|
282
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{N} \\to \\mathbb{N} \\setminus \\{1\\} \\) such that\n\\[ f(n) + f(n+1) = f(n+2)f(n+3) - 168. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = 14 \\) for all \\( n \\), or \\( f(2n) = 2 \\) and \\( f(2n+1) = 170 \\), or \\( f(2n) = 170 \\) and \\( f(2n+1) = 2 \\)."}}
|
|
283
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute triangle \\(ABC\\), the segment \\(CD\\) is an altitude and \\(H\\) is the orthocenter. Given that the circumcenter of the triangle lies on the line containing the bisector of the angle \\(DHB\\), determine all possible values of angle \\(CAB\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
284
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $p(x,y) \\in \\mathbb{R}[x,y]$ such that for each $x,y \\in \\mathbb{R}$, the equation $p(x+y, x-y) = 2p(x,y)$ holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x,y) = (a+b)x^2 + axy + by^2 \\)"}}
|
|
285
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor real numbers \\(a\\) and \\(b\\), define \\(f(x) = \\frac{1}{ax + b}\\). For which values of \\(a\\) and \\(b\\) are there three distinct real numbers \\(x_1, x_2, x_3\\) such that \\(f(x_1) = x_2\\), \\(f(x_2) = x_3\\), and \\(f(x_3) = x_1\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = -b^2 \\neq 0 \\)"}}
|
|
286
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the integers \\( n \\) and \\( k \\) such that \\( 5 \\mid (k+1)^n + (k+2)^n + (k+3)^n + (k+4)^n + (k+5)^n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\neq 4l \\) for \\( l \\in \\mathbb{N} \\), \\( k \\in \\mathbb{Z} \\)"}}
|
|
287
82
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA semicircle is inscribed in an isosceles triangle with base $16$ and height $15$ so that the diameter of the semicircle is contained in the base of the triangle. What is the radius of the semicircle?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{120}{17}\\)"}}
|
|
288
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all positive integers \\( n \\) such that \\( 2000 \\) divides \\( (-2004)^n - 1900^n + 25^n - 121^n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\in \\mathbb{Z}^+ \\)"}}
|
|
289
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum possible least common multiple (lcm) of twenty (not necessarily distinct) natural numbers whose sum is 801."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "42"}}
|
|
290
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( A_1A_2\\ldots A_7 \\) be a regular heptagon, and let \\( A_1A_3 \\) and \\( A_2A_5 \\) intersect at \\( X \\). Compute \\( \\angle A_1XA_7 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3\\pi}{14}\\)"}}
|
|
291
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\( m \\) such that the equation \\( \\left| -2x^2 + 10x - 8 \\right| = x^2 - 5x + m \\) has 4 different real roots."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m \\in \\left(4, \\frac{43}{4}\\right) \\)"}}
|
|
292
83
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are $n$ rooms in a sauna, each with unlimited capacity. No room may be attended by a female and a male simultaneously. Males want to share a room only with males that they don't know, and females want to share a room only with females that they know. Given that two males know each other if and only if their wives know each other, find the biggest number $k$ such that any $k$ couples can visit the sauna at the same time."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n-1 \\)"}}
|
|
293
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute-angled triangle \\(ABC\\), point \\(D\\) is an interior point such that \\(AB \\cdot BC \\cdot CA = DA \\cdot AB \\cdot BD + DB \\cdot BC \\cdot CD + DC \\cdot CA \\cdot AD\\). Find the locus of point \\(D\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(H\\) (the orthocenter of \\(\\triangle ABC\\))"}}
|
|
294
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the function \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \\( f(x) + f(y) = f(x + y) + 1 \\) for all \\( x, y \\in \\mathbb{R} \\) and \\( x + y \\neq 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x + 1 \\)"}}
|
|
295
84
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the set of \\( n \\) positive integers \\( S = \\{1, 2, \\ldots, n\\} \\), how many quadruples \\((a, b, c, d)\\) are there such that \\( a + b = c + d \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2n^3}{3} + \\frac{n}{3}\\)"}}
|
|
296
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all continuous functions \\( f: (0, \\infty) \\to (0, \\infty) \\) such that\n\\[ f(x)f(y) = f(xy) + f\\left(\\frac{x}{y}\\right) \\]\nfor any positive \\( x \\) and \\( y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^c + x^{-c} \\) for some constant \\( c \\)."}}
|
|
297
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be real numbers such that \\(0 < a, b, c \\le 1\\) and \\(ab + bc + ca = 1\\). Find the maximum value of \\(M = a + b + c + 3abc\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 4(2 - \\sqrt{2}) \\)"}}
|
|
298
85
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( S = \\{1, 2, \\ldots, 1990\\} \\), define an operation \\( '' \\circ '' \\) in \\( S \\) such that it satisfies the properties:\n(i) For all \\( a, b, c \\in S \\), \\((a \\circ b) \\circ c = a \\circ (b \\circ c)\\).\n(ii) For all \\( a, b \\in S \\) with \\( a \\neq b \\), \\( a \\circ b \\neq b \\circ a \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a \\circ b = a \\)"}}
|
|
299
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real number solutions to the system of equations:\n\\[\n\\begin{cases} \na\\sqrt{b} - c = a \\\\\nb\\sqrt{c} - a = b \\\\\nc\\sqrt{a} - b = c \n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = 4, b = 4, c = 4 \\)"}}
|
|
300
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( T \\) be the set of ordered triples \\((x, y, z)\\) of nonnegative real numbers that lie in the plane \\( x + y + z = 1 \\). Let \\((x, y, z)\\) support \\((a, b, c)\\) when exactly two of the following are true: \\( x \\geq a \\), \\( y \\geq b \\), \\( z \\geq c \\). Let \\( S \\) consist of those triples in \\( T \\) that support \\((1/2, 1/3, 1/6)\\). The area of \\( S \\) divided by the area of \\( T \\) is \\( \\frac{m}{n} \\), where \\( m \\) and \\( n \\) are relatively prime positive integers. Find \\( m + n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "25"}}
|
|
301
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the minimal value of \\( n \\) such that a magician and their helper can successfully perform a trick where the helper turns all but one of \\( n \\) face-up cards face down (without changing their order), and the magician can then identify the face color of the one face-down card? The cards have one of 2017 possible face colors."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2018"}}
|
|
302
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximal number \\( m \\) such that the following inequality holds for all non-negative real numbers \\( a, b, c, d \\):\n\n\\[\n\\left( ab + cd \\right)^2 + \\left( ac + bd \\right)^2 + \\left( ad + bc \\right)^2 \\geq ma \\left( b + c \\right) \\left( b + d \\right) \\left( c + d \\right)\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
303
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for $x$: $\\lfloor x+\\lfloor 2x\\rfloor\\rfloor < 3$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x < 1\\)"}}
|
|
304
86
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the point of concurrency for the family of lines given by the equation \\(4acx + y(ab + bc + ca - abc) + abc = 0\\), where \\(a\\), \\(b\\), and \\(c\\) are positive numbers in harmonic progression."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(-\\frac{3}{4}, 1\\right)\\)"}}
|
|
305
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( d(n) \\) be the number of multiples of \\( n \\). Find all integers \\( n \\) such that there exists no perfect square in the sequence \\( n, d(n), d(d(n)), d(d(d(n))), \\ldots \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is a prime number."}}
|
|
306
87
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are 100 people in a queue waiting to enter a hall with 100 seats numbered from 1 to 100. The first person in the queue enters the hall and chooses any seat. The $n$-th person in the queue, where $n$ can be $2, \\ldots, 100$, enters the hall after the $(n-1)$-th person is seated. He sits in seat number $n$ if it is vacant; otherwise, he takes any unoccupied seat. Find the total number of ways in which the 100 seats can be filled up, provided that the 100th person occupies seat number 100."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^{98} \\)"}}
|
|
307
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider $\\beta$ satisfying $\\sin \\alpha = \\cos 2\\beta$ for $0 \\leq \\alpha, \\beta \\leq \\pi$. Let $\\beta_1, \\beta_2$ ($\\beta_1 < \\beta_2$) be the values of $\\beta$ for some fixed value of $\\alpha$. Find the maximum value of $y = \\sin \\left(\\alpha + \\frac{\\beta_1}{2} + \\frac{\\beta_2}{3}\\right)$ and the value of $\\alpha$ by which $y$ is maximized."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( y = 1 \\) when \\( \\alpha = \\frac{3\\pi}{22} \\)."}}
|
|
308
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an isosceles triangle with \\(m(\\angle A) = 20^\\circ\\) and \\(AB = AC\\). The perpendicular bisector of \\(AC\\) intersects \\(AB\\) at \\(K\\), \\(L\\) is the reflection of \\(K\\) in \\(AC\\), and \\(M\\) is a point inside \\(\\triangle ABC\\) such that \\(BC = CM\\) and \\(m(\\angle BCM) = 40^\\circ\\). Find \\(m(\\angle BLM)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10 degrees"}}
|
|
309
88
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( r \\) be a real number that satisfies the equation\n\n\\[\n\\left[ r + \\frac{19}{100} \\right] + \\left[ r + \\frac{20}{100} \\right] + \\cdots + \\left[ r + \\frac{91}{100} \\right] = 546,\n\\]\n\nwhere \\(\\left[ \\cdot \\right]\\) denotes the integer part. Find the value of \\( A = \\left[ 100r \\right] \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "743"}}
|
|
310
89
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a graph with 30 vertices, such that removing any 26 vertices leaves the remaining graph connected, what is the minimum number of edges in the graph?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "405"}}
|
|
311
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a group of 7 people, the number of people who shook hands with exactly 1 person is 1, the number of people who shook hands with exactly 2 people is 2, and the number of people who shook hands with exactly 3 people is 3. How many different values can the total number of handshakes be?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
312
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P(x) = \\sum_{i=1}^{20} (-x)^{20-i} (x+i)^i \\). Let \\( K \\) be the product of the roots of \\( P(x) \\). How many digits does \\( \\lfloor K \\rfloor \\) have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "24"}}
|
|
313
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCalculate the probability that the sixth-best player reaches the semi-final in a tennis tournament with 16 players, where the better player always wins and the order of matches is chosen at random."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{24}{91}\\)"}}
|
|
314
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $D$ be a point on side $BC$ of $\\triangle ABC$ such that $AB:DC = 1$. If $\\angle B = x$ and $\\angle C = x/2$, find $\\angle BAD$ and $\\angle CAD$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\angle BAD = 180^\\circ - 2x \\) and \\( \\angle CAD = x/2 \\)."}}
|
|
315
90
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSimplify or evaluate the sum \\(\\sum\\limits_{i=0}^{(N-1)/2} {N \\choose i} (N-i)\\), where \\(N\\) is an odd number."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{N}{2} \\left( 2^{N-1} + \\binom{N-1}{(N-1)/2} \\right)\\)"}}
|
|
316
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all possible values of the positive integer \\( n \\) such that the set \\(\\{1, 2, \\ldots, 3n\\}\\) can be divided into three sets \\(\\{a_1, a_2, \\ldots, a_n\\}\\), \\(\\{b_1, b_2, \\ldots, b_n\\}\\), and \\(\\{c_1, c_2, \\ldots, c_n\\}\\) where \\(a_i + b_i = c_i\\) for \\(i = 1, 2, \\ldots, n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\equiv 0 \\pmod{4} \\) or \\( n \\equiv 1 \\pmod{4} \\)"}}
|
|
317
91
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of the expression\n\\[ P = \\dfrac{x}{y} + \\sqrt{\\dfrac{y}{z}} + 3\\sqrt{\\dfrac{z}{x}} \\]\nwhere \\( x, y, z > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\dfrac{5}{2} (18)^{\\frac{1}{5}}\\)"}}
|
|
318
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\) with \\(\\angle B > \\angle C\\), let the tangent to the circumcircle at \\(A\\) meet \\(BC\\) at \\(K\\). Let the bisector of \\(\\angle AKC\\) meet \\(AB\\) and \\(AC\\) at \\(D\\) and \\(E\\) respectively. Let \\(L = BE \\cap CD\\). Suppose \\(K, L, O\\) are collinear. Find \\(\\angle A\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
319
92
|
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be a right triangle with \\(\\angle C = 90^\\circ\\). Points \\(M\\) and \\(N\\) lie on \\(AB\\) such that \\(AM = BN = 3\\) and \\(AN = 7\\). Given that \\(CM = 6\\), find the area of triangle \\(CMN\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3\\sqrt{39}}{2}\\)"}}
|
|
320
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( H \\) be the orthocenter of an acute triangle \\( ABC \\). The lines \\( AH \\), \\( BH \\), and \\( CH \\) intersect the circumcircle of \\( \\triangle ABC \\) at points \\( A' \\), \\( B' \\), and \\( C' \\), respectively. Find the range of \\( S = \\frac{AH}{AA'} + \\frac{BH}{BB'} + \\frac{CH}{CC'} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left[\\frac{3}{2}, 2 \\right)\\)"}}
|
|
321
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many complex numbers $z$ satisfy the equation $z^2 = \\bar{z} \\cdot 2^{1-|z|}$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
322
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence defined by \\( X_{n+1} = \\sqrt{X_n + 6\\sqrt{X_{n-1}}} \\) with initial conditions \\( X_0 = 1 \\) and \\( X_1 = 2 \\), find an explicit formula for \\( X_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( X_n = 2^{2 - \\left( \\frac{1}{2} \\right)^{n-1}} \\)"}}
|
|
323
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the sequences \\(a_n\\), \\(b_n\\), \\(c_n\\), and \\(d_n\\) for \\(n \\geq 1\\) given the initial conditions \\(a_1 = d_1 = 0\\) and \\(b_1 = c_1 = 1\\), and the recurrence relations:\n\\[ a_{n+1} = 2b_n + 3c_n \\]\n\\[ b_{n+1} = a_n + 3d_n \\]\n\\[ c_{n+1} = a_n + 2d_n \\]\n\\[ d_{n+1} = b_n + c_n \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a_n = \\frac{x_n}{2} \\text{ for } n = 2k, \\text{ and } 0 \\text{ for } n = 2k+1\\), \\(b_n = \\frac{x_{n-1}}{2} + \\frac{3y_{n-1}}{2} \\text{ for } n = 2k+1, \\text{ and } 0 \\text{ for } n = 2k\\), \\(c_n = \\frac{x_{n-1}}{2} + \\frac{2y_{n-1}}{2} \\text{ for } n = 2k+1, \\text{ and } 0 \\text{ for } n = 2k\\), \\(d_n = \\frac{y_n}{2} \\text{ for } n = 2k, \\text{ and } 0 \\text{ for } n = 2k+1\\), where \\(x_n = \\frac{1}{2} \\left[ (5 + 2\\sqrt{6})^n + (5 - 2\\sqrt{6})^n \\right]\\) and \\(y_n = \\frac{1}{2\\sqrt{6}} \\left[ (5 + 2\\sqrt{6})^n - (5 - 2\\sqrt{6})^n \\right]\\)."}}
|
|
324
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a_1 = 1 \\) and \\( a_{n+1} = (1 + 3^{2^n}) a_n + 3^{2^n} \\) for all \\( n = 1, 2, 3, \\ldots \\). Find \\( a_n \\) in terms of \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{3^{2^n} - 5}{4} \\)"}}
|
|
325
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : \\mathbb{R} \\to \\mathbb{R} \\) that satisfy the equation\n\\[ f(x^{2019} + y^{2019}) = x(f(x))^{2018} + y(f(y))^{2018} \\]\nfor all real numbers \\( x \\) and \\( y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x \\)"}}
|
|
326
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the remainder when $2018^{2019^{2020}}$ is divided by $2020$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1008"}}
|
|
327
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all positive integers $N$ for which there exists a strictly increasing sequence of positive integers $s_0 < s_1 < s_2 < \\cdots$ satisfying the following properties:\n- The sequence $s_1 - s_0$, $s_2 - s_1$, $s_3 - s_2$, $\\ldots$ is periodic.\n- $s_{s_n} - s_{s_{n-1}} \\leq N < s_{1+s_n} - s_{s_{n-1}}$ for all positive integers $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k^2 \\leq N < k^2 + k \\) for some positive integer \\( k \\)."}}
|
|
328
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\( p + q = a \\) where \\( a \\) is an integer in the range \\( a \\in [0, 2021] \\) and the equation\n\n\\[\n\\frac{p^2}{p-1} + \\frac{q^2}{q-1} = 4\n\\]\n\ndetermine the number of values of \\( a \\) for which the equation has a finite number of solutions."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2021"}}
|
|
329
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of $n$-digit positive integers that can be formed using the digits $1, 2, 3, 4$ such that the digits $1$ and $2$ are not adjacent."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{17+5\\sqrt{17}}{34} \\left(\\frac{3+\\sqrt{17}}{2}\\right)^n + \\frac{17-5\\sqrt{17}}{34} \\left(\\frac{3-\\sqrt{17}}{2}\\right)^n\\)"}}
|
|
330
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real-valued continuous functions \\( f \\) defined on the interval \\( (-1, 1) \\) such that \\( (1 - x^2) f\\left(\\frac{2x}{1 + x^2}\\right) = (1 + x^2)^2 f(x) \\) for all \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{1 - x^2} \\)"}}
|
|
331
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many roots does the equation $\\frac{1}{x}+\\frac{1}{\\sqrt{1-x^2}}=\\frac{35}{12}$ have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
332
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nMario has to create a list of 250 positive integers, not necessarily distinct, such that each number on the list is equal to the count of different numbers other than itself. For example, if 15 appears on the list, then there are 15 numbers different from 15. Determine the maximum number of distinct integers that Mario\u2019s list can contain."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "21"}}
|
|
333
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of ordered integer pairs \\((a, b)\\) which satisfy the equation \\(ab - 2(a+b) + 4 = \\frac{2012 - b}{a}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
334
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor how many values of $n$ is the condition $x^{49} \\equiv x \\pmod{n}$ satisfied for all $x$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "64"}}
|
|
335
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $\\ [x]+[x^2]=[x^3]$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$x \\in [-1,0) \\cup [0,1) \\cup [\\sqrt[3]{2},\\sqrt{2}) \\cup [\\sqrt[3]{3},\\sqrt[3]{4})$"}}
|
|
336
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( s \\geq k \\), is there an inequality between \\((x_1^{s} + \\cdots + x_n^{s})^k\\) and \\((x_1^{k} + \\cdots + x_n^{k})^s\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\sum_{i=1}^n x_i^s\\right)^k \\le \\left(\\sum_{i=1}^n x_i^k\\right)^s\\)"}}
|
|
337
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a, b, c > 0\\) and \\(2a + 4b + 7c \\leq 2abc\\), find the minimum value of \\(a + b + c\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{15}{2}\\)"}}
|
|
338
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c \\geq 0\\) such that \\(a^3 + b^3 + c^3 = 2 + 3abc\\). Find the minimum value of the expression \\(P = a^2 + 2b^2 + 3c^2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{\\frac{2}{3}}\\)"}}
|
|
339
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[\n\\left\\{ \\begin{array}{l}\n{x^2} - {y^2} + x + y = \\sqrt {y - 1} - \\sqrt x \\\\\n2{x^2} - 11y + 32 = 3.\\sqrt[3]{{4y - 8}}\n\\end{array} \\right. \\quad (x,y \\in \\mathbb{R}).\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(3, 4)"}}
|
|
340
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of different arrangements of pennies in rows subject to the following conditions:\n- The bottom row consists of \\( n \\) pennies, each touching its two neighbors, except the ends, where \\( n \\geq 1 \\).\n- A coin that does not belong to a row sits on the two coins below it.\n- Do not distinguish between heads and tails."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( C_n = \\frac{1}{n+1} \\binom{2n}{n} \\)"}}
|
|
341
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an acute-angled triangle with altitudes \\(BD = 14\\) and \\(AE = 15\\). Given that \\(\\frac{BE}{EC} = \\frac{5}{9}\\), find the value of \\(AC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "18.75"}}
|
|
342
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an equilateral triangle \\(ABC\\), point \\(P\\) is such that \\(PA = 4\\), \\(PB = 5\\), and \\(PC = 3\\). Find the perimeter \\(AB + BC + AC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(3 \\sqrt{25 + 12 \\sqrt{3}}\\)"}}
|
|
343
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P(x) \\) be a quadratic polynomial with complex coefficients whose \\( x^2 \\) coefficient is \\( 1 \\). Suppose the equation \\( P(P(x)) = 0 \\) has four distinct solutions, \\( x = 3, 4, a, b \\). Find the sum of all possible values of \\( (a+b)^2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "85"}}
|
|
344
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the remainder when \\(2012^{2013} + 1\\) is divided by \\(2012^2 - 2 \\cdot 2012 + 1\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4024"}}
|
|
345
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose that \\( n \\) is a positive integer. The \\( 2n \\)-tuple \\((a_1, a_2, \\ldots, a_{2n})\\) of integers is said to be good if:\n1. \\( a_i = 1 \\) or \\( a_i = -1 \\) for all \\( i \\).\n2. \\( \\left| \\sum_{i=2m-1}^{2k} a_i \\right| \\le 2 \\) for all \\( 1 \\le m \\le k \\le n \\).\n\nFind the number of good \\( 2n \\)-tuples."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2 \\cdot 3^n - 2^n\\)"}}
|
|
346
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a week, Bella eats a mango, a guava, or an apple each day. She will not eat the same fruit for two consecutive days, and the fruit eaten on the 1st and the last day will not be the same. How many different ways are there for her to eat fruits over the week?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "126"}}
|
|
347
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nPoints A and B are taken on one side of a right angle with vertex O such that \\( |OA| = a \\) and \\( |OB| = b \\). Find the radius of the circle passing through points A and B and touching the other side of the angle."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{a + b}{2}\\)"}}
|
|
348
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the maximum value of \n\\[\n\\frac{(b^2+c^2-a^2)(c^2+a^2-b^2)(a^2+b^2-c^2)}{(abc)^2},\n\\]\nwhere \\(a, b, c \\in \\mathbb{R}\\), and \n\\[\n\\frac{b^2+c^2-a^2}{bc} + \\frac{c^2+a^2-b^2}{ca} + \\frac{a^2+b^2-c^2}{ab} = 2.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-8"}}
|
|
349
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nJohn throws a rubber ball $100$ meters up into the air. John allows the ball to bounce five times before he stops it from rising again. After each bounce, it bounces $\\frac{4}{5}$ as high as the previous bounce. How many centimeters does the ball travel?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "67232 cm"}}
|
|
350
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer pairs $(x, y)$ such that $x(x^2 + x + 1) = 4y(1 - y)$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (x, y) = (0, 1) \\)"}}
|
|
351
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\rightarrow \\mathbb{R} \\) such that \n\\[ f(x)^3 - f(xf(y)^2) = xf(f(x-y)f(x+y)) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = ax \\)"}}
|
|
352
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the area of the region bounded by the graph of \\(x^2 + y^2 = 3|x-y| + 3|x+y|\\). The area is expressed as \\(m + n\\pi\\), where \\(m\\) and \\(n\\) are integers. What is \\(m + n\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "54"}}
|
|
353
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : \\mathbb{Q} \\rightarrow \\mathbb{R} \\) such that \\( f(x+y) + f(x-y) = 2 \\max( f(x), f(y) ) \\) for all \\( x, y \\in \\mathbb{Q} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) \\equiv c|x| + d \\) where \\( c \\ge 0 \\) and \\( d \\in \\mathbb{R} \\)."}}
|
|
354
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a 90-minute football match, each player must play the same integer number of minutes, but each player has to play less than 60 minutes in total. What is the minimum number of players required?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "18"}}
|
|
355
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a > b > c\\), \\(a + b + c = 1\\), and \\(a^2 + b^2 + c^2 = 1\\), find the range of values for \\(a^2 + b^2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{8}{9} < a^2 + b^2 < 1\\)"}}
|
|
356
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\(P(x)\\), \\(Q(x)\\), and \\(R(x)\\) such that\n\\[\n\\sqrt{P(x)} - \\sqrt{Q(x)} = R(x).\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(P(x) = f(x)^2\\), \\(Q(x) = g(x)^2\\), \\(R(x) = f(x) - g(x)\\) for arbitrary polynomials \\(f(x)\\) and \\(g(x)\\), or \\(P(x) = Q(x)\\) (arbitrary polynomial), \\(R(x) = 0\\)."}}
|
|
357
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nInside the triangle \\(ABC\\) there is a point \\(D\\) such that \\(\\angle BAD = 20^\\circ\\), \\(\\angle DAC = 80^\\circ\\), \\(\\angle ACD = 20^\\circ\\), and \\(\\angle DCB = 20^\\circ\\). Find \\(\\angle ABD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(10^\\circ\\)"}}
|
|
358
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the function \\( f(x) = x^2 + bx + c \\), where \\( b \\) and \\( c \\) are real numbers, and the condition \\( f(1) - 2f(5) + f(9) = 32 \\), determine the number of ordered pairs \\((b, c)\\) such that \\( |f(x)| \\leq 8 \\) for all \\( x \\) in the interval \\([1, 9]\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
359
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all sequences of positive integers $(a_n)_{n\\ge 1}$ which satisfy\n$$a_{n+2}(a_{n+1}-1)=a_n(a_{n+1}+1)$$\nfor all $n\\in \\mathbb{Z}_{\\ge 1}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a_n = k + n \\) for \\( k \\in \\mathbb{Z}_{\\ge 0} \\)"}}
|
|
360
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the probability that each of the 4 boxes contains exactly 1 red ball when 16 white and 4 red balls (not identical) are distributed randomly into 4 boxes, with each box containing at most 5 balls?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{5^4}{\\binom{20}{4}}\\)"}}
|
|
361
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence $\\{x_n\\}$ defined by $x_1 = 1$ and $x_n = \\sqrt{x_{n-1}^2 + x_{n-1}} + x_{n-1}$ for $n \\geq 2$, find the general term of $\\{x_n\\}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x_n = \\frac{1}{\\sqrt[2^{n-1}]{2} - 1} \\) for \\( n \\geq 2 \\)"}}
|
|
362
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an acute-angled triangle and \\(X \\in \\Delta ABC\\). Given the equation:\n\\[ AB \\cdot BC \\cdot CA = XA \\cdot AB \\cdot BX + XB \\cdot BC \\cdot CX + XC \\cdot CA \\cdot AX, \\]\nfind the point \\(X\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(X\\) is the orthocenter of triangle \\(ABC\\)."}}
|
|
363
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a set \\( S \\in \\{1, 2, 3, \\ldots, n\\} \\) where \\( n \\in \\mathbb{N} \\), you can always choose any subset with ten distinct elements such that there exist two elements \\( x \\) and \\( y \\) in the subset satisfying \\( 2x \\leq 3y \\) and \\( 2y \\leq 3x \\). What is the largest possible value of \\( n \\) that satisfies this condition?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "91"}}
|
|
364
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P(x) \\in \\mathbb{R}[X] \\) such that\n\\[ (1-cx)P(x-1) + (1+cx)P(x+1) = 2(1+c)P(x) \\]\nfor a given \\( c \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = ax + b \\) where \\( a \\) and \\( b \\) are constants."}}
|
|
365
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe numbers from 1 to \\( n \\) (where \\( n \\geq 2 \\)) are randomly arranged in the cells of an \\( n \\times n \\) unit square grid. For any pair of numbers situated in the same row or column, the ratio of the greater number to the smaller one is calculated. The characteristic of the arrangement is the smallest of these \\( n^2(n-1) \\) fractions. Determine the largest possible value of the characteristic."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n}{n-1}\\)"}}
|
|
366
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor real numbers \\( x \\) and \\( y \\), find the maximum value of \\( P = \\frac{2xy(xy+1) + (x+y)(xy-1)}{(1+x^2)(1+y^2)} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 + \\frac{3\\sqrt{3}}{4} \\)"}}
|
|
367
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a circle \\((O, R)\\) with a chord \\(AB\\) and the distance \\(d\\) from the center \\(O\\) to the chord \\(AB\\), and a circle \\((I, r)\\) inscribed in the segment of \\((O, R)\\) formed by \\(AB\\), find the simplest relation between \\(r\\) and \\(R\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( d + 2r = R \\)"}}
|
|
368
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\(a\\), \\(b\\), and \\(c\\) such that \\(ab\\) is a square, and\n\\[a + b + c - 3\\sqrt[3]{abc} = 1.\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((k^2, (k+1)^2, k(k+1))\\) and \\(((k+1)^2, k^2, k(k+1))\\) for \\(k \\in \\mathbb{N}\\)"}}
|
|
369
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence \\((x_n)\\) defined by \\(x_1 = \\alpha\\) and \n\\[ x_{n+1} = \\left(1 + \\frac{1}{n+1} - \\frac{2}{(n+1)^2}\\right)x_n + \\frac{8}{(n+1)^2} \\quad \\forall n \\ge 1, \\]\nfind the general term of the sequence \\((x_n)\\), and determine \\(\\alpha\\) such that \\((x_n)\\) has a finite limit."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\alpha = -4\\)"}}
|
|
370
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Ilya and Sasha each choose a pair of different polynomials of degree \\( n \\) with real coefficients. Lenya knows \\( n \\) and aims to determine if Ilya and Sasha have the same pair of polynomials. Lenya selects a set of \\( k \\) real numbers \\( x_1 < x_2 < \\dots < x_k \\) and reports these numbers. Ilya and Sasha each fill out a \\( 2 \\times k \\) table by evaluating their polynomials at these points and writing the values in any order. What is the minimal \\( k \\) such that Lenya can surely determine if Ilya and Sasha have the same pair of polynomials by looking at the tables?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k = 2n + 1 \\)"}}
|
|
371
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, d, e\\) be non-negative real numbers such that \\(a + b + c + d + e > 0\\). What is the least real number \\(t\\) such that \\(a + c = tb\\), \\(b + d = tc\\), and \\(c + e = td\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
372
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence of complex numbers defined by:\n\\[ z_{0} = -2\\sqrt{2} + 2\\sqrt{6}i \\]\n\\[ z_{1} = -1 - \\sqrt{3}i \\]\n\\[ z_{n} = 2\\sqrt{2}e^{\\frac{5i \\pi}{4}} \\cdot \\frac{z_{n-1}}{|z_{n-2}|} \\quad \\text{for} \\quad n \\geq 2 \\]\nFind the smallest positive integer \\( q \\) such that \\( z_{n+q} = z_{n} \\) for every positive integer \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "24"}}
|
|
373
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many ways are there to traverse from the vertex \\((0,0,0)\\) to \\((1,1,1)\\) in a unit cube without passing through the same vertex twice?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "18"}}
|
|
374
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence defined by $a_1 = a_2 = 1$ and $a_n = \\frac{a_{n-1}^2 + 2}{a_{n-2}}$ for $n \\ge 3$, find the general term $a_n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a_n = \\frac{9-5\\sqrt{3}}{6}(2+\\sqrt{3})^n + \\frac{9+5\\sqrt{3}}{6}(2-\\sqrt{3})^n \\)"}}
|
|
375
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind $(a-c)^2+(a^2-c^2)^2$ given the following equations:\n$$(a+b)(b+c)=-1$$\n$$(a-b)^2+(a^2-b^2)^2=85$$\n$$(b-c)^2+(b^2-c^2)^2=75$$\nwhere $a, b, c$ are real numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "160"}}
|
|
376
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( x, y, z > 0 \\) and \\( \\frac{1}{3} \\leq xy + yz + zx \\leq 3 \\), determine the range of values for \\( xyz \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 0 < xyz \\leq 1 \\)"}}
|
|
377
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nOn an island with knights (who always tell the truth) and liars (who always lie), two teams, $A$ and $B$, play a series of tennis games. Team $A$ has more members than team $B$. Whenever a player loses, they are replaced by a new member from their team. The team whose members all leave the game loses. After the tournament, every member of team $A$ claims they lost to a liar in some game, and every member of team $B$ claims they won at least two games against knights. Determine which team won the tournament."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Team A"}}
|
|
378
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all possible natural number triplets $(x, y, z)$ such that $\\frac{1}{x} + \\frac{1}{y} + \\frac{1}{z} = 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\{(3,3,3),(4,4,2),(6,3,2)\\} \\text{ and permutations} \n\n(Note: The answer includes all permutations of the triplets provided.)"}}
|
|
379
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation \\(2l + 1 = 3k^2 - 8k - 15\\) for whole numbers \\(l\\) and \\(k\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(k = 4, l = 0\\)"}}
|
|
380
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all positive integers \\( n \\) such that \\( n = S(n) + P(n) \\), where \\( S(n) \\) is the sum of the digits of \\( n \\) and \\( P(n) \\) is the product of the digits of \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 99 \\)"}}
|
|
381
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\( n \\) points \\( P_1, P_2, \\ldots, P_n \\) in that order on a straight line, each point is colored with one of five colors: white, red, green, blue, or purple. A coloring is called acceptable if two consecutive points \\( P_i \\) and \\( P_{i+1} \\) (for \\( i = 1, 2, \\ldots, n-1 \\)) are the same color or at least one of the two points is colored white. How many acceptable colorings are there?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3^{n + 1} + (-1)^{n + 1}}{2}\\)"}}
|
|
382
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the number of sequences \\(a_0, a_1, \\ldots, a_n\\) with terms in the set \\(\\{0,1,2,3\\}\\) such that \n\\[ n = a_0 + 2a_1 + 2^2a_2 + \\ldots + 2^na_n. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\lfloor \\frac{n}{2} \\rfloor + 1\\)"}}
|
|
383
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind a closed formula for the sum\n$$\\sum_{k=0}^{n} (-1)^{k}\\binom{n}{k}.$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(0\\)"}}
|
|
384
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe segment $AB$ divides a square into two parts, each of which can inscribe a circle with radii $r_1$ and $r_2$ respectively, where $r_1 > r_2$. Find the length of $AB$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2(r_1 + r_2) \\)"}}
|
|
385
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum number of colours required to colour all the edges and diagonals of an n-gon such that no two lines of the same colour meet at any vertex."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n-1 \\) if \\( n \\) is even, \\( n \\) if \\( n \\) is odd."}}
|
|
386
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a right-angled triangle \\(ABC\\) with \\(\\angle A = 90^\\circ\\), \\(AB = c\\), and \\(AC = b\\). Points \\(E\\) and \\(F\\) are on \\(AC\\) and \\(AB\\) respectively such that \\(\\angle AEF = \\angle ABC\\) and \\(\\angle AFE = \\angle ACB\\). Points \\(P\\) and \\(Q\\) are on \\(BC\\) such that \\(EP \\perp BC\\) and \\(FQ \\perp BC\\). Determine \\(EP + EF + FQ\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2bc}{\\sqrt{b^2 + c^2}}\\)"}}
|
|
387
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b > 0\\) and \\(\\frac{2}{a} + \\frac{3}{b} = 1\\). Find the minimum value of \\(T = a^2 + b^2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(2^{2/3} + 3^{2/3}\\right)^3\\)"}}
|
|
388
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\(n\\) and \\(p\\) such that:\n\\[ \\left( n^{2}+1 \\right) \\left( p^{2}+1 \\right) + 45 = 2 \\left( 2n+1 \\right) \\left( 3p+1 \\right) \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (n, p) = (2, 4) \\)"}}
|
|
389
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of triples $(x, y, z)$ such that $x, y, z$ are distinct and $x, y, z \\in \\{1, 2, 3, \\ldots, 2003\\}$ and $x + y - z = 2003$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2000(1001)"}}
|
|
390
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all strictly increasing functions \\( f: \\mathbb{Z}_{\\geq 0} \\rightarrow \\mathbb{Z}_{\\geq 0} \\) such that the equation\n\\[ \\frac{f(x)}{k^n} = k - x \\]\nhas an integral solution \\( x \\) for all \\( k \\in \\mathbb{Z}_{> 0} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = (x + 1)^n \\)"}}
|
|
391
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be an integer greater than or equal to 2. There are \\( n^2 \\) cards, and for any integer \\( i \\) between 1 and \\( n^2 \\), the value \\( \\left\\lceil \\frac{n^2}{i} \\right\\rceil \\) is written on card \\( i \\). Find all \\( n \\) such that there exists a card that satisfies the following condition when placed in each square of an \\( n \\times n \\) grid: for any two adjacent squares that share an edge, the two integers written on the cards placed on those two squares are relatively prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 3 \\)"}}
|
|
392
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many ways can the number $2885$ be expressed as the sum of two perfect squares?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
393
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the positive integers \\( x \\), \\( y \\), and \\( t \\) such that \\( t \\geq 6 \\) and the equation \\( x^2 + y^2 - 4x - 2y - 7t - 2 = 0 \\) is satisfied."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (x, y, t) = (9, 1, 6) \\)"}}
|
|
394
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : \\mathbb{R} \\to \\mathbb{R} \\) such that \\((x+y)(f(x)-f(y)) = a(x-y)f(x+y)\\) holds for all \\( x, y \\in \\mathbb{R} \\), where \\( a \\) is a given real number."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\alpha x^2 + \\beta x \\) if \\( a = 1 \\), \\( f(x) = 0 \\) if \\( a \\neq 0, 1 \\), and \\( f(x) = c \\) (a constant) if \\( a = 0 \\)."}}
|
|
395
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the following system of inequalities in $\\mathbb{R}$:\n\\[\n\\begin{aligned}\n4|x|(1-y^2) &\\ge (1+z^2)^2, \\\\\n4|y|(1-z^2) &\\ge (1+x^2)^2, \\\\\n4|z|(1-x^2) &\\ge (1+y^2)^2.\n\\end{aligned}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x, y, z = \\pm (\\sqrt{2} - 1) \\)"}}
|
|
396
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the least polynomial with integer coefficients that has the complex number $\\alpha = 3^{\\frac{1}{3}} - i\\sqrt{2}$ as a root."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x^6 + 6x^4 - 6x^3 + 12x^2 + 36x + 17 \\)"}}
|
|
397
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\( a \\) and \\( b \\) satisfying \\((a^a)^5 = b^b\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = 256, b = 1024 \\)"}}
|
|
398
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a_0 = 1 \\) and \\( a_n = 2a_{n-1} \\cdot \\sin\\left(\\frac{n\\pi}{48}\\right) \\) for \\( n \\geq 1 \\). Compute \\( \\prod_{i=1}^{47} a_i \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 48^{24} \\)"}}
|
|
399
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven quadrilateral \\(ABCD\\) with \\(\\angle CAD = 45^\\circ\\), \\(\\angle ACD = 30^\\circ\\), \\(\\angle BAC = 15^\\circ\\), and \\(\\angle BCA = 15^\\circ\\), find the value of \\(\\angle DBC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "90^\\circ"}}
|
|
400
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven non-negative real numbers \\(a, b, c, d\\) such that \\(a + b + c + d = 3\\), find the maximum value of the expression:\n\\[ ab(a + 2b + 3c) + bc(b + 2c + 3d) + cd(c + 2d + 3a) + da(d + 2a + 3b) \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(6\\sqrt{3}\\)"}}
|
|
401
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all composite positive integers \\( n \\) for which there exists a permutation \\( d_1, d_2, \\ldots, d_k \\) of the divisors of \\( n \\) such that \\[\\gcd(d_1, d_2, d_3) = \\gcd(d_2, d_3, d_4) = \\cdots = \\gcd(d_k, d_1, d_2) = 1.\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All composite positive integers \\( n \\) of the form \\( p_1^{k_1} p_2^{k_2} \\cdots p_\\ell^{k_\\ell} \\) where \\( k_i \\leq 2 \\) for each \\( i \\) and at most one \\( k_i = 2 \\)."}}
|
|
402
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $\\sqrt{2}\\cos x - 3\\sqrt{2}\\sin x + 2\\sin 2x - 5 = 0$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "no real root"}}
|
|
403
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nJo\u00e3o calculated the product of the non-zero digits of each integer from $1$ to $10^{2009}$ and then summed these $10^{2009}$ products. What is the sum he obtained?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(46^{2009}\\)"}}
|
|
404
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the value of $\\sum^{49}_{n=1}\\frac{1}{\\sqrt{n+\\sqrt{n^{2}-1}}}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 5 + 3\\sqrt{2} \\)"}}
|
|
405
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe circle \\( C_1 \\) and the circle \\( C_2 \\) passing through the center of \\( C_1 \\) intersect each other at \\( A \\) and \\( B \\). The line tangent to \\( C_2 \\) at \\( B \\) meets \\( C_1 \\) at \\( B \\) and \\( D \\). If the radius of \\( C_1 \\) is \\( \\sqrt{3} \\) and the radius of \\( C_2 \\) is \\( 2 \\), find \\( \\dfrac{|AB|}{|BD|} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
406
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $a, b, c > 0$ and $a + b + c = 3$. What is the maximum value of $a^3 + b^3 + c^3 + 9abc$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "27"}}
|
|
407
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the functional equation $f: \\mathbb{R} \\to \\mathbb{R}$ given by\n\\[ f(x + yf(x)) = xf(y) + f(x) \\]\nfor arbitrary real numbers $x$ and $y$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x \\)"}}
|
|
408
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor all positive integers $n$, find the remainder of $\\dfrac{(7n)!}{7^n \\cdot n!}$ when divided by 7."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((-1)^n\\)"}}
|
|
409
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of real solutions to the system\n\\[\n\\begin{cases}\n[ x ] + \\{ y \\} = [ y ] \\{ x \\} \\\\\nx + y = n\n\\end{cases}\n\\]\nwhere $[ x ]$ is the floor part, $\\{ x \\}$ is the fractional part, and $n \\in \\mathbb{N}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(1 + \\left\\lfloor \\frac{n}{2} \\right\\rfloor\\)"}}
|
|
410
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCall a subset \\( S \\) of \\( \\mathbb{F}_p \\) awesome if the multiset \\( \\{a - b \\mid a, b \\in S\\} \\) has the same multiplicity for each nonzero residue. For a fixed \\( p \\), find the remainder when the number of awesome sets is divided by \\( 4p \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2p + 2\\)"}}
|
|
411
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), \\(AB = 13\\), \\(BC = 14\\), and \\(AC = 15\\). Circle \\(D\\) is drawn such that it is internally tangent to the circumcircle at \\(A\\) and externally tangent to the incircle. Given that \\(AD = \\frac{m}{n}\\), where \\(m\\) and \\(n\\) are relatively prime, find \\(m + n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "73"}}
|
|
412
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f: \\mathbb{Z} \\to \\mathbb{Z} \\) such that for each pair of integers \\( m \\) and \\( n \\) (not necessarily distinct), \\( \\gcd(m, n) \\) divides \\( f(m) + f(n) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = nh(n) \\) where \\( h: \\mathbb{Z} \\to \\mathbb{Z} \\) is any function."}}
|
|
413
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a triangle \\( \\triangle ABC \\) with points \\( D, E, F \\) on sides \\( BC, AC, AB \\) respectively such that \\( \\text{CD} : \\text{BC} = 1 : 3 \\), \\( \\text{BF} : \\text{AB} = 1 : 3 \\), and \\( \\text{AE} : \\text{AC} = 1 : 3 \\). Points \\( P, Q, R \\) are on segments \\( AD, BE, CF \\) respectively such that \\( \\text{AQ} : \\text{QP} : \\text{PD} = 3 : 3 : 1 \\), \\( \\text{BR} : \\text{RQ} : \\text{QE} = 3 : 3 : 1 \\), and \\( \\text{CP} : \\text{PR} : \\text{RF} = 3 : 3 : 1 \\). Find the value of the ratio \\( [\\text{PQR}] : [\\text{ABC}] \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{7}\\)"}}
|
|
414
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation\n\\[10x^2 + 7 = 18x + 11y \\]\nwhere \\( x \\in \\mathbb{Z} \\) and \\( y \\in \\mathbb{N} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((2 \\pm 11v, 110v^2 \\pm 22v + 1)\\)"}}
|
|
415
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer \\( n \\), determine the minimum value of \n\\[\n\\max \\left\\{\\dfrac{x_1}{1 + x_1},\\, \\dfrac{x_2}{1 + x_1 + x_2},\\, \\cdots,\\, \\dfrac{x_n}{1 + x_1 + x_2 + \\cdots + x_n}\\right\\},\n\\]\nwhere \\( x_1, x_2, \\ldots, x_n \\) are non-negative real numbers that sum to 1."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(1 - 2^{-\\frac{1}{n}}\\)"}}
|
|
416
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all solutions to the equation \\(x^3 = p^3 + z^2\\) where \\(p\\) is a prime and \\(z\\) is an integer such that \\(\\text{gcd}(z, p) = \\text{gcd}(z, 3) = 1\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((p, x, z) = (7, 8, \\pm 13)\\)"}}
|
|
417
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA nine-digit number ABCDEFGHI is called a \"GOOD NUMBER\" if the three-digit substring ABC is equal to DEF, EFG, FGH, or GHI. If each of A, B, C, D, E, F, G, H, I can be any digit from 0 to 9, how many such \"GOOD NUMBER\"s exist?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3994210"}}
|
|
418
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve in $\\mathbb{R}$ the equation $\\left| x - \\frac{\\pi}{6} \\right| + \\left| x + \\frac{\\pi}{3} \\right| = \\arcsin \\frac{x^3 - x + 2}{2}.$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = 0, x = -1\\)"}}
|
|
419
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an isosceles triangle \\(ABC\\) with \\(\\angle BAC = 80^\\circ\\), point \\(P\\) is constructed inside the triangle such that \\(\\angle PBC = 40^\\circ\\) and \\(\\angle PCB = 30^\\circ\\). Find the measure of \\(\\angle APC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "100"}}
|
|
420
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all prime numbers \\( a, b, c \\) that satisfy the equation:\n\\[ (a-2)! + 2b! = 22c - 1 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = 2, b = 5, c = 11 \\)"}}
|
|
421
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P(x) = x^{2022} + a_{2021}x^{2021} + a_{2020}x^{2020} + \\ldots + a_1x + 1 \\). Let \\( x_i \\) be a root of \\( P(x) \\) for \\( i = 1, 2, \\ldots, 2022 \\), and \\( a_n \\) be real numbers for \\( n = 1, 2, \\ldots, 2021 \\). Determine the minimum value of \n\\[ S = (x_1^2 - x_1 + 1)(x_2^2 - x_2 + 1) \\cdots (x_{2022}^2 - x_{2022} + 1) \\]\nwhen \\( P(x) \\) has 2022 positive roots (not necessarily distinct)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
422
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of $\\lambda_{\\min}$ for which the inequality\n$$\\left(a^2+b^2+c^2+d^2\\right)^2+\\lambda_{\\min}\\cdot \\left(abc+abd+acd+bcd\\right)\\leq4\\left(4+\\lambda_{\\min}\\right)$$\nholds true for all (possibly degenerate) quadrilaterals $\\text{ABCD}$ with sides $AB=a$, $BC=b$, $CD=c$, $DA=d$, and perimeter $4$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "12"}}
|
|
423
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(D\\) be a point on the side \\([AB]\\) of triangle \\(ABC\\) with \\(|AB| = |AC|\\) such that \\([CD]\\) is an angle bisector and \\(m(\\widehat{ABC}) = 40^\\circ\\). Let \\(F\\) be a point on the extension of \\([AB]\\) after \\(B\\) such that \\(|BC| = |AF|\\). Let \\(E\\) be the midpoint of \\([CF]\\). If \\(G\\) is the intersection of lines \\(ED\\) and \\(AC\\), what is \\(m(\\widehat{FBG})\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "150^\\circ"}}
|
|
424
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for \\( x \\) and \\( y \\) such that \\( 2x > y > x \\) and \\( 2(2x - y)^2 = (y - x) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (x, y) = (2k^2 + k, 4k^2 + k) \\) for \\( k \\in \\mathbb{N} \\)"}}
|
|
425
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCalculate the area of the pentagon $ABCDE$ given that $AB = BC$, $CD = DE$, $\\angle ABC = 120^\\circ$, $\\angle CDE = 60^\\circ$, and $BD = 2$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{3}\\)"}}
|
|
426
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nEvaluate the sum \\[\\sum_{k=1}^n \\frac{2k^2 + 3k + 2}{k(k+1)^2 2^k k!}.\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(1 - \\frac{1}{2^n (n+1) \\cdot (n+1)!}\\)"}}
|
|
427
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle $\\triangle ABC$, $\\angle A = 70^\\circ$. Points $D$ and $E$ are on sides $AC$ and $BC$, respectively. The angle bisector of $\\angle A$ intersects $BD$ at $H$ such that $AH:HE = 3:1$ and $BH:HD = 5:3$. Find $\\angle C$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$55^\\circ$"}}
|
|
428
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation: $3^{3x+4} + 3^{\\frac{4}{3x^2}} = 36$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = -\\frac{2}{3}\\)"}}
|
|
429
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\ge 2 \\) be a positive integer. Find the number of functions \\( f: \\{1, 2, \\ldots, n\\} \\rightarrow \\{1, 2, 3, 4, 5\\} \\) such that \\( |f(k+1) - f(k)| \\ge 3 \\) for any \\( k = 1, 2, \\ldots, n-1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2F_{n+2} \\)"}}
|
|
430
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, d\\) be real numbers satisfying \\(ab + bc + cd = 1\\). Find the minimal value of \\((a^2 + ac + c^2)(b^2 + bd + d^2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{4}\\)"}}
|
|
431
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\( x, y, z > 0 \\) such that \\( x + y + z = xyz \\), find the minimum value of \\( P = \\frac{1}{x^2} + \\frac{2}{y^2} + \\frac{5}{z^2} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
432
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf real numbers \\(a, b, c, d\\) satisfy \\((1-a)^2 + (a-b)^2 + (b-c)^2 + c^2 = \\frac{1}{4}\\), then determine the values of \\((a, b, c, d)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{3}{4}, \\frac{1}{2}, \\frac{1}{4}\\right)\\)"}}
|
|
433
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the number of solutions in ordered pairs \\((x, y)\\) to the system:\n\\[\n\\sin(x+y) = \\cos(x+y)\n\\]\n\\[\nx^2 + y^2 = \\left(\\frac{1995\\pi}{4}\\right)^2\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2822"}}
|
|
434
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many sequences \\(a_1, a_2, \\ldots, a_{2008}\\) are there such that each of the numbers \\(1, 2, \\ldots, 2008\\) occurs exactly once in the sequence, and for each \\(i\\) such that \\(2 \\leq i \\leq 2008\\), \\(i\\) is in the set \\(\\{a_1, a_2, \\ldots, a_i\\}\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{2007}\\)"}}
|
|
435
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer polynomials \\(f(x)\\) such that for all integers \\(a\\) and all prime numbers \\(p\\), if \\(p \\mid f(a)\\) then also \\(p \\mid a\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^m \\) or \\( f(x) = -x^m \\) for any non-negative integer \\( m \\)"}}
|
|
436
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nZeus, Athena, and Poseidon arrive at Mount Olympus at a random time between $12:00$ pm and $12:00$ am and each stays for $3$ hours. If any two of them see each other during this period, it will be a good day. The probability of it being a good day is $\\frac{m}{n}$ where $m$ and $n$ are coprime positive integers. Find $m + n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(15\\)"}}
|
|
437
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the smallest positive integer \\( n \\) for which there exist real numbers \\( x, y, z, w \\) such that:\n\\[\n(x+y)(z+w)=8,\n\\]\n\\[\n(x+z)(y+w)=12,\n\\]\n\\[\n(x+w)(y+z)=16,\n\\]\nand\n\\[\nx^2 + y^2 + z^2 + w^2 \\le n.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "28"}}
|
|
438
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation: $\\sin\\left(x + 3^0 \\cdot \\frac{2\\pi}{7}\\right) + \\sin\\left(x + 3^1 \\cdot \\frac{2\\pi}{7}\\right) + \\cdots + \\sin\\left(x + 3^5 \\cdot \\frac{2\\pi}{7}\\right) = 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3\\pi}{2}\\)"}}
|
|
439
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSimplify the fraction\n\\[\n\\frac{ \\prod_{i=1}^{n} \\biggl( (2i)^4 + (2i)^2 + 1 \\biggr)}{\\prod_{i=1}^{n} \\biggl( (2i+1)^4 + (2i+1)^2 + 1 \\biggr)}.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{4n^2+6n+3}\\)"}}
|
|
440
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the sum of all the exact divisors of the number $N = 19^{88} - 1$ that are of the form $2^a \\cdot 3^b$, where $a$ and $b$ are greater than zero?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "744"}}
|
|
441
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a segment of length 1 divided into three pieces with lengths \\( l_1 < l_2 < l_3 \\), find the probability that \\( t \\cdot l_1 \\leq l_3 \\) for a real number \\( t \\geq 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{9t}{2t^2+5t+2}\\)"}}
|
|
442
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(0 < f(1) < f(2) < f(3) < \\ldots\\) be an increasing sequence of natural numbers. The \\(n\\)-th number which does not figure in the sequence is \\(f(f(n)) + 1\\). Find \\(f(n)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = \\left[ \\frac{1 + \\sqrt{5}}{2} n \\right] \\)"}}
|
|
443
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[ x + y + z = a \\]\n\\[ x^2 + y^2 + z^2 = b^2 \\]\n\\[ xy = z^2 \\]\nwhere \\(a\\) and \\(b\\) are constants. Determine the conditions that \\(a\\) and \\(b\\) must satisfy so that \\(x, y, z\\) are distinct positive numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( |b| < a < \\sqrt{3}|b| \\)"}}
|
|
444
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $ABCDEF$ be a regular hexagon with $AB = 7$. Let $M$ be the midpoint of $DE$. The lines $AC$ and $BF$ intersect at $P$, $AC$ and $BM$ intersect at $Q$, and $AM$ and $BF$ intersect at $R$. Find the value of $[APB] + [BQC] + [ARF] = [PQMR]$, where $[X]$ denotes the area of polygon $X$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$\\frac{175\\sqrt3}{12}$"}}
|
|
445
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nRepresent the polynomial $P(X) = X^{100} + X^{20} + 1$ as the product of 4 polynomials with integer coefficients."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (X^{60} - X^{40} + 1)(X^{20} - X^{10} + 1)(X^{10} - X^5 + 1)(X^{10} + X^5 + 1) \\)"}}
|
|
446
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\rightarrow \\mathbb{Z} \\) such that:\n\\[ f(ab) = f(a)f(b), \\quad \\forall a, b \\in \\mathbb{R} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 1 \\) for all \\( x \\), \\( f(x) = 0 \\) for all \\( x \\), \\( f(0) = 0 \\) and \\( f(x) = 1 \\) for all \\( x \\neq 0 \\), \\( f(0) = 0 \\), \\( f(x) = 1 \\) for all \\( x > 0 \\), and \\( f(x) = -1 \\) for all \\( x < 0 \\)"}}
|
|
447
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA prime $p$ is called $n$-$\\textit{rephinado}$ if $n \\mid p - 1$ and all integers from $1$ to $\\lfloor \\sqrt[\\delta]{p} \\rfloor$ are $n$-th residues modulo $p$, where $\\delta = \\varphi + 1$ and $\\varphi = \\frac{1 + \\sqrt{5}}{2}$. Determine if there are infinitely many $n$ for which there are infinitely many $n$-$\\textit{rephinado}$ primes."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No"}}
|
|
448
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFour balls of radius 1 are mutually tangent, with three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges has length \\( s \\), is circumscribed around the balls. Find the value of \\( s \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2 \\left(1 + \\sqrt{6}\\right) \\)"}}
|
|
449
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the maximum area of an equilateral triangle that can be enclosed within a $10$ by $10$ unit square?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(200\\sqrt{3} - 300\\)"}}
|
|
450
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all subsets \\( S \\subseteq \\mathbb{Z} \\) such that for any \\( a, b \\in S \\), it follows that \\( 2a - b \\in S \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\{a + kr \\mid k \\in \\mathbb{Z}\\} \\) for integers \\( a \\) and \\( r \\)."}}
|
|
451
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an $n \\times n$ square, each cell at the intersection of the $i$-th column and $j$-th row contains the number $i+j$. In each step, two non-intersecting equal rectangles with one dimension equal to $n$ can be chosen and the numbers inside these rectangles can be swapped. Determine the minimum number of moves required to transform the square so that the cell at the intersection of the $i$-th column and $j$-th row contains the number $2n+2-i-j$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2 \\left\\lfloor \\frac{n}{2} \\right\\rfloor \\)"}}
|
|
452
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f : \\mathbb{Q} \\rightarrow \\mathbb{Q} \\) satisfying the functional equation\n\n\\[ f(f(x) + y) + f(x) = f(y) + f(bx) + c \\]\n\nfor all rational numbers \\( x \\) and \\( y \\), where \\( b \\) and \\( c \\) are rational numbers such that \\( c \\neq 0 \\) and \\( b \\notin \\{ -1, 0, 1 \\} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = (b-1)x + \\frac{c}{b-1} \\)"}}
|
|
453
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all pairs \\((f,g)\\) of functions from the set of positive integers to itself that satisfy \n\\[ f^{g(n)+1}(n) + g^{f(n)}(n) = f(n+1) - g(n+1) + 1 \\]\nfor every positive integer \\( n \\). Here, \\( f^k(n) \\) means \\( \\underbrace{f(f(\\ldots f}_{k}(n) \\ldots )) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = n \\) and \\( g(n) = 1 \\) for all \\( n \\)."}}
|
|
454
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind a function \\( f: \\mathbb{R} \\setminus \\{\\pm1\\} \\rightarrow \\mathbb{R} \\) that satisfies the equation\n\\[ f\\left(\\frac{x+3}{1-x}\\right) + f\\left(\\frac{x-3}{x+1}\\right) = x. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{x^3 + 7x}{2(1 - x^2)} \\)"}}
|
|
455
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a right-angled triangle ABC with the right angle at A, point D is on AB such that CD = 1. AE is the altitude from A to BC. If BD = BE = 1, what is the length of AD?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\sqrt[3]{2} - 1 \\)"}}
|
|
456
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA circle is tangent to sides \\(AB\\) and \\(AD\\) of square \\(ABCD\\) and also tangent to a semicircle with diameter \\(DC = 4\\). Find the radius of the circle."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 8 - 4\\sqrt{3} \\)"}}
|
|
457
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn $\\Delta ABC$, let $I$ and $G$ be the incentre and centroid, respectively, such that $IG \\parallel BC$ and $BC = 2$. Given that $AC > AB$ and the area of $\\Delta ABC$ is $\\frac{3\\sqrt{5}}{8}$, find the length of $AB$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{9}{8}\\)"}}
|
|
458
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nJohn and Daniel are playing a game on a whiteboard. Initially, the positive integer $n$ is written on the board. Each player alternately erases the number $k$ on the board and replaces it with either $\\left \\lfloor \\frac{k}{2} \\right \\rfloor$ or $k - 1$. The player who manages to erase $1$ and replace it with $0$ wins the game. If John starts the game, determine all values of $n$ for which John has a winning strategy."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 2^e k \\) where \\( k \\) is odd and \\( e \\) is even."}}
|
|
459
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a chess tournament with more than one male and more than one female participant, each pair of participants plays exactly one game, and no games end in a draw. It is known that for each participant, the number of male participants they've defeated is the same as the number of female participants they've defeated. Determine the minimum possible number of participants for the tournament."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9"}}
|
|
460
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a group of 100 people, each person knows a unique secret. They can only share their secrets by calling each other. How many calls must be made so that everyone knows everyone else's secret?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "196"}}
|
|
461
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of positive divisors of \\(x_{n+2}x_{n} - x_{n+1}^2\\) for any \\(n\\), where the integer sequence \\(x_0, x_1, \\ldots\\) is defined by \\(x_0 = 2\\), \\(x_1 = 5\\), and \\(x_{n+2} = 5x_{n+1} - 6x_n\\) for \\(n = 0, 1, \\ldots\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((n+1)^2\\)"}}
|
|
462
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose that \\(a\\) and \\(b\\) are different real roots of the equation \\(4x^2 - 4tx - 1 = 0\\) (where \\(t\\) is real). The domain of the function \\(f(x) = \\frac{2x - t}{x^2 + 1}\\) is \\([a, b]\\). Find \\(g(t) = \\max f(x) - \\min f(x)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\sqrt{t^2 + 1} \\left(t^2 + \\frac{5}{2}\\right)}{16t^2 + 25}\\)"}}
|
|
463
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a knockout competition with eight players $P_1, P_2, \\ldots, P_8$, where $P_i$ beats $P_j$ if and only if $i > j$, find the probability that $P_4$ reaches the finals."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{35}\\)"}}
|
|
464
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the smallest \\( a > 1 \\) such that\n\\[\n\\frac{a + \\sin{x}}{a + \\sin{y}} \\le e^{y - x}\n\\]\nfor all \\( x \\le y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}\\)"}}
|
|
465
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the smallest $k$ such that a $3 \\times k$ grid can be filled with non-negative integers where:\n1. The sum of the numbers in each column is $n$.\n2. Each of the numbers $0, 1, \\dots, n$ appears at least once in each row."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left\\lceil \\frac{3(n+1)}{2} \\right\\rceil\\)"}}
|
|
466
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the following system of equations in $\\mathbb{R}$:\n\\[\n\\left\\{ \\begin{array}{l}\n{x^2} + {y^2} + 2\\sqrt {2{x^2} - 3xy + 2{y^2}} = x + y + 2xy\\\\\n\\sqrt {x + y} + \\sqrt {x - y} = 3x - 4y + 4\n\\end{array} \\right.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(x,y)=(2,2)"}}
|
|
467
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the smallest positive root of the equation \\(\\sqrt{\\sin(1-x)} = \\sqrt{\\cos(x)}\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2 + 7\\pi}{4}\\)"}}
|
|
468
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many Fibonacci-type sequences can be found such that there are two consecutive terms that are strictly positive and less than or equal to \\( N \\)? (Two sequences are considered the same if they differ only by shifting of indices.)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{N(N+1)}{2}\\)"}}
|
|
469
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the possible values of $\\tan a + \\tan b + \\tan c$ where $a$, $b$, and $c$ are the angles of a triangle."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((-\\infty, 0) \\cup [3\\sqrt{3}, \\infty)\\)"}}
|
|
470
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), angle \\(B\\) is \\(130^\\circ\\). \\(AA_1\\) and \\(CC_1\\) are the angle bisectors of the triangle. Points \\(K\\) and \\(L\\) are chosen on side \\(AC\\) such that \\(\\angle ABK = \\angle CBL = 80^\\circ\\). What is the angle between the lines \\(KA_1\\) and \\(LC_1\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "75^\\circ"}}
|
|
471
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Q} \\to \\mathbb{R} \\) such that\n\\[ f(a+b+c) + f(a) + f(b) + f(c) = f(a+b) + f(b+c) + f(c+a) + f(0) \\]\nfor all \\( a, b, c \\in \\mathbb{Q} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = ax^2 + bx + c \\) where \\( a, b, c \\in \\mathbb{R} \\)"}}
|
|
472
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a parallelogram with area $1$, construct lines connecting each vertex to the midpoint of the opposite side. These lines form an octagon inside the parallelogram. Determine the area of this octagon."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{6}\\)"}}
|
|
473
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the number of odd perfect squares in the set $S = \\{8a + 1 : a \\in \\mathbb{N} \\text{ and } 1 \\leq a \\leq n-1\\}$. Use this to find the formula for $f(n)$, where $f(n)$ is the number of integers in the form $\\frac{k(k+1)}{2}$ in the set $\\{1, 2, \\ldots, n-1\\}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = \\left\\lfloor \\frac{\\left\\lfloor \\sqrt{8(n-1) + 1} \\right\\rfloor}{2} \\right\\rfloor \\)"}}
|
|
474
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a convex quadrilateral \\( ABCD \\) with \\( \\angle DAB = \\angle BDC = 90^\\circ \\), the incircles of triangles \\( ABD \\) and \\( BCD \\) touch \\( BD \\) at points \\( P \\) and \\( Q \\) respectively, with \\( P \\) lying between \\( B \\) and \\( Q \\). If \\( AD = 999 \\) and \\( PQ = 200 \\), what is the sum of the radii of the incircles of triangles \\( ABD \\) and \\( BCD \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "799"}}
|
|
475
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the expression \\(1 - 2 - 2^2 - 2^3 - 2^4 - 2^5 - 2^6 - 2^7 - 2^8 - 2^9 - 2^{10}\\), how many different results can be obtained by placing parentheses in different ways and then calculating the result?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^9\\)"}}
|
|
476
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor positive numbers \\( x_1, x_2, \\ldots, x_n \\) such that \\( x_1 + x_2 + \\cdots + x_n = 1 \\), find the minimum value of \n\\[\n\\left( \\frac{1}{x_1} + \\frac{1}{x_2} + \\cdots + \\frac{1}{x_n} \\right) (1 - x_1)(1 - x_2) \\cdots (1 - x_n).\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(n-1)^n}{n^{n-2}}\\)"}}
|
|
477
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( c \\) be a positive integer. The sequence \\( a_1, a_2, \\ldots \\) is defined as follows: \\( a_1 = c \\) and \\( a_{n+1} = a_n^2 + a_n + c^3 \\) for all positive integers \\( n \\). Find all \\( c \\) such that there exist integers \\( k \\ge 1 \\) and \\( m \\ge 2 \\) for which \\( a_k^2 + c^3 \\) is the \\( m \\)-th power of some integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( c = \\ell^2 - 1 \\) for any integer \\( \\ell \\geq 2 \\)."}}
|
|
478
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all possible real values of $a$ for which the system of equations\n\\[\n\\begin{cases}\nx + y + z = 0 \\\\\nxy + yz + azx = 0\n\\end{cases}\n\\]\nhas exactly one solution."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 0 < a < 4 \\)"}}
|
|
479
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a right triangle \\(ABC\\) with \\(\\angle ABC = 90^\\circ\\), point \\(D\\) is on \\(AB\\) such that \\(\\angle BCD = \\angle DCA\\), and point \\(E\\) is on \\(BC\\) such that \\(\\angle BAE = \\angle EAC\\). Given \\(AE = 9\\) inches and \\(CD = 8\\sqrt{2}\\) inches, find the length of \\(AC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 6\\sqrt{5} \\)"}}
|
|
480
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Z} \\rightarrow \\mathbb{Z} \\) such that:\n\\[ 2023f(f(x)) + 2022x^2 = 2022f(x) + 2023[f(x)]^2 + 1 \\]\nfor each integer \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^2 + 1 \\)"}}
|
|
481
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are 50 cards with integers from 1 to 100 written on them (each number appearing once). The cards are placed on a table with only the top number visible. You can select some cards and turn them over to see the other side. What is the largest sum you can be sure to achieve by calculating the sum of the numbers on top after turning over some cards?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2525"}}
|
|
482
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nArrange eight of the nine numbers \\(2, 3, 4, 7, 10, 11, 12, 13, 15\\) in the vacant squares of the \\(3 \\times 4\\) array so that the arithmetic average of the numbers in each row and in each column is the same integer. Specify which one of the nine numbers must be left out when completing the array.\n\n[asy]\ndefaultpen(linewidth(0.7));\nfor(int x=0;x<=4;++x) \ndraw((x+.5,.5)--(x+.5,3.5));\nfor(int x=0;x<=3;++x)\ndraw((.5,x+.5)--(4.5,x+.5));\nlabel(\"$1$\",(1,3));\nlabel(\"$9$\",(2,2));\nlabel(\"$14$\",(3,1));\nlabel(\"$5$\",(4,2));[/asy]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10"}}
|
|
483
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs \\((a, b)\\) in \\(\\mathbb{R}\\) such that for all \\(x\\) in \\(\\mathbb{R}\\), the equation \\(a(\\cos x - 1) + b^2 = \\cos(ax + b^2) - 1\\) holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(1, 0)"}}
|
|
484
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the vertices of isosceles triangle \\( T1 \\) as \\( A(-1,1) \\), \\( B(9,1) \\), and \\( C(4,6) \\), and the vertices of isosceles triangle \\( T2 \\) as \\( D(4,2) \\), \\( E(2,8) \\), and \\( F(6,8) \\), find the area of the quadrilateral formed by the intersection of \\( T1 \\) and \\( T2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
485
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all infinite sets $A$ of positive integers such that if $a, b \\in A$ and $a \\ge b$, then $\\left\\lfloor \\frac{a}{b} \\right\\rfloor \\in A$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( A = \\mathbb{Z}^+ \\) or \\( A = \\left\\{ r^n \\mid n \\in \\mathbb{Z}_{\\geq0} \\right\\} \\) for some integer \\( r \\geq 2 \\)"}}
|
|
486
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{N} \\rightarrow \\mathbb{N} \\) such that\n\\[\nf(n)^{f(m)} + mn = f(m)f(n)\n\\]\nfor all positive integers \\( m, n \\). Here, \\( f(n)^{f(m)} \\) is \\( f(n) \\) applied \\( f(m) \\) times."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = n + 1 \\)"}}
|
|
487
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all prime numbers \\( p \\) such that there exists a 3rd-degree polynomial \\( f \\) for which \\( f(1), f(2), \\ldots, f(p) \\) are distinct modulo \\( p \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p = 3 \\) and \\( p \\equiv 2 \\pmod{3} \\)"}}
|
|
488
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind $n$ for which the polynomial $f=(X^2+X+1)^{3n}+(2X-2)^{3n}$ is divisible by $g=X^2-X+1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) must be an odd integer."}}
|
|
489
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : \\mathbb{R} \\to \\mathbb{R} \\) such that \\( f(x^2 + f(y)) = y - x^2 \\) for all real numbers \\( x \\) and \\( y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = -x + c \\)"}}
|
|
490
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA $2005 \\times 2005$ square matrix is filled with 1s and 0s. For each 1 in the matrix, the total number of 1s in the same row or the same column is at most 40% of the row or column length. What is the maximum number of 1s that can be in the matrix?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(1403 \\cdot 1404\\)"}}
|
|
491
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all primes $p$ such that $x^2 - xy + y^2 \\equiv 0 \\pmod{p}$ implies $x \\equiv 0 \\pmod{p}$ and $y \\equiv 0 \\pmod{p}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p \\equiv 2 \\pmod{3} \\)"}}
|
|
492
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all sequences \\(a_0, a_1, a_2, \\cdots\\) that satisfy the following conditions:\n1. \\(a_{n+1} = 2a_n^2 - 1\\) for every integer \\(n \\geq 0\\).\n2. \\(a_0\\) is a rational number.\n3. \\(a_i = a_j\\) for some non-negative integers \\(i, j\\) with \\(i \\neq j\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(0, 1, -1, \\frac{1}{2}, -\\frac{1}{2}\\)"}}
|
|
493
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA farmer's rectangular field is partitioned into a 2 by 2 grid of 4 rectangular sections. The farmer will plant one of four crops (corn, wheat, soybeans, or potatoes) in each section. The farmer does not want to grow corn and wheat in any two sections that share a border, and the farmer does not want to grow soybeans and potatoes in any two sections that share a border. In how many ways can the farmer choose crops to plant in each of the four sections of the field?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "84"}}
|
|
494
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind families of infinitely many positive integer solutions to the equation \\(x^3 + y^5 = z^7\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x, y, z) = (2^{5(6+7n)}, 2^{3(6+7n)}, 2^{13+15n})\\) for any non-negative \\(n\\)."}}
|
|
495
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $\\triangle ABC$ be a right triangle with $\\angle ABC = 90^\\circ$. Let $E$ and $F$ be the midpoints of $AB$ and $AC$, respectively. The incenter of $\\triangle ABC$ lies on the circumcircle of $\\triangle AEF$. Determine the value of $\\frac{AB}{BC}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{4}\\)"}}
|
|
496
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the largest integer $N$ which guarantees that, no matter how a $5$ rows by $2008$ columns rectangular chessboard is painted with each square either red or blue, there are two rows which have matching colours in at least $N$ columns."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "804"}}
|
|
497
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the sum of the series\n\n$$\\frac{4}{10} + \\frac{4 \\cdot 7}{10 \\cdot 20} + \\frac{4 \\cdot 7 \\cdot 10}{10 \\cdot 20 \\cdot 30} + \\cdots$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{10}{7}\\sqrt[3]{\\frac{10}{7}}-1\\)"}}
|
|
498
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle ABC, point D is on segment AC such that AB = AD and AC = BD. If angle CAB measures 100\u00b0, what is the measure of angle CBD?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10\u00b0"}}
|
|
499
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all solutions for positive integers \\( x \\) and \\( y \\) where \\( x < y > 2 \\) and a prime \\( p \\) such that \\( y - px \\) divides \\( y^2 - xy - 2x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "infinitely many solutions"}}
|
|
500
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven an infinite table with a system of orthogonal axes, let $F_n$ be the set of all connected figures containing $n$ unit squares. For each element $f_n \\in F_n$, define $S(f_n)$ as the minimal area of a rectangle that covers $f_n$ and has sides parallel to the axes. Find the maximal value of $S(f_n)$ for all $f_n \\in F_n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left\\lfloor \\dfrac{(n+1)^2}{4} \\right\\rfloor\\)"}}
|
|
501
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n > 1 \\) be an integer. There are \\( n \\) boxes in a row, and there are \\( n + 1 \\) identical stones. A distribution is a way to distribute the stones over the boxes, with each stone in exactly one box. Two distributions are a stone\u2019s throw away from each other if one can be obtained from the other by moving exactly one stone from one box to another. The cosiness of a distribution \\( a \\) is defined as the number of distributions that are a stone\u2019s throw away from \\( a \\). Determine the average cosiness of all possible distributions."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n^2-1}{2}\\)"}}
|
|
502
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many ways are there to express 1000000 as a product of exactly three integers greater than 1? (For the purpose of this problem, $abc$ is not considered different from $bac$, etc.)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "114"}}
|
|
503
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all prime numbers \\( p \\) such that there exists an integer-coefficient polynomial \\( f(x) = x^{p-1} + a_{p-2}x^{p-2} + \\cdots + a_1x + a_0 \\) that has \\( p-1 \\) consecutive positive integer roots and \\( p^2 \\mid f(i)f(-i) \\), where \\( i \\) is the imaginary unit."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p \\equiv 1 \\mod 4 \\)"}}
|
|
504
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a plane, four circles with radii $1, 3, 5,$ and $7$ are tangent to line $l$ at the same point $A,$ but they may be on either side of $l$. Region $S$ consists of all the points that lie inside exactly one of the four circles. What is the maximum possible area of region $S$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 65\\pi \\)"}}
|
|
505
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c > 0\\) and \\(a + b + c = 3\\). Find the minimum value of \n\\[ P = \\frac{3}{ab + bc + ca} + \\frac{2}{a^2 + b^2 + c^2}. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{8 + 4\\sqrt{3}}{9}\\)"}}
|
|
506
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R}^{+} \\to \\mathbb{R}^{+} \\) such that \n\\[ f(x) \\cdot f(yf(x)) = f(x+y) \\]\nfor all \\( x, y > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{ax + 1} \\) for \\( a \\geq 0 \\)"}}
|
|
507
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA monkey types a text with n symbols on a keyboard containing z symbols, including the two parenthesis symbols ( and ). Each symbol is equally likely to be typed. Determine the probability that the text written by the monkey has the parentheses used correctly (properly)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{z^n} \\sum_{k=0}^{\\lfloor n/2 \\rfloor} \\frac{(z-2)^{n-2k}}{k+1} \\binom{2k}{k}\\)"}}
|
|
508
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( AH \\) be an altitude of \\( \\triangle ABC \\), \\( DH \\) be an altitude of \\( \\triangle ABH \\), \\( EH \\) be an altitude of \\( \\triangle AHC \\), \\( DF \\) be an altitude of \\( \\triangle BDH \\), and \\( EG \\) be an altitude of \\( \\triangle HEC \\). If \\( BF = 1 \\), \\( FH = 4 \\), and \\( HG = 5 \\), find the area of \\( \\triangle ABC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "75"}}
|
|
509
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nEach of 2023 balls is placed into one of 3 bins. What is the probability that each bin will contain an odd number of balls?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{4}\\)"}}
|
|
510
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $(X_1, X_2, \\ldots, X_n)$ be positive real numbers such that $X_1 + X_2 + \\cdots + X_n = 27$. Find the maximum value of $X_1 \\cdot X_2 \\cdot \\cdots \\cdot X_n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{27}{10}\\right)^{10}\\)"}}
|
|
511
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a 90-minute football match, each player must play the same number of integer minutes, but each player has to play less than 60 minutes in total. What is the minimum number of players required?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "18"}}
|
|
512
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet A, B, and C be three different points. Suppose the ratio of their speeds is 2:3:6. Find a point P such that the sum of the times taken for A, B, and C to move straight to P is minimized."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P = A \\)"}}
|
|
513
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality \\(\\frac{\\log_{5}(x^{2}-4x-11)^{2} - \\log_{11}(x^{2}-4x-11)^{3}}{2-5x-3x^{2}} \\ge 0\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x\\in(-\\infty,-2)\\cup(-2,2-\\sqrt{15})\\cup[6,+\\infty) \\)"}}
|
|
514
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\( p \\) such that \\( \\frac{p+1}{2} \\) and \\( \\frac{p^2+1}{2} \\) are perfect squares."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
515
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\rightarrow \\mathbb{R} \\) satisfying the equation \\((x-y) \\cdot f(x+y) - (x+y) \\cdot f(x-y) = 4xy(x^2 - y^2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(f(x) = x^3 - ax\\)"}}
|
|
516
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider a sequence $\\{a_n\\}$ where $a_0 = 3$ and $a_{n+1} - a_n = n(a_n - 1)$ for all $n \\geq 0$. Find all integers $m$ such that $\\gcd(m, a_n) = 1$ for all $n \\geq 0$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(m = 2^\\alpha\\) where \\(\\alpha \\geq 0\\)"}}
|
|
517
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an acute triangle with circumcenter \\(O\\) and orthocenter \\(H\\). Given \\(CH = CO\\) and \\(\\angle CAB = \\angle CBO\\). Suppose \\(BO\\) intersects \\(AC\\) at \\(D\\). If \\(AB = 5\\) and the area of \\(\\triangle COD\\) can be expressed as \\(\\frac{a-\\sqrt{b}}{2c}\\) with \\(\\gcd(a,c) = 1\\) where \\(a, b, c\\) are natural numbers. Find the value of \\(a + b + c\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1928"}}
|
|
518
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA 3-dimensional cross is made up of 7 cubes, one central cube and 6 cubes that share a face with it. The cross is inscribed in a circle with radius 1. What is its volume?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{56}{11\\sqrt{11}}\\)"}}
|
|
519
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an isosceles triangle with \\(AB = BC\\) and incircle \\(\\omega\\). Let \\(M\\) be the midpoint of \\(BC\\), and \\(P, Q\\) be points on sides \\(AB\\) and \\(AC\\) respectively such that \\(PQ \\parallel BC\\), \\(PQ\\) is tangent to \\(\\omega\\), and \\(\\angle CQM = \\angle PQM\\). Find the perimeter of triangle \\(ABC\\) given that \\(AQ = 1\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "16"}}
|
|
520
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f:[0,1] \\rightarrow [0,1] \\) be a continuous and bijective function. Describe the set:\n\\[ A = \\{ f(x) - f(y) \\mid x, y \\in [0,1] \\setminus \\mathbb{Q} \\} \\]\nNote: There is no one-to-one function between the irrational numbers and \\(\\mathbb{Q}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( A = (-1, 1) \\)"}}
|
|
521
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), \\(\\tan A = 1\\). Given that \\(\\tan B \\cdot \\tan C = p\\), what is the set of values that \\(p\\) can take?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p \\not\\in (3-2\\sqrt{2}, 3+2\\sqrt{2}) \\)"}}
|
|
522
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f \\) from the natural numbers to the natural numbers such that for all natural numbers \\( a \\) and \\( b \\), \n\\[ a + f(b) \\mid (f(a) + b)^2. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(b) = b + f(1) - 1 \\) for all \\( b \\)."}}
|
|
523
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real numbers $\\alpha$ such that \\[\\lfloor \\alpha \\lfloor \\alpha n\\rfloor \\rfloor-\\lfloor \\alpha n\\rfloor=n-1\\] holds for every positive integer $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1 + \\sqrt{5}}{2}\\)"}}
|
|
524
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose \\(a, b,\\) and \\(c\\) are positive integers with \\(a + b + c = 2006\\), and \\(a!b!c! = m \\cdot 10^n\\), where \\(m\\) and \\(n\\) are integers and \\(m\\) is not divisible by 10. What is the smallest possible value of \\(n\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "492"}}
|
|
525
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p(n) \\) denote the product of all odd positive integers less than \\( n \\). Find the sum of all prime numbers \\( n \\) such that \\( p(n) \\equiv 8 \\pmod{n} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "25"}}
|
|
526
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven an acute-angled triangle \\(ABC\\) with angles \\(\\alpha\\), \\(\\beta\\), and \\(\\gamma\\), a point \\(P\\) lies on side \\(AB\\) such that the line connecting the feet of the perpendiculars from \\(P\\) to \\(AC\\) and \\(BC\\) is parallel to \\(AB\\). Express the ratio \\(\\frac{AP}{BP}\\) in terms of \\(\\alpha\\) and \\(\\beta\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\sin (2\\beta)}{\\sin (2\\alpha)}\\)"}}
|
|
527
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the values of \\(a\\) and \\(b\\) such that the equation \\(a(\\cos x - 1) + |b| = \\cos(ax + |b|) - 1\\) holds for all \\(x \\in \\mathbb{R}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a = 1, b = 0\\)"}}
|
|
528
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a city with 2019 metro stations where each pair of stations is connected by tunnels and any station can be reached from any other, the mayor wants to organize several metro lines such that each line includes several different stations connected in series by tunnels, and each station must be part of at least one line. The goal is to use no more than $k$ lines to save money. It turned out that the mayor's order is not feasible. What is the largest possible value of $k$ for which this is true?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1008"}}
|
|
529
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a \\ge 1 \\) and \\( b \\ge 1 \\). Find the minimum value of \\( (a+b)^2 + (a^3 + b^3 - 3a - 3b)^2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8.884414040759010435767688682729083042204646238514029942651890202734158146381222993461570239398608209"}}
|
|
530
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose that \\( G \\) is the centroid of triangle \\( ABC \\), and that \\(\\angle{GAB} + \\angle{GBC} + \\angle{GCA} = 90^\\circ\\). Characterize triangle \\( ABC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "isosceles triangle"}}
|
|
531
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all real roots of the equation \\[ \\sqrt{x^{2}-p}+2\\sqrt{x^{2}-1}=x \\] where \\( p \\) is a real parameter."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{4-p}{\\sqrt{8(2-p)}} \\) for \\( 0 \\leq p \\leq \\frac{4}{3} \\)"}}
|
|
532
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe function \\(f: \\mathbb{N} \\times \\mathbb{Z} \\rightarrow \\mathbb{Z}\\) satisfies the following conditions:\n- \\(f(0,0) = 0\\), \\(f(0,1) = 0\\),\n- For all \\(k \\notin \\{0, 1\\}\\), \\(f(0,k) = 0\\),\n- For all \\(n \\geq 1\\) and \\(k\\), \\(f(n,k) = f(n-1,k) + f(n-1,k-2n)\\).\n\nFind the sum \\(\\sum_{k=0}^{\\binom{2009}{2}} f(2008,k)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
533
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a, b, c, d > 0\\) and real, find the minimum value of \\(K\\) where\n\\[\nK = \\frac{a^3 + b^3 + c^3 + d^3}{abc + abd}.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{4^{1/3}}\\)"}}
|
|
534
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R}^+ \\rightarrow \\mathbb{R}^+ \\) such that\n\\[ f(x + f(y)) + x = f(x + f(x)) + y. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x + c \\) for \\( c \\geq 0 \\)"}}
|
|
535
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $\\lfloor x \\rfloor \\cdot \\lfloor y \\rfloor = x + y$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x, y) = (0, 0), (2, 2), (2 + a, 4 - a), (3 + a, 3 - a), (a, -a), (a - 1, 1 - a)\\) where \\(0 < a < 1\\)"}}
|
|
536
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nAlice has \\( n \\) (possibly empty) bags of coins labelled \\( 1 \\) to \\( n \\). At the \\( k^{\\text{th}} \\) move, she lists all the bags which have (strictly) fewer coins than the \\( k^{\\text{th}} \\) bag (indices reduced modulo \\( n \\)), but differ by (strictly) less than \\( n \\) coins from it. If there is at least one listed bag, Alice takes one coin from each such bag and puts them all in the \\( k^{\\text{th}} \\) bag. Otherwise, she takes \\( n-1 \\) coins from the \\( k^{\\text{th}} \\) bag and places one in each of the other bags. If at some point Alice cannot perform a move, the process ends. Find the greatest total number of coins Alice can have, such that the process will end regardless of the initial distribution of the coins in the bags."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n^2 - n - 1 \\)"}}
|
|
537
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTwo persons, $X$ and $Y$, play with a die. $X$ wins a game if the outcome is $1$ or $2$; $Y$ wins in the other cases. A player wins a match if he wins two consecutive games. Determine the probability of $Y$ winning a match in an unlimited number of games."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{16}{21}\\)"}}
|
|
538
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven $n$ lines on the same plane, where no two lines are parallel and no three lines are concurrent, how many regions of finite area does the plane get partitioned into?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n^2 - 3n + 2}{2}\\)"}}
|
|
539
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many elements in the 2002nd row of Pascal's Triangle (the one that begins with 1, 2001, ...) leave a remainder of 1 when divided by 3?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "28"}}
|
|
540
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\(a, b, c > 0\\) such that \\(a + b + c = 1\\), find the maximum value of \n\\[ A = \\frac{a}{a + bc} + \\frac{b}{b + ca} + \\frac{\\sqrt{abc}}{c + ab}. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 + \\frac{3\\sqrt{3}}{4} \\)"}}
|
|
541
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S = \\{1, 2, \\ldots, 1990\\} \\). A 31-element subset of \\( S \\) is called \"good\" if the sum of its elements is divisible by 5. Find the number of good subsets of \\( S \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{5} \\binom{1990}{31}\\)"}}
|
|
542
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA group of 7 pirates of different ages owned a total of 2009 coins. Initially, each pirate (except the youngest one) had one coin more than the next younger. Every day, a pirate was chosen and gave a coin to each of the other pirates. Find the largest possible number of coins a pirate can have after several days."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1994"}}
|
|
543
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the same triangle \\(ABC\\) with \\(AB = 1\\), \\(BC = \\sqrt{7}\\), and \\(AC = 2\\), the interior bisector of \\(\\angle CAB\\) intersects \\(BC\\) at \\(D\\) and intersects the circumcircle of \\(ABC\\) again at \\(E\\). Let \\(O\\) be the circumcenter of \\(BED\\). Find the value of \\(\\tan \\angle EBO\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\sqrt{3}}{9}\\)"}}
|
|
544
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f \\) defined from the set of positive real numbers to itself such that\n\\[ f(g(x)) = \\frac{x}{xf(x) - 2} \\]\nand\n\\[ g(f(x)) = \\frac{x}{xg(x) - 2} \\]\nfor all positive real numbers \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{3}{x} \\)"}}
|
|
545
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation \\((2X^3 + X - 3)^3 = 3 - X^3\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\sqrt[3]{\\frac{3}{2}} \\)"}}
|
|
546
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( R \\) be a square region and \\( n \\ge 4 \\) an integer. A point \\( X \\) in the interior of \\( R \\) is called \\( n\\text{-}ray \\) partitional if there are \\( n \\) rays emanating from \\( X \\) that divide \\( R \\) into \\( n \\) triangles of equal area. How many points are 100-ray partitional but not 60-ray partitional?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2320"}}
|
|
547
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a convex quadrilateral such that \\(AB = BC = CD\\), and \\(\\angle ABC = 168^\\circ\\), \\(\\angle BCD = 108^\\circ\\). Find \\(\\angle CDA\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(54^\\circ\\)"}}
|
|
548
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA cubical box with sides of length 7 has vertices at (0,0,0), (7,0,0), (0,7,0), (7,7,0), (0,0,7), (7,0,7), (0,7,7), (7,7,7). The inside of the box is lined with mirrors. A beam of light is directed from the point (0,1,2) to the point (1,3,4) and reflects repeatedly off the mirrors. Determine how far the beam of light travels before it first returns to its starting point at (0,1,2)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "42"}}
|
|
549
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be a scalene triangle. A point \\(P\\) is called nice if the lines \\(AD\\), \\(BE\\), and \\(CF\\) are concurrent, where \\(D\\), \\(E\\), and \\(F\\) are the projections of \\(P\\) onto \\(BC\\), \\(CA\\), and \\(AB\\), respectively. Find the number of nice points that lie on the line \\(OI\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
550
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all monic polynomials $f(x)$ in $\\mathbb{Z}[x]$ such that $f(\\mathbb{Z})$ is closed under multiplication."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = (x - p)^n \\) where \\( p \\in \\mathbb{Z} \\) and \\( n \\in \\mathbb{Z}^+ \\)"}}
|
|
551
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider decompositions of an $8 \\times 8$ chessboard into $p$ non-overlapping rectangles such that:\n(i) Each rectangle has an equal number of white and black squares.\n(ii) If $a_i$ is the number of white squares in the $i$-th rectangle, then $a_1 < a_2 < \\ldots < a_p$.\nFind the maximum value of $p$ for which such a decomposition is possible. For this value of $p$, determine all possible sequences $a_1, a_2, \\ldots, a_p$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p = 7 \\) with sequences \\( (1, 2, 3, 4, 5, 8, 9) \\), \\( (1, 2, 3, 4, 5, 7, 10) \\), \\( (1, 2, 3, 4, 6, 7, 9) \\), \\( (1, 2, 3, 5, 6, 7, 8) \\)"}}
|
|
552
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an isosceles triangle with \\(AB = AC\\). Suppose the tangent to the circumcircle of \\(ABC\\) at \\(B\\) is perpendicular to \\(AC\\). Find the measure of angle \\(ABC\\) in degrees."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "30 degrees"}}
|
|
553
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c \\ge 0\\) such that \\(ab + bc + ca = 1\\). Find the minimum value of the expression:\n\\[ P = \\sqrt{\\frac{1 + 3bc}{a^2 + bc}} + \\sqrt{\\frac{1 + 3ca}{b^2 + ca}} + \\sqrt{\\frac{1 + 3ab}{c^2 + ab}} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
554
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer solutions for the equation $x^3 + y^3 = 2^{2009}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No solutions."}}
|
|
555
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind every real value of \\( a \\) such that the system of equations\n\\[\n\\begin{cases}\nx^3 + y^2 + z^2 = a \\\\\nx^2 + y^3 + z^2 = a \\\\\nx^2 + y^2 + z^3 = a\n\\end{cases}\n\\]\nhas a solution with \\( x, y, z \\) being distinct real numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a \\in \\left(\\frac{23}{27}, 1\\right)\\)"}}
|
|
556
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest real number $A$ such that the inequality $x_1^2 + x_2^2 + \\cdots + x_5^2 \\geq A(x_1x_2 + x_2x_3 + \\cdots + x_4x_5)$ holds for all real numbers $x_1, x_2, \\ldots, x_5$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2}{\\sqrt{3}}\\)"}}
|
|
557
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet the integer \\( n \\geq 3 \\) and the real \\( K > 1 \\) be fixed. Find\n\\[\n\\max\\left(\\frac{1}{a_1} + \\cdots + \\frac{1}{a_n}\\right)\n\\]\nover all reals \\( a_1, \\ldots, a_n \\geq \\frac{1}{K} \\) such that \\( \\sum_{i=1}^{n} a_i = n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((n-1)K + \\frac{K}{n(K-1) + 1}\\)"}}
|
|
558
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence defined by \\(a_0 = 8\\), \\(a_1 = \\frac{1}{2\\sqrt{2}}\\), and \\(a_n = \\sqrt{\\frac{a_{n-2}}{a_1}}\\) for \\(n \\geq 2\\), find an explicit formula for \\(a_n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a_n=\\begin{cases}2^{\\frac{3}{2}+3\\cdot 2^{-1-k}} & \\text{if }n=2k\\text{, and:} \\\\ 2^{\\frac{3}{2}-3\\cdot 2^{-k}}& \\text{if }n=2k-1\\text{.}\\end{cases}\\)"}}
|
|
559
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(a, b, c\\) are numbers such that \\(\\sqrt{(1-x^2)(ax^2+bx+c)} \\leq 1\\) for all \\(x \\in [-1,1]\\), find the maximum value of \\(A\\) where \\(A = \\sqrt{(a+b+c)^2}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
560
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P(x)$ with integer coefficients such that $P(n) \\mid n^{2021} - 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The possible polynomials \\( P(x) \\) are all possible products of the cyclotomic polynomials \\( \\Phi_1(x), \\Phi_{43}(x), \\Phi_{47}(x), \\Phi_{2021}(x) \\), possibly multiplied by the unit \\( -1 \\)."}}
|
|
561
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all values of \\( a \\) such that the polynomial \\( P(x) = x^4 - 2ax^2 + x + a^2 - a \\) has all real roots."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a \\geq \\frac{3}{4} \\)"}}
|
|
562
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA square of area $108$ is inscribed inside a square of area $144$. There are two segments, labeled $m$ and $n$. The value of $m$ can be expressed as $a + b \\sqrt{c}$, where $a, b, c$ are positive integers and $c$ is square-free. Find $a+b+c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "11"}}
|
|
563
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S \\) be the set of integers whose prime factors are all \\( \\le 10 \\). Find the minimum value of \\( n \\) such that for any subset of \\( S \\) with \\( n \\) elements, there exist 4 distinct numbers in the subset whose product is a perfect square."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9"}}
|
|
564
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation:\n\n\\[ x\\sqrt{1-y^2} + y\\sqrt{2-z^2} + z\\sqrt{3-x^2} = 3 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (x, y, z) = (1, 0, \\sqrt{2}) \\)"}}
|
|
565
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine $b_{32}$ for the polynomial product \\[(1-z)^{b_1}(1-z^2)^{b_2}(1-z^3)^{b_3}(1-z^4)^{b_4}(1-z^5)^{b_5}\\cdots(1-z^{32})^{b_{32}},\\] where the $b_k$ are positive integers, such that when the product is expanded and all terms involving $z$ to a power larger than $32$ are discarded, the result is $1-2z$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^{27} - 2^{11} \\)"}}
|
|
566
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer $n$, let $(a_1, \\dots , a_n)$ and $(b_1, \\dots , b_n)$ be two permutations of $(1, \\dots, n)$. Define $S=\\sum_{i=1}^{n}a_ib_i$. How many distinct values can $S$ take?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\begin{cases}\n\\frac{(n-1)n(n+1)}{6}+1 & ,\\text{for } n\\neq 3\\\\\n4 & ,\\text{for } n=3\n\\end{cases}\\)"}}
|
|
567
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe five solutions to the equation \\((z-1)(z^2+2z+4)(z^2+4z+6)=0\\) may be written in the form \\(x_k + y_ki\\) for \\(1 \\le k \\le 5\\), where \\(x_k\\) and \\(y_k\\) are real. Let \\(\\mathcal{E}\\) be the unique ellipse that passes through the points \\((x_1, y_1), (x_2, y_2), (x_3, y_3), (x_4, y_4),\\) and \\((x_5, y_5)\\). The eccentricity of \\(\\mathcal{E}\\) can be written in the form \\(\\sqrt{\\frac{m}{n}}\\) where \\(m\\) and \\(n\\) are relatively prime positive integers. What is \\(m+n\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
568
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions $f \\in C^\\infty(]0,+\\infty[ ; [0,+\\infty[)$ such that $\\forall x \\in ]0,+\\infty[, f(x^2) = f(x)^2$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$f(x) = 0$ or $f(x) = x^a$ for any $a \\in \\mathbb{R}$"}}
|
|
569
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn \\( \\triangle ABC \\), the altitude \\( [AH] \\), the internal bisector \\( [BN] \\), and the median \\( [CV] \\) intersect at a common point. If \\( |BH| = x \\) and \\( |HC| = y \\), find \\( \\frac{\\sin \\angle VHN}{\\sin \\angle ABC} \\) in terms of \\( x \\) and \\( y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2y}{x + y}\\)"}}
|
|
570
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of positive integers \\( x \\) which satisfy the equation \\(\\left\\lfloor \\frac{x}{1947} \\right\\rfloor = \\left\\lfloor \\frac{x}{2010} \\right\\rfloor.\\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "31061"}}
|
|
571
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\( m \\) and \\( n \\) such that the inequality\n\\[ [ (m+n) \\alpha ] + [ (m+n) \\beta ] \\geq [ m \\alpha ] + [ n \\beta ] + [ n (\\alpha + \\beta) ] \\]\nholds for any real numbers \\( \\alpha \\) and \\( \\beta \\). Here, \\( [x] \\) denotes the largest integer no larger than the real number \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m = n \\) for any positive integer \\( t \\)."}}
|
|
572
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\setminus (0,1) \\rightarrow \\mathbb{R} \\) such that for all \\( x \\in \\mathbb{R} \\setminus (0,1) \\):\n\n\\[ f\\left(\\frac{x-1}{x}\\right) + f(x) = \\frac{1}{x} - x + 1 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 1 - x \\)"}}
|
|
573
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( A = \\log_6 16 \\) and \\( B = \\log_{12} 27 \\). Find integers \\( a, b, c \\) such that \\( (A + a)(B + b) = c \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = 4 \\), \\( b = 3 \\), \\( c = 24 \\)"}}
|
|
574
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that\n\n\\[ f\\left(x + f\\left(x+y\\right)\\right) = f\\left(x-y\\right) + f\\left(f\\left(x\\right)\\right) \\]\n\nholds for all reals \\( x \\) and \\( y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = -a(x) \\) where \\( A, B \\) are any two supplementary vector spaces of the \\(\\mathbb{Q}\\)-vector space \\(\\mathbb{R}\\), and \\( a(x) \\) is the projection of \\( x \\) onto \\( A \\). \n\nIn simpler terms, the solutions are all additive functions of the form \\( f(x) = -x \\) or more generally, \\( f(x) = -a(x) \\) where \\( a(x) \\) is the projection onto a subspace \\( A \\) of \\(\\mathbb{R}\\) over \\(\\mathbb{Q}\\)."}}
|
|
575
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all continuous functions \\( f : \\mathbb{R} \\to \\mathbb{R} \\) such that \\( f(x+y) = f(x) \\cdot f(y) \\) for all \\( (x, y) \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = e^{cx} \\) for some constant \\( c \\)."}}
|
|
576
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nPoints $A$, $B$, $C$, and $D$ are located on a plane such that $AB=5$, $BC=12$, $CA=13$, segments $BD$ and $CD$ are visible from point $A$ under equal angles, and segments $AB$ and $BD$ are visible from point $C$ at equal angles. Find $AD$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{60}{23}\\sqrt{13}\\)"}}
|
|
577
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $\\triangle ABC$ be a triangle such that $AB = 26$, $BC = 28$, and $AC = 30$. Let $M$, $N$, and $O$ be the midpoints of $AB$, $BC$, and $CA$, respectively. The angle bisectors of $\\angle AMN$ and $\\angle CNM$ meet at $X$. Similarly, the angle bisectors of $\\angle AON$ and $\\angle BNO$ meet at $Y$. If $XY^2 = \\frac{m}{n}$ for relatively prime positive integers $m$ and $n$, find $m + n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "837"}}
|
|
578
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind two consecutive integers such that the sum of the digits of each integer is divisible by $2006$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 10^{446} - 2 \\cdot 10^{223} - 1 \\) and \\( 10^{446} - 2 \\cdot 10^{223} \\)"}}
|
|
579
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\(a > b > 0\\) such that \\(n^a - n^b \\mid a^n - b^n\\) for all integers \\(n \\ge 2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No such pairs exist."}}
|
|
580
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the best constant \\( k \\) such that for any non-negative numbers \\( a, b, c \\) satisfying \\( a^k + b^k + c^k = 3 \\), the inequality \\( a + b + c \\ge ab + bc + ca \\) always holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\log_2{1.5} \\)"}}
|
|
581
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( \\mathcal{H}_n \\) be the set of all numbers of the form \\( 2 \\pm \\sqrt{2 \\pm \\sqrt{2 \\pm \\ldots \\pm \\sqrt{2}}} \\) where \"root signs\" appear \\( n \\) times. Compute the product of the elements of \\( \\mathcal{H}_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
582
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), \\(AB=13\\), \\(BC=14\\), and \\(CA=15\\). Distinct points \\(D\\), \\(E\\), and \\(F\\) lie on segments \\(\\overline{BC}\\), \\(\\overline{CA}\\), and \\(\\overline{DE}\\), respectively, such that \\(\\overline{AD}\\perp\\overline{BC}\\), \\(\\overline{DE}\\perp\\overline{AC}\\), and \\(\\overline{AF}\\perp\\overline{BF}\\). The length of segment \\(\\overline{DF}\\) can be written as \\(\\frac{m}{n}\\), where \\(m\\) and \\(n\\) are relatively prime positive integers. What is \\(m+n\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "21"}}
|
|
583
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\( x, y, z > 0 \\) such that \\( x^3 + y^2 + z = 2\\sqrt{3} + 1 \\), find the minimum value of \\( P = \\frac{1}{x} + \\frac{1}{y^2} + \\frac{1}{z^3} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 + \\frac{4}{3\\sqrt{3}} \\)"}}
|
|
584
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe real-valued function \\( f \\) is defined for positive integers, and the positive integer \\( a \\) satisfies:\n\\[ f(a) = f(1995), \\]\n\\[ f(a+1) = f(1996), \\]\n\\[ f(a+2) = f(1997), \\]\n\\[ f(n + a) = \\frac{f(n) - 1}{f(n) + 1} \\text{ for all positive integers } n. \\]\nDetermine the smallest possible value of \\( a \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
585
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven eight distinguishable rings, find the number of possible five-ring arrangements on the four fingers of one hand, where the order of rings on each finger is significant and it is not required that each finger have a ring. Find the leftmost three nonzero digits of this number."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "376"}}
|
|
586
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all $(x, y) \\in \\mathbb{Z}$ such that $(2017x + 2016y)^n = 2016x + 2015y$, where $n \\in \\mathbb{N}^*$ is fixed."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x, y) = \\left(2016u^n - 2015u, 2016u - 2017u^n\\right) \\text{ for all } u \\in \\mathbb{Z}\\)"}}
|
|
587
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest natural number \\( n \\) for which there exist different sets \\( S_1, S_2, \\ldots, S_n \\) such that:\n1. \\( |S_i \\cup S_j| \\leq 2004 \\) for each two \\( 1 \\leq i, j \\leq n \\),\n2. \\( S_i \\cup S_j \\cup S_k = \\{1, 2, \\ldots, 2008\\} \\) for each three integers \\( 1 \\leq i < j < k \\leq n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "32"}}
|
|
588
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( m \\) and \\( n \\) be natural numbers with \\( d = \\gcd(m, n) \\). Let \\( x = 2^m - 1 \\) and \\( y = 2^n + 1 \\). If \\( \\frac{m}{d} \\) is even, find \\( \\gcd(x, y) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^d + 1 \\)"}}
|
|
589
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of ways to pick 3 black squares from a chessboard so that no 2 squares share the same row or column."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2496"}}
|
|
590
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the product $\\cos 5^\\circ \\cdot \\cos 10^\\circ \\cdot \\cos 15^\\circ \\cdots \\cos 75^\\circ \\cdot \\cos 80^\\circ \\cdot \\cos 85^\\circ$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3\\sqrt{2}}{2^{17}}\\)"}}
|
|
591
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWith all angles measured in degrees, the product $\\prod_{k=1}^{45} \\csc^2(2k-1)^\\circ = m^n$, where $m$ and $n$ are integers greater than 1. Find $m+n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "91"}}
|
|
592
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a test of a new method of stimulating productivity growth at 100 enterprises, the method caused a decrease in labor productivity at 32 enterprises and an increase at 68 enterprises. What is the probability that purely random fluctuations will cause a deviation of no less than 12 enterprises (from the expected 50 enterprises)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0.0214"}}
|
|
593
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute triangle \\(ABC\\) with \\(\\angle ACB = 75^\\circ\\), altitudes \\(AA_3\\) and \\(BB_3\\) intersect the circumscribed circle at points \\(A_1\\) and \\(B_1\\) respectively. Points \\(A_2\\) and \\(B_2\\) are selected on lines \\(BC\\) and \\(CA\\) such that \\(B_1B_2\\) is parallel to \\(BC\\) and \\(A_1A_2\\) is parallel to \\(AC\\). Let \\(M\\) be the midpoint of segment \\(A_2B_2\\). Find the measure of the angle \\(\\angle B_3MA_3\\) in degrees."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "150"}}
|
|
594
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that:\n\\[ f(x + xy - 1 + f(y)) = f(x)f(y) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x + 1 \\)"}}
|
|
595
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor each even positive integer \\( x \\), let \\( g(x) \\) denote the greatest power of \\( 2 \\) that divides \\( x \\). For each positive integer \\( n \\), let \\( S_n = \\sum_{k=1}^{2^{n-1}} g(2k) \\). Find the greatest integer \\( n \\) less than \\( 1000 \\) such that \\( S_n \\) is a perfect square."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "899"}}
|
|
596
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the set of complex numbers \\( z \\) satisfying \\( |1 + z + z^2| = 4 \\). The maximum value of the imaginary part of \\( z \\) can be written in the form \\( \\frac{\\sqrt{m}}{n} \\), where \\( m \\) and \\( n \\) are relatively prime positive integers. What is \\( m + n \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "21"}}
|
|
597
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\ge 3 \\) be a positive integer. \\( S \\) is a set of \\( n \\) points on the plane, with no three collinear. \\( L \\) is the set of all lines passing through any two points in \\( S \\). For any \\( \\ell \\in L \\), the separating number of \\( \\ell \\) is the product of the number of points in \\( S \\) on the two sides of \\( \\ell \\), excluding the two points on \\( \\ell \\) itself. Determine the minimum possible total sum of all separating numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2 \\binom{n}{4} \\)"}}
|
|
598
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider a $4 \\times n$ rectangular grid with water fountains on some of the squares. A water fountain can spray water onto any of its adjacent squares or a square in the same column such that there is exactly one square between them. Find the minimum number of fountains such that each square can be sprayed."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\)"}}
|
|
599
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a $2n \\times k$ rectangular grid where each unit square is colored with one of $n$ colors, find the maximum value of $k$ such that no four unit squares whose centers form a rectangle are of the same color."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\binom{2n}{2}\\)"}}
|
|
600
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P \\) with real coefficients such that for all real numbers \\( a, b, c, d \\), it holds:\n\\[ P(a+b+c+d) + P(a+b-c-d) + P(a+c-b-d) + P(a+d-b-c) = P(a+b+c-d) + P(a+b+d-c) + P(a+c+d-b) + P(b+c+d-a). \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = a + bx^2 \\)"}}
|
|
601
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle ABC, side AC and the perpendicular bisector of BC meet at point D, and BD bisects angle ABC. If AD = 9 and DC = 7, what is the area of triangle ABD?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 14\\sqrt{5} \\)"}}
|
|
602
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many distinct numbers can be formed by the expression $ \\pm 1 \\pm 2 \\pm 3 \\pm \\cdots \\pm n $, where $ n $ is a natural number?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n(n+1)}{2} + 1\\)"}}
|
|
603
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( y = \\frac{3}{4} + \\frac{3 \\cdot 5}{4 \\cdot 8} + \\frac{3 \\cdot 5 \\cdot 7}{4 \\cdot 8 \\cdot 12} + \\cdots \\infty \\), then find \\( y^2 + 2y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
604
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a plane, there are 8 lines such that every line intersects each other, but no point belongs to more than 2 lines. Let $A$ be the set of points that belong to exactly 2 lines. How many collections (not ordered) of 8 points from $A$ do not include 3 collinear points (points belonging to the same line)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3507"}}
|
|
605
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the largest integer which cannot be written as a positive multiple of $5$ plus a positive multiple of $9$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "45"}}
|
|
606
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of orderings of \\( n \\) students such that the shortest person is not at the front and the tallest person is not at the end."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n! - 2(n-1)! + (n-2)! \\)"}}
|
|
607
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the function \\( f(X) \\) such that \\( f(X) = f(X-2) \\) for every real number \\( X \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(X) = C \\) where \\( C \\) is a constant."}}
|
|
608
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the equations of all lines that are tangent to both \\( y = x^2 + 2 \\) and \\( y = -2 - x^2 \\). Indicate the points where the tangent line intersects with the curve."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( y = \\pm 2\\sqrt{2}x \\) and the points of tangency are \\( (\\pm \\sqrt{2}, 4) \\)."}}
|
|
609
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S \\) be a square of side length 1. Two points are chosen independently at random on the sides of \\( S \\). The probability that the straight-line distance between the points is at least \\(\\frac{1}{2}\\) is \\(\\frac{a - b\\pi}{c}\\), where \\(a\\), \\(b\\), and \\(c\\) are positive integers with \\(\\gcd(a, b, c) = 1\\). What is \\(a + b + c\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "59"}}
|
|
610
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a \"Hishgad\" lottery ticket containing numbers $1$ to $mn$ arranged in a table with $n$ rows and $m$ columns, where numbers in each row increase from left to right and numbers in each column increase from top to bottom, how many cells must be revealed to determine the entire table with certainty?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m-1)(n-1)\\)"}}
|
|
611
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the number of ways to color the numbers $1, 2, 3, \\ldots, 20$ in two colors, blue and yellow, such that both colors are used and the product of all blue numbers and the product of all yellow numbers have a greatest common divisor of $1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "62"}}
|
|
612
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDefine a sequence \\((a_{i})\\) by \\(a_{1} = 0\\), \\(a_{2} = 2\\), \\(a_{3} = 3\\), and \\(a_{n} = \\max_{1<d<n} \\left\\{a_{d} \\cdot a_{n-d}\\right\\}\\) for \\(n = 4, 5, 6, \\ldots\\). Find \\(a_{1998}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 3^{666} \\)"}}
|
|
613
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the functions \\( f_3(x) = x^2 + x \\) and \\( g_3(x) = x + 2 \\), determine if it is possible to obtain \\( h(x) = x \\) using addition, subtraction, and multiplication. If possible, label \\( F_3 = 1 \\); otherwise, \\( F_3 = 0 \\).\n\nWhat is the value of \\( (F_1, F_2, F_3) \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(0, 0, 1)"}}
|
|
614
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe integer \\( n \\), where \\( 0 < n < 10 \\), and the integer \\( a \\) are such that the digits of \\( a \\) and \\( a^n \\) together contain 361 digits. Determine \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
615
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine $m$ and $n$ such that the equations $x^3 + mx + n = 0$ and $x^4 + 3nx + m = 0$ have two common roots."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((m,n) \\in \\{(-1,0), (-2,-1), (-2,1)\\}\\) and maybe also \\((0,0)\\), depending on missing precisions."}}
|
|
616
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nJerry wrote all the integers from $1$ to $2024$ on the whiteboard. He repeatedly chose four numbers, erased them, and replaced them with either their sum or their product. After performing this operation multiple times, all the remaining numbers on the board were odd. What is the maximum possible number of integers on the board at that time?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1010"}}
|
|
617
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be a triangle and \\(M\\) a point inside it. Let \\(D\\) be the point of intersection of the line \\(AM\\) with the circumcircle of triangle \\(ABC\\) (other than \\(A\\)). Find the point \\(M\\) such that the term \\(\\frac{MB \\cdot MC}{MD}\\) is minimal."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The incenter of triangle \\(ABC\\)."}}
|
|
618
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the maximum possible number of edges in a graph with $n$ vertices that contains no cycle of even length?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\lfloor 3(n-1)/2 \\rfloor\\)"}}
|
|
619
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which positive integers $n$ can a non-integer rational number $x$ be found such that $$x^n + (x+1)^n$$ is an integer?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is any odd positive integer."}}
|
|
620
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), the angle bisectors of angles \\(B\\) and \\(C\\) intersect at point \\(E\\). The area of the circumcircle of triangle \\(BCE\\) is \\(q\\). Find the area of the circumcircle of triangle \\(ABC\\) if \\(BC = d\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{q^2}{4q - \\pi d^2}\\)"}}
|
|
621
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which rational \\( x \\) is the number \\( 1 + 105 \\cdot 2^x \\) the square of a rational number?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 3, 4, -4, -6, -8 \\)"}}
|
|
622
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(0 \\leq x, y, z \\leq 1\\), find the smallest value of the expression\n\\[ P = (xy - y + 1)^2 + (yz - z + 1)^2 + (zx - x + 1)^2. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{2}\\)"}}
|
|
623
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integer solutions for the equation:\n\\[4x^2 + 9y^2 = 72z^2.\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 3(p^2 - 2pq - q^2), y = 2(p^2 + 2pq - q^2), z = p^2 + q^2 \\) for integers \\( p \\) and \\( q \\)."}}
|
|
624
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f, g, h: \\mathbb{R} \\to \\mathbb{R} \\) such that \\[ \\forall x, y, z \\in \\mathbb{R} : f(h(g(x)) + y) + g(z + f(y)) = h(y) + g(y + f(z)) + x. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x + c, \\, g(x) = x - c, \\, h(x) = x + d \\) for all \\( c, d \\in \\mathbb{R} \\)."}}
|
|
625
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers $n$, where $n > 1$, such that for every integer $k$ with $0 \\le k < n$, there exists a multiple of $n$ whose digits sum leaves a remainder of $k$ when divided by $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All integers \\( n > 1 \\) not divisible by 3."}}
|
|
626
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\( \\triangle ABC \\) with \\( AB = AC \\) and \\( \\angle A = 20^\\circ \\), points \\( D \\) and \\( E \\) are on \\( AB \\) and \\( AC \\) respectively such that \\( DA = DC \\) and \\( CB = CE \\). Determine the measure of \\( \\angle CDE \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "30^\\circ"}}
|
|
627
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the value of \n$$\\sum_{x_1+x_2+...+x_k=n, x_i \\geq 1} \\frac{n!}{x_1!x_2!...x_k!}$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sum_{i=0}^{k-1} (-1)^i (k-i)^n \\binom{k}{i}\\)"}}
|
|
628
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of integers \\((x, y)\\) such that \\((x^2 + y^2)\\) divides both \\((x^3 + y)\\) and \\((x + y^3)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(1, 1)"}}
|
|
629
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all primes \\( p \\geq 3 \\) such that for any prime \\( q < p \\), the number\n\\[\np - \\left\\lfloor \\frac{p}{q} \\right\\rfloor q\n\\]\nis squarefree (i.e., is not divisible by the square of a prime)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p = 3, 5, 7, 13 \\)"}}
|
|
630
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that\n\\[ 2f(x+y+z) + f(x)f(y) + f(y)f(z) + f(z)f(x) = 1 + x^2y^2 + y^2z^2 + z^2x^2 + 4(xy + yz + zx) \\]\nfor all \\( x, y, z \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^2 - 1 \\)"}}
|
|
631
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, d\\) be real numbers such that \\(|a| \\leq 2\\), \\(|b| \\leq 2\\), \\(|c| \\leq 2\\), \\(|d| \\leq 2\\), \\(a + b = 1\\), and \\(c + d = 1\\). Determine the range of values that \\(ac + bd\\) can take."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\([-4, 5]\\)"}}
|
|
632
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be positive real numbers such that \\(\\left(\\frac{b^2+c^2-a^2}{2bc}\\right)^2 + \\left(\\frac{c^2+a^2-b^2}{2ca}\\right)^2 + \\left(\\frac{a^2+b^2-c^2}{2ab}\\right)^2 = 3\\). Find the value of \\(\\frac{b^2+c^2-a^2}{2bc} + \\frac{c^2+a^2-b^2}{2ca} + \\frac{a^2+b^2-c^2}{2ab}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
633
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer \\( k \\) and a real number \\( t \\), the function \\( f(n) \\) is defined for every integer \\( n \\) such that \\( 0 \\leq n \\leq k \\). The function satisfies:\n\\[ f(0) = f(k) = 0 \\]\n\\[ f(n) = t f(n-1) + (1-t) f(n+1) + 1 \\quad \\text{for} \\quad 0 < n < k. \\]\nFind the function \\( f(n) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = \\frac{k}{(1-2t) \\left(1 - \\left(\\frac{t}{1-t}\\right)^k\\right)} \\left(\\left(\\frac{t}{1-t}\\right)^n - 1\\right) + \\frac{n}{1-2t} \\)"}}
|
|
634
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA semi-circle $ABCD$ has diameter $AD$ of length $4$. Chord $AB$ has length $1$ and chord $BC$ has length $1$. Find the length of chord $CD$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{7}{2}\\)"}}
|
|
635
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( u_n \\) be the \\( n \\)th term of the sequence \\( 1, 2, 4, 5, 7, 9, 10, 12, 14, 16, 17, \\dots \\), where one odd number is followed by two evens, then three odds, and so on. If \\( u_n = 2009 \\), find \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1027"}}
|
|
636
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\(\\frac{8}{19}\\) of the product of the largest two elements of a positive integer set is not greater than the sum of the other elements, what is the minimum possible value of the largest number in the set?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "13"}}
|
|
637
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA regular tetrahedron ABCD has side length four. A plane intersects edges AC, AD, BC, and BD at points W, X, Y, and Z, respectively. Given that AW=2, AX=3, and BZ=1, determine the length of BY."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2}{5}\\)"}}
|
|
638
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\( n, k, a_1, a_2, \\ldots, a_k \\) such that \\( n^{k+1} + 1 \\) is divisible by \\( (na_1 + 1)(na_2 + 1) \\cdots (na_k + 1) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k = 1, a_1 = n \\) or \\( n \\geq 2, k = 2, \\{a_1, a_2\\} = \\{1, n-1\\} \\)"}}
|
|
639
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all possible values of $abc$ given that the real numbers $a, b, c$ are nonzero and satisfy the system of equations:\n\\[\n\\begin{cases}\na + ab = c \\\\\nb + bc = a \\\\\nc + ca = b\n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
640
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P(x) \\) such that \\((x+100)P(x) - xP(x+1) = 1\\) for all \\( x \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = a \\prod_{k=0}^{99} (x+k) + \\frac{1}{100} \\)"}}
|
|
641
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a graph $G$ with $n$ vertices, every minute remove all vertices that have even degree and all edges incident to them. What is the longest time this process can be carried out for?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$\\left\\lfloor\\frac {n+1}2\\right\\rfloor$"}}
|
|
642
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(\\frac{(a-b)(b-c)(c-a)}{(a+b)(b+c)(c+a)} = \\frac{1}{11}\\), calculate \\(\\frac{a}{a+b} + \\frac{b}{b+c} + \\frac{c}{c+a}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{16}{11}\\)"}}
|
|
643
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe circle \\( C1 \\) with radius \\( r1 \\) and the circle \\( C2 \\) with radius \\( r2 \\) are externally tangent to each other at point \\( A \\). The circle \\( C3 \\), which is externally tangent to both \\( C1 \\) and \\( C2 \\), has a radius \\( r3 \\). The common tangent to \\( C1 \\) and \\( C2 \\) that passes through \\( A \\) meets \\( C3 \\) at points \\( B \\) and \\( C \\). Find the length of \\( BC \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4r_3 \\sqrt{r_1 \\cdot r_2}}{r_1 + r_2}\\)"}}
|
|
644
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers $n \\geq 2$ for which $2011n - 1$ is a divisor of $n^3 - 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 2011^2 \\)"}}
|
|
645
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\( m \\) for which the expression \\((x^2 - 5x + 4)^2 + (2m + 1)(x^2 - 5x + 4) + 3 = 0\\) has 2 distinct roots."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m > \\frac{31}{24} \\) or \\( m = \\frac{-1 \\pm 2\\sqrt{3}}{2} \\)"}}
|
|
646
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( X = \\{1, 2, \\ldots, 2018\\} \\) and \\( A \\) be a subset of \\( X \\) such that for any \\( x, y, z \\in A \\) with \\( x < y < z \\), the numbers \\( x, y, z \\) form a triangle. How many possible elements can \\( A \\) have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1010"}}
|
|
647
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe population $N$ of a particular species of ant varies with the seasons and is modeled by the equation $N = 3000 \\sin\\left(\\frac{\\pi(t-1)}{6}\\right) + 4000$, where $t$ is the number of months after 1 January in a given year. The population $M$ of a second species of ant is modeled by the equation $M = 3000 \\sin\\left(\\frac{\\pi(t-3.5)}{5}\\right) + 5500$. Formulate a third equation to find when the combined population of species $N$ and $M$ is at a maximum and what that maximum is."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "15500"}}
|
|
648
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( \\triangle ABC \\) be a triangle with \\( m\\angle A = 90^\\circ \\) and \\( m\\angle B = 20^\\circ \\). Points \\( E \\) and \\( F \\) are on \\( \\overline{AC} \\) and \\( \\overline{AB} \\) respectively such that \\( m\\angle ABE = 10^\\circ \\) and \\( m\\angle ACF = 30^\\circ \\). Determine \\( m\\angle CFE \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(20^\\circ\\)."}}
|
|
649
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( D \\) be a point on side \\( [AB] \\) of triangle \\( ABC \\) with \\( |AB| = |AC| \\) such that \\( [CD] \\) is an angle bisector and \\( m(\\widehat{ABC}) = 40^\\circ \\). Let \\( F \\) be a point on the extension of \\( [AB] \\) after \\( B \\) such that \\( |BC| = |AF| \\). Let \\( E \\) be the midpoint of \\( [CF] \\). If \\( G \\) is the intersection of lines \\( ED \\) and \\( AC \\), what is \\( m(\\widehat{FBG}) \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "150^\\circ"}}
|
|
650
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind a formula to count the number of 2013-digit natural numbers that are multiples of 3 and have all digits taken from the set X = {3, 5, 7, 9}."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4^{2013}+2}{3}\\)"}}
|
|
651
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the real number \\( m \\) such that the function \\( f: \\mathbb{Q} \\rightarrow \\mathbb{R} \\) defined by \\( f(x) = \\{3x^2 + mx + n\\} \\) is injective, where \\( \\{x\\} \\) represents the fractional part of \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m \\in \\mathbb{R} \\setminus \\mathbb{Q} \\)"}}
|
|
652
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation for integer numbers:\n\\[a^3 + 3a = 5 + 2b + a^2 b\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (a, b) = (5, 5) \\)"}}
|
|
653
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDeduce that \n\n\\[\n\\frac{1}{x-1} + \\frac{2}{x-2} + \\cdots + \\frac{n}{x-n} > k\n\\]\n\nis satisfied by a union of distinct, disjoint intervals and determine the sum of their lengths in terms of \\( n \\) and \\( k \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n(n+1)}{2k}\\)"}}
|
|
654
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $\\triangle ABC$ be a triangle with area $120$ such that $AB=4AC.$ Let $P$ be the intersection between median $\\overline{CM}$ and angle bisector $\\overline{AD}.$ What is the area of $\\triangle PCD?$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
655
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFactorize \\(10^{29} + 1\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(11 \\times 9090909090909090909090909091\\)"}}
|
|
656
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation: $\\frac{1}{ [ x ]}+\\frac{1}{\\{ x \\}}=2016x$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = n + \\frac{1}{2016n}\\) for \\(n \\ge 1\\)"}}
|
|
657
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all possible values of \n\n\\[ S = \\frac{a}{a+b+d} + \\frac{b}{a+b+c} + \\frac{c}{b+c+d} + \\frac{d}{a+c+d} \\]\n\nfor arbitrary positive numbers \\(a, b, c, d\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (1, 2) \\)"}}
|
|
658
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Choose \\( n \\) numbers from the table\n\n\\[\n\\begin{array}{cccc}\n0 & 1 & \\cdots & n-1\\\\ \nn & n+1 & \\cdots & 2n-1\\\\ \n\\vdots & \\vdots & \\ddots & \\vdots\\\\ \n(n-1)n & (n-1)n+1 & \\cdots & n^2-1\n\\end{array}\n\\]\n\nsuch that no two numbers are from the same row or the same column. Find the maximal value of the product of these \\( n \\) numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((n-1)^n \\cdot n!\\)"}}
|
|
659
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n > m \\) be positive integers. Find all pairs \\((n, m)\\) such that \\( f_n(x) - f_m(x) \\) is a constant, where \\( f_k(x) = \\frac{1}{k} (\\sin^k x + \\cos^k x) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(6, 4)"}}
|
|
660
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality \\( \\tan(3 \\sqrt{1-x}) < 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in \\bigcup_{k\\in\\mathbb Z_{\\ge 0}}\\left(1-\\left(\\frac{\\pi}3+\\frac{k\\pi}3\\right)^2,1-\\left(\\frac{\\pi}6+\\frac{k\\pi}3\\right)^2\\right) \\)"}}
|
|
661
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet XY be a diameter of a circle with radius 10 centered at O. Let A and B be points on XY such that X, A, O, B, Y are in this order and AO = OB = 4. Suppose P is a point on the circle such that the lines PA and PB intersect the circle at points C and D respectively, with C and D distinct from P. Given that PB/BD = 16/21, find PA/AC."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
662
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCompute the following expression for \\( n \\in \\mathbb{N} \\):\n\n\\[ 1 + \\sum_{k=1}^n \\frac{\\binom{n}{k}}{\\binom{2n}{k}} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2n+1}{n+1}\\)"}}
|
|
663
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number $n(c,m)$ of ordered $c$-tuples $(n_1, n_2, \\ldots, n_c)$ with entries from the set $\\{1, 2, \\ldots, m\\}$ such that $n_2 < n_1$ and $n_2 \\leq n_3 \\leq \\ldots \\leq n_c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((c-1) \\times \\binom{c+m-2}{c}\\)"}}
|
|
664
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation:\n\\[ \\left\\lfloor \\frac{\\sqrt{5x - 2} + 3}{5} \\right\\rfloor = \\left\\lfloor \\frac{\\sqrt{5x + 3} - 2}{5} \\right\\rfloor \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in \\left[\\max\\left(5k^2 + 4k + \\frac{1}{5}, \\frac{2}{5}\\right), 5k^2 + 4k + \\frac{6}{5}\\right) \\quad \\forall k \\in \\mathbb{N} \\cup \\{0\\} \\)"}}
|
|
665
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all values of $a$ such that the system of equations\n\\[\n\\begin{array}{c}\n3x^2 + 2y^2 + 2z^2 = a \\\\\n4x^2 + 4y^2 + 5z^2 = 1 - a\n\\end{array}\n\\]\nhas at least one solution $(x, y, z)$ in the real numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2}{7} \\leq a \\leq \\frac{3}{7}\\)"}}
|
|
666
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( G \\) be a simple graph. Assign a nonnegative real number to each vertex such that the sum of these numbers is 1. For any two vertices connected by an edge, compute the product of the numbers associated with these vertices. What is the maximal value of the sum of these products?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\dfrac{k-1}{2k}\\)"}}
|
|
667
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all positive integers $n$ for which there exists a positive integer $m$ such that $\\frac{4^n - 1}{3}$ divides $49m^2 + 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 2^k \\) for \\( k \\in \\mathbb{Z}^+ \\)"}}
|
|
668
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), \\(XY\\) is a variable straight line parallel to \\(AC\\), with \\(X\\) on \\(BC\\) and \\(Y\\) on \\(AB\\). \\(AX\\) and \\(CY\\) intersect at \\(P\\). Find the locus of \\(P\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The locus of \\(P\\) is the median that passes through \\(B\\)."}}
|
|
669
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(1 \\leq a, b, c \\leq 2\\) and \\(a + b + c = 4\\), find the maximum value of \\(P = a^2b + b^2c + c^2a\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{193}{27}\\)"}}
|
|
670
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSteve is piling \\( m \\geq 1 \\) indistinguishable stones on the squares of an \\( n \\times n \\) grid. Each square can have an arbitrarily high pile of stones. Two ways of piling the stones are considered equivalent if one can be transformed into the other by a sequence of \"stone moves,\" where a stone move involves swapping stones between the corners of a rectangle. How many different non-equivalent ways can Steve pile the stones on the grid?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\binom{m+n-1}{n-1}^2\\)"}}
|
|
671
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe point $P$ is chosen inside or on the equilateral triangle $ABC$ of side length $1$. The reflection of $P$ with respect to $AB$ is $K$, the reflection of $K$ about $BC$ is $M$, and the reflection of $M$ with respect to $AC$ is $N$. What is the maximum length of $NP$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{3}\\)"}}
|
|
672
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $E, F, G$ lie on the sides $AB, BC, CA$ of triangle $ABC$ such that $AE/EB = BF/FC = CG/GA = k$, where $0 < k < 1$. Let $K, L, M$ be the intersection points of the lines $AF$ and $CE$, $BG$ and $AF$, $CE$ and $BG$, respectively. Find the ratio of the areas of triangles $KLM$ and $ABC$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(k-1)^2}{k^2+k+1}\\)"}}
|
|
673
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many 5-digit numbers are there in which every two neighboring digits differ by 3?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "45"}}
|
|
674
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn $\\triangle ABC$, $AB=5$ and points $E$ and $F$ are on $BC$ such that $BE = 1$, $EF = 3$, and $CF = 2$. $AE$ and $AF$ intersect the circumcircle of $\\triangle ABC$ at points $G$ and $H$ respectively, and $GH$ is parallel to $BC$. The length of $AC$ can be expressed as $a \\cdot \\sqrt{\\frac{a}{c}}$. What is the value of $a + c$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
675
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWe have \\( n \\) balls, numbered 1 to \\( n \\), and \\( n-1 \\) bags, numbered 1 to \\( n-1 \\). We want to place the balls in the bags such that:\n- The first bag contains at least 2 balls,\n- The first 2 bags contain at least 3 balls,\n- ...\n- The first \\( k \\) bags contain at least \\( k+1 \\) balls,\n- ...\nIn how many ways can we do this?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((n-1)^{n-1}\\)"}}
|
|
676
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{N}^* \\to \\mathbb{R} \\) that satisfy:\na) \\( f(1) = 1 \\) and \\( f(2) = 0 \\)\nb) \\( f(n+1) - 2f(n) + f(n-1) = n+1 \\) for all positive integers \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = \\frac{n^3 + 3n^2 - 22n + 24}{6} \\)"}}
|
|
677
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a\\), \\(b\\), and \\(c\\) be positive numbers such that \\(a + b + c = 3\\). Find the minimum value of \\((1 + a^2)(1 + b^2)(1 + c^2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{125}{16}\\)"}}
|
|
678
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a cyclic quadrilateral $ABCD$ with $\\angle BAD = 90^\\circ$ and $\\angle ABC > 90^\\circ$, $AB$ is extended to a point $E$ such that $\\angle AEC = 90^\\circ$. Given $AB = 7$, $BE = 9$, and $EC = 12$, calculate the length of $AD$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "24"}}
|
|
679
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integer pairs $(a, b)$ such that $\\frac{ab + 1}{ab - a^2 + b + 1}$ is an integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((a, a^2)\\) and \\((3a - 1, 3a + 1)\\)"}}
|
|
680
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S \\) be the set of all \\( n \\)-tuples \\( (x_1, x_2, \\ldots, x_n) \\) of real numbers such that among the numbers \\( x_1, \\frac{x_1 + x_2}{2}, \\frac{x_1 + x_2 + x_3}{3}, \\ldots, \\frac{x_1 + x_2 + \\cdots + x_n}{n} \\), the least is equal to \\( 0 \\) and the greatest is equal to \\( 1 \\). Determine \\( \\max_{(x_1, \\ldots, x_n) \\in S} \\max_{1 \\leq i, j \\leq n} (x_i - x_j) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2n-2 \\)"}}
|
|
681
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor the function \\( f(x) = \\frac{(x-1)(x-2)}{x-a} \\), where \\( x \\ne a \\), determine the range of values for \\( a \\) such that \\( f(x) \\) takes all values in \\( (-\\infty, +\\infty) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a \\in (1, 2) \\)"}}
|
|
682
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all polynomials $P(x)$ with real coefficients such that $(x+1)P(x-1)-(x-1)P(x)$ is a constant polynomial."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = sx^2 + sx + t \\)"}}
|
|
683
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the angle between the line of intersection of the planes \\( p1: (1,1,0) + t(2,-1,-1) + r(-1,2,1) \\) and \\( p2: m(1,-2,-1) + n(1,-1,0) \\), and the line \\( L \\) passing through points \\( A(3,-3,1) \\) and \\( B(2,-5,5) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\cos^{-1}\\left(\\frac{1}{3\\sqrt{14}}\\right)\\)"}}
|
|
684
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven real numbers \\( x, y, z, t \\in (0, \\pi/2] \\) such that \n\\[ \\cos^2(x) + \\cos^2(y) + \\cos^2(z) + \\cos^2(t) = 1, \\]\nwhat is the minimum possible value of \n\\[ \\cot(x) + \\cot(y) + \\cot(z) + \\cot(t)? \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
685
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x, y, z \\) be positive real numbers such that \\( x + y + z = 1 \\). For fixed positive real numbers \\( a \\) and \\( b \\), determine the maximum value \\( c = c(a, b) \\) such that the inequality \\( a + bxyz \\ge c(xy + yz + zx) \\) holds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\min \\left( \\frac{27a + b}{9}, 4a \\right) \\)"}}
|
|
686
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \n\\[ f(x+y) = x^2 f\\left(\\frac{1}{x}\\right) + y^2 f\\left(\\frac{1}{y}\\right) \\quad \\forall x, y \\in \\mathbb{R}^*. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = cx \\) for some \\( c \\in \\mathbb{R} \\) and for all \\( x \\neq 0 \\)."}}
|
|
687
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the value of \\[\n\\left\\lfloor \\frac{1}{\\sqrt{1}+\\sqrt{2}}+\\frac{1}{\\sqrt{3}+\\sqrt{4}}+\\dots+\\frac{1}{\\sqrt{n^{2}-2}+\\sqrt{n^{2}-1}}\\right\\rfloor \n\\] for odd positive integers \\( n \\geq 2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n-1}{2}\\)"}}
|
|
688
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(0 < x, y, z < 1\\), find the maximum value of \\(P = (x-y)(y-z)(z-x)(x+y+z)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2\\sqrt{3}}{9}\\)"}}
|
|
689
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum possible area of a quadrilateral $ABCD$ where $AB = BC = 3$ and $CD = 7$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(16\\sqrt{2}\\)"}}
|
|
690
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation \\(\\big((1+x)^\\alpha-1\\big)\\big((1+x)^{1/\\alpha}-1\\big)=x^2\\) for \\(x > 0\\), where \\(\\alpha \\in \\mathbb{R_*}\\) is a parameter."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x > 0 \\) when \\( \\alpha = 1 \\), and no solutions otherwise."}}
|
|
691
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the number of ways to place a number in every unit square of a $3 \\times 3$ grid such that each number is divisible by the number directly above it and the number directly to the left of it, with the top-left number being $1$ and the bottom-right number being $2013$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$18^3$"}}
|
|
692
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe points A, B, C lie on a line in that order with AB = 9 and BC = 21. Let D be a point not on AC such that AD = CD and the distances AD and BD are integral. Find the sum of all possible perimeters of triangle ACD."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "380"}}
|
|
693
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nAn eccentric mathematician has a ladder with $n$ rungs. When ascending, each step covers $a$ rungs, and when descending, each step covers $b$ rungs, where $a$ and $b$ are fixed positive integers. The mathematician can climb from ground level to the top rung of the ladder and come back down to ground level again using a sequence of ascending and descending steps. Find the minimum value of $n$ expressed in terms of $a$ and $b.$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a + b - \\gcd(a, b) \\)"}}
|
|
694
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA competitor number is a positive integer that has two more prime factors than its predecessor. For example, 8 is a competitor number because it has three prime factors (2, 2, 2) but 7 has only one (7). Of the first twelve competitor numbers, how many of them are divisible by 8?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
695
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all real polynomials \\( P(x,y) \\in \\mathbb{R}[x,y] \\) such that the following divisibility holds:\n\\[ P(x^2 + y^2, 2xy) \\mid P(x,y)^2 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x,y) = (x+y)^a (x-y)^b \\) for non-negative integers \\( a \\) and \\( b \\)."}}
|
|
696
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all continuous functions \\( f : \\mathbb{R}^+ \\rightarrow \\mathbb{R}^+ \\) such that for all \\( x, y, z \\in \\mathbb{R}^+ \\),\n\n\\[ f(x + y) \\neq y + f(z). \\]\n\n(\\( \\mathbb{R}^+ \\) denotes the set of all positive real numbers.)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Constant functions"}}
|
|
697
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x \\) and \\( y \\) be positive real numbers such that \\( x^2 - xy + y^2 = 1 \\). Determine the minimum value of \\( \\frac{y+2}{x} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
698
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum value of \\( k \\) such that the inequality \n\\[\n(6-k)a^2b^2c^2 \\geq [ab(a+b) + bc(b+c) + ca(c+a) - k \\cdot abc](a+b-c)(b+c-a)(c+a-b)\n\\]\nholds for all positive real numbers \\( a, b, c \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
699
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( N \\) be an even number with 9 divisors. Write \\( N \\) as the product of 3 numbers in all possible ways and find the sums of these products. It is found that one sum is twice another and a perfect square. Find \\( N \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "196"}}
|
|
700
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: [\\mathbb{R}^+ \\cup \\{0\\}]^2 \\longrightarrow [\\mathbb{R}^+ \\cup \\{0\\}]^2 \\) in 2 variables satisfying the following properties:\n1. \\( f(\\sqrt{ab}, f(\\frac{a-b}{2}, x)) = f(x, \\frac{a+b}{2}) \\) for all \\( a, b \\in \\mathbb{R}^+ \\cup \\{0\\} \\) with \\( a > b \\).\n2. \\( f(\\alpha, 0) = \\alpha \\) for all \\( \\alpha \\in \\mathbb{R}^+ \\cup \\{0\\} \\).\n3. \\( f(x, y) \\) is continuous as a function of \\( x \\) and as a function of \\( y \\) for all \\( x, y \\in \\mathbb{R}^+ \\cup \\{0\\} \\).\n4. \\( f(x, y) = f(y, x) \\) for all \\( x, y \\in \\mathbb{R}^+ \\cup \\{0\\} \\).\n5. \\( f(x, f(y, z)) = f(f(x, y), z) \\) for all \\( x, y, z \\in \\mathbb{R}^+ \\cup \\{0\\} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x, y) = \\sqrt{x^2 + y^2} \\)"}}
|
|
701
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that $\\sin x \\sin y + 3 \\cos y + 4 \\cos x \\sin y = \\sqrt{26}$, find the value of $\\tan^2 x + \\cot^2 y$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{161}{272}\\)"}}
|
|
702
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f: \\mathbb{R} \\rightarrow \\mathbb{R} \\) be a function defined by \\( f(x) = \\sqrt{x^2 + x + 1} - \\sqrt{x^2 - x + 1} \\). Find the image of \\( f \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((-1, 1)\\)"}}
|
|
703
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f(n) \\) be a non-constant polynomial with integer coefficients. Given the conditions:\n- If \\( n \\) is odd, \\( 2f(n)^4 = f(f(n)^2 - 458) + 1832f(n)^2 \\).\n- If \\( m \\) is even, \\( f(m) - f(1) \\) is a multiple of \\( m + 1 \\).\n\nFind \\( f(457) + f(459) + f(461) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "5518"}}
|
|
704
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet point \\( M \\) be in the interior of square \\( ABCD \\). If the distances from \\( M \\) to vertices \\( B \\), \\( C \\), and \\( D \\) are 14, 6, and 10, respectively, find the area of square \\( ABCD \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "232"}}
|
|
705
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Q^+} \\rightarrow \\mathbb{Q} \\) satisfying the equation\n\\[ f(x) + f(y) = \\left(f(x+y) + \\frac{1}{x+y}\\right) \\left(1 - xy + f(xy)\\right) \\]\nfor all \\( x, y \\in \\mathbb{Q^+} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x - \\frac{1}{x} \\)"}}
|
|
706
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\( n > 1 \\) and integers \\( a_1, a_2, \\dots, a_n \\) satisfying the following three conditions:\n(i) \\( 2 < a_1 \\le a_2 \\le \\cdots \\le a_n \\)\n(ii) \\( a_1, a_2, \\dots, a_n \\) are divisors of \\( 15^{25} + 1 \\).\n(iii) \\( 2 - \\frac{2}{15^{25} + 1} = \\left(1 - \\frac{2}{a_1}\\right) + \\left(1 - \\frac{2}{a_2}\\right) + \\cdots + \\left(1 - \\frac{2}{a_n}\\right) \\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 3 \\) with \\( (a_1, a_2, a_3) = (4, 4, 15^{25} + 1) \\)"}}
|
|
707
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA mathematical moron is given the values \\( b \\), \\( c \\), and \\( A \\) for a triangle \\( ABC \\) and is required to find \\( a \\). He uses the cosine rule \\( a^2 = b^2 + c^2 - 2bc \\cos A \\) but misapplies the logarithm to get \\( \\log a^2 = \\log b^2 + \\log c^2 - \\log(2bc \\cos A) \\). Despite this mistake, he evaluates the right-hand side correctly, takes the anti-logarithms, and gets the correct answer. What can be said about the triangle \\( ABC \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( b = a \\) or \\( c = a \\) or \\( a = b = c \\)"}}
|
|
708
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an $n \\times n$ table, what is the maximum number of cells, $k$, that can be colored such that there is a unique way to place $n$ tokens on the colored cells without any two tokens being in the same row or column?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{n(n+1)}{2}\\)"}}
|
|
709
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet a tetrahedron \\(ABCD\\) be inscribed in a sphere \\(S\\). Find the locus of points \\(P\\) inside the sphere \\(S\\) for which the equality\n\\[\n\\frac{AP}{PA_1} + \\frac{BP}{PB_1} + \\frac{CP}{PC_1} + \\frac{DP}{PD_1} = 4\n\\]\nholds, where \\(A_1, B_1, C_1\\), and \\(D_1\\) are the intersection points of \\(S\\) with the lines \\(AP, BP, CP\\), and \\(DP\\), respectively."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The locus of points \\( P \\) is the spherical surface with diameter \\( \\overline{OG} \\)."}}
|
|
710
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a trapezoid with \\(AB \\parallel CD\\), \\(AB = 11\\), \\(BC = 5\\), \\(CD = 19\\), and \\(DA = 7\\). The angle bisectors of \\(\\angle A\\) and \\(\\angle D\\) meet at \\(P\\), and the angle bisectors of \\(\\angle B\\) and \\(\\angle C\\) meet at \\(Q\\). What is the area of hexagon \\(ABQCDP\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(30\\sqrt{3}\\)"}}
|
|
711
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many ordered triples $(a,b,c)$ of positive integers, with $a\\le b\\le c\\le 9$, exist such that there is a non-degenerate triangle $\\triangle ABC$ with an integer inradius, where $a$, $b$, and $c$ are the lengths of the altitudes from $A$ to $\\overline{BC}$, $B$ to $\\overline{AC}$, and $C$ to $\\overline{AB}$, respectively?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
712
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x_n = 2^{2^n} + 1 \\). Find the last digit of the least common multiple of \\( x_2, x_3, \\ldots, x_{1971} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9"}}
|
|
713
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers $n$ such that for all natural numbers $k \\geq n$, there exists a multiple of $n$ whose sum of digits is $k$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is not a multiple of 3."}}
|
|
714
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality \n\\[ x[x] + 5\\{x\\} \\leq 2x + 15, \\]\nwhere \\( \\{x\\} = x - [x] \\) is the fractional part of \\( x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in [-3, 5] \\)"}}
|
|
715
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that:\n\\[ f^2(x) + 2yf(x) + f(y) = f(y + f(x)) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 0 \\) or \\( f(x) = x^2 + a \\)"}}
|
|
716
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x \\) and \\( y \\) be real numbers such that \\((x+2y)^2(y+2x)^2 = 9xy\\). Find the minimum value of \\( x + y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(-\\frac{2}{3}\\)"}}
|
|
717
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the locus of $z$ if $Arg\\left(\\dfrac{z+1}{z-1}\\right)=\\dfrac{\\pi}{4}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x^2 + (y + 1)^2 = 2 \\) with \\( y < 0 \\)"}}
|
|
718
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials with real coefficients \\( P(x) \\) that satisfy the equation \\( P(P(x)) = [P(x)]^k \\), where \\( k \\) is a positive integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = x^k \\)"}}
|
|
719
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers that have an even number of nice representations, where a nice representation of a positive integer \\( n \\) is defined as a sum of powers of 2 with at most two equal powers in the sum."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\equiv 2 \\mod 3 \\)"}}
|
|
720
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers \\(a\\) and \\(b\\) such that \\(a^n + b^n = c^{n+1}\\), where \\(c\\) and \\(n\\) are natural numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a = 2, b = 2\\)"}}
|
|
721
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all solutions to the equation $a^4 - p^4 = 9a^2 - 4bp$ such that $a$ and $b$ are positive integers and $p$ is a positive prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(3, 2, 2)"}}
|
|
722
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which integer values of \\( k \\) is the function \\( f_k: \\mathbb{R} \\to \\mathbb{R} \\) defined by \\( f(x) = x + k \\lfloor x \\rfloor \\) injective?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k \\neq -1 \\)"}}
|
|
723
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all \\( x, y \\in \\mathbb{R} \\) such that \\(\\sin^2(x+y) = \\cos^2 x + \\cos^2 y\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{\\pi}{2} + k\\pi, \\quad y = \\frac{\\pi}{2} + k\\pi, \\quad x + y = \\frac{\\pi}{2} + k\\pi \\)"}}
|
|
724
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor any natural number $x$ with $3 \\le x \\le 2023$, let $D(x)$ be the number of natural numbers $y$ satisfying\n\\[ x + y + 1 \\mid xy - x - 1. \\]\nFor what value of $x$ does the maximum value of $D(x)$ occur?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1679"}}
|
|
725
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality \\( x^{1+\\log_a{x}} > a^2 x \\) for \\( a > 0 \\) and \\( a \\neq 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in \\left(a^{\\sqrt{2}}, a^{-\\sqrt{2}}\\right) \\text{ for } 0 < a < 1 \\text{ and } x \\in \\left(0, a^{-\\sqrt{2}}\\right) \\cup \\left(a^{\\sqrt{2}}, \\infty\\right) \\text{ for } a > 1 \\)"}}
|
|
726
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a cyclic quadrilateral \\(ABCD\\) with \\(AB = AC\\), the line \\(FG\\) is tangent to the circle at point \\(C\\) and is parallel to \\(BD\\). Point \\(E\\) is the intersection of lines \\(AC\\) and \\(BD\\). Given \\(AB = 6\\) and \\(BC = 4\\), find the value of \\(3AE\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10"}}
|
|
727
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a square with center \\(O\\). Points \\(E, F, G, H\\) are on segments \\(AB, BC, CD, AD\\) respectively such that \\(AE = BF = CG = DH\\). The line \\(OA\\) intersects segment \\(EH\\) at point \\(X\\), \\(OB\\) intersects \\(EF\\) at point \\(Y\\), \\(OC\\) intersects \\(FG\\) at point \\(Z\\), and \\(OD\\) intersects \\(HG\\) at point \\(W\\). Given that the area of quadrilateral \\(EFGH\\) is 1, find the product of the areas of square \\(ABCD\\) and quadrilateral \\(XYZW\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
728
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe tangents to the circle \\(x^2 + y^2 = 1\\) having inclinations \\(a\\) and \\(b\\) intersect at point \\(P\\). If \\(\\cot a + \\cot b = 0\\), find the locus of \\(P\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(xy = 0\\)"}}
|
|
729
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a triangle \\(ABC\\) with its excentres \\(I_A, I_B, I_C\\) and its incircle touch points \\(D, E, F\\), find the constant \\(c\\) such that\n\\[\n\\frac{[I_A I_B I_C]}{[DEF]} = \\frac{c(\\sin A + \\sin B + \\sin C)^2}{(\\sin 2A + \\sin 2B + \\sin 2C)^2}.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "16"}}
|
|
730
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for \\( x \\) in the equation \\( x \\cdot 3^x = 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{W(\\ln 3)}{\\ln 3} \\)"}}
|
|
731
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum number of digits of \\( n \\) such that both \\( n \\) and \\( n+1 \\) have the sum of their digits divisible by 53."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "12"}}
|
|
732
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose $50x$ is divisible by 100 and $kx$ is not divisible by 100 for all $k=1,2,\\cdots, 49$. Find the number of solutions for $x$ when $x$ takes values from 1 to 100."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "20"}}
|
|
733
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the maximum $n$ such that there exist integers $a_1, a_2, \\cdots, a_n$ for a polynomial $P$ with integer coefficients and degree $2022$, where $P(a_i) = i$ for all $1 \\le i \\le n$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2022"}}
|
|
734
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the minimum number of dominoes required to cover a chessboard such that no additional domino can be added?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "22"}}
|
|
735
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers \\( n \\) such that there exist sets \\( A_1, A_2, \\ldots, A_n \\) satisfying the following conditions:\n1. For every \\( i \\neq j \\), \\( |A_i \\cap A_j| = 1 \\)\n2. For every \\( i \\), \\( |A_i| = 5 \\)\n3. \\( \\left| \\bigcup_{i=1}^{n} A_i \\right| = n \\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "21"}}
|
|
736
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), point \\(D\\) is on \\(AB\\) and point \\(E\\) is on \\(AC\\) such that \\(DE \\parallel BC\\). Let \\(G\\) be an arbitrary point on \\(BC\\) and \\(F\\) be a fixed point on \\(AC\\). If \\(EG \\cap BF = H\\) and \\(DH \\cap AG = T\\), find the locus of point \\(T\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "The locus of \\( T \\) is a line parallel to \\( BC \\) passing through \\( F \\)."}}
|
|
737
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a fixed natural number. Find all natural numbers \\( m \\) such that \n\n\\[\n\\frac{1}{a^n} + \\frac{1}{b^n} \\geq a^m + b^m\n\\]\n\nfor all positive \\( a, b \\) such that \\( a + b = 2 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m \\in [1; n + 1] \\)"}}
|
|
738
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p \\) be a prime number such that \\( p-1 \\) is not divisible by 3. Solve in \\(\\mathbb{N}^{3}\\) the equation:\n\\[ x^{3} (y^{3}+z^{3}) = p(xyz+1) \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((1, \\frac{p-1}{2}, \\frac{p+1}{2})\\) or \\((1, \\frac{p+1}{2}, \\frac{p-1}{2})\\)"}}
|
|
739
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind a 3rd degree polynomial whose roots are $r_a$, $r_b$, and $r_c$, where $r_a$ is the radius of the excircle of triangle $ABC$ opposite to vertex $A$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x^3 - (4R + r)x^2 + p^2x - p^2r \\)"}}
|
|
740
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P$ with degree $\\geq 1$ and complex coefficients such that there exists a polynomial $Q$ with degree $\\geq 1$ and complex coefficients where $Q(x) = Q(P(x))$ for any complex number $x$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = ax + b \\) where \\( a^q = 1 \\) for some integer \\( q \\)."}}
|
|
741
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe centers of two circles are P and Q with radii R and r, respectively. The circles intersect at two distinct points A and B, and the distance between P and Q is 1. Find the ratio of the areas of triangles PAB and QAB."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1+R^2-r^2}{1+r^2-R^2}\\)"}}
|
|
742
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all sets \\( A \\) and \\( B \\) satisfying the following conditions:\n1. \\( A \\cup B = \\mathbb{Z} \\) (where \\( \\mathbb{Z} \\) is the set of integers)\n2. If \\( x \\in A \\), then \\( x-1 \\in B \\)\n3. If \\( x, y \\in B \\), then \\( x + y \\in A \\)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( A = B = \\mathbb{Z} \\) or \\( A \\) is the set of all even integers and \\( B \\) is the set of all odd integers."}}
|
|
743
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Z} \\to \\mathbb{Z} \\) such that for any integers \\( a \\), \\( b \\), and \\( c \\) satisfying \\( a + b + c = 0 \\), the following holds:\n\n\\[ f(a) + f(b) + f(c) = a^2 + b^2 + c^2. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^2 + cx \\)"}}
|
|
744
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all triples \\((p, m, n)\\) of positive integers such that \\(p\\) is a prime number and \\(p^m - n^3 = 8\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((3, 2, 1)\\)"}}
|
|
745
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n > 1 \\) be a positive integer with \\( m \\) positive divisors \\( d_1 < d_2 < \\dots < d_m \\), including \\( 1 \\) and \\( n \\). Lalo writes the following \\( 2m \\) numbers on a board:\n\\[ d_1, d_2, \\dots, d_m, d_1 + d_2, d_2 + d_3, \\dots, d_{m-1} + d_m, N \\]\nwhere \\( N \\) is a positive integer. Afterwards, Lalo erases any number that is repeated. Finally, Lalo realizes that the numbers left on the board are exactly all the divisors of \\( N \\). Find all possible values that \\( n \\) can take."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 2^u \\) for positive integers \\( u \\)."}}
|
|
746
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCDEF\\) be a regular hexagon. Let \\(G\\), \\(H\\), \\(I\\), \\(J\\), \\(K\\), and \\(L\\) be the midpoints of sides \\(AB\\), \\(BC\\), \\(CD\\), \\(DE\\), \\(EF\\), and \\(AF\\), respectively. The segments \\(AH\\), \\(BI\\), \\(CJ\\), \\(DK\\), \\(EL\\), and \\(FG\\) bound a smaller regular hexagon. Let the ratio of the area of the smaller hexagon to the area of \\(ABCDEF\\) be expressed as a fraction \\(\\frac{m}{n}\\) where \\(m\\) and \\(n\\) are relatively prime positive integers. Find \\(m + n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "11"}}
|
|
747
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( N \\) be the integer next above \\( (\\sqrt{3} + 1)^{2014} \\). Find the largest integer \\( P \\) such that \\( 16^P \\) divides \\( N \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "252"}}
|
|
748
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( f(x) = x^{2021} + 15x^{2020} + 8x + 9 \\) have roots \\( a_i \\) for \\( i = 1, 2, \\ldots, 2021 \\). Let \\( p(x) \\) be a polynomial of the same degree such that \\( p \\left( a_i + \\frac{1}{a_i} + 1 \\right) = 0 \\) for every \\( 1 \\leq i \\leq 2021 \\). If \\( \\frac{3p(0)}{4p(1)} = \\frac{m}{n} \\) where \\( m, n \\in \\mathbb{Z} \\), \\( n > 0 \\), and \\( \\gcd(m, n) = 1 \\), find \\( m + n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "104"}}
|
|
749
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\(a, b, c\\) are positive real numbers such that \\(a + 4b + 54c = 36\\), find the maximum possible value of \\(a + 2\\sqrt{ab} + 6\\sqrt[3]{abc}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "48"}}
|
|
750
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven points $A(0, \\sqrt{2})$, $B(2\\sqrt{6}, \\sqrt{2})$, and $C(\\sqrt{6}, 3\\sqrt{2})$, and a point $P(p, q)$ such that $q > \\sqrt{2}$ and the perpendicular bisectors of line segments $AP$ and $BP$ intersect at $C$, find the locus of the set of points $T(s, t)$ where the perpendicular from $A$ to the line $BP$ and the perpendicular from $B$ to the line $AP$ intersect."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x - \\sqrt{6})^2 + (y + \\sqrt{2})^2 = 14\\)"}}
|
|
751
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor how many 3-element subsets of positive integers \\((a, b, c)\\) is it true that \\(a \\times b \\times c = 2310\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "40"}}
|
|
752
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a cube $ABCDA_{1}B_{1}C_{1}D_{1}$ with side length $4a$, points $E$ and $F$ are taken on segments $(AA_{1})$ and $(BB_{1})$ such that $AE = B_{1}F = a$. Points $G$ and $H$ are the midpoints of segments $(A_{1}B_{1})$ and $(C_{1}D_{1})$, respectively. Find the minimum value of $CP + PQ$, where $P \\in [GH]$ and $Q \\in [EF]$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{\\frac{276}{5}}a\\)"}}
|
|
753
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven an equiangular hexagon $ABCDEF$ with a perimeter of $21$, where $AB = 3$, $CD = 4$, and $EF = 5$, compute the area of the hexagon $ABCDEF$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(71 \\cdot \\frac{\\sqrt{3}}{4}\\)"}}
|
|
754
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( l: \\mathbb{R}^+ \\rightarrow \\mathbb{N} \\) such that for any positive reals \\( k, y \\),\n\\[ l^{l(k)}(y+1) = l(k+1) + \\lceil y \\rceil \\]\nwhere \\( l^{l(k)} \\) denotes the composition of \\( l \\) with itself \\( l(k) \\) times."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( l(x) = \\lceil x \\rceil + 1 \\)"}}
|
|
755
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the complex number \\( z \\) with the largest imaginary part such that \\( |z^2 + z + 1| = 4 \\). Let this imaginary part be \\( \\frac{\\sqrt{m}}{n} \\) where \\( m \\) and \\( n \\) are relatively prime. Find \\( m + n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "21"}}
|
|
756
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven $a, b \\in \\mathbb{R}$ where $a + b + 1 \\neq 0$ and $a \\neq b$, find the range of the expression $\\frac{a^2 + ab + b^2}{a + b + 1}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$(-\\infty, -3) \\cup (0,\\infty)$"}}
|
|
757
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( x, y, z \\geqslant 0 \\), find the maximum value of \\( x^2y + y^2z + z^2x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
758
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $ABCD$ be a square and $P$ be a point on the shorter arc $AB$ of the circumcircle of the square. Determine the possible values of the expression $\\frac{AP+BP}{CP+DP}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2}-1\\)"}}
|
|
759
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest real number \\( a \\) such that for any two real numbers \\( x \\) and \\( y \\) satisfying \\( xy^2 + 4x^2y + 5 = 0 \\) and \\( x > 0 \\), we have \\( ax < y \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-4"}}
|
|
760
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor what values of $a$ will the equation $x^x = a^a$ imply that $x = a$, where $x, a \\in \\mathbb{R}^+$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a \\in \\left\\{\\frac{1}{e}\\right\\} \\cup [1, +\\infty) \\)"}}
|
|
761
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven positive real numbers \\(a, b, c, d\\) such that the expression \\(a \\div b \\times c - d\\) gives the same result regardless of where the parentheses are placed, find that result."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-1"}}
|
|
762
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nUsing inequalities, find the range of \\( V = x(12-2x)(20-2x) \\), where \\( V \\) models the volume of a box made from a \\( 12 \\times 20 \\) rectangle with squares of side length \\( x \\) cut out from each corner."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 0 \\leq V \\leq \\frac{64}{27} \\cdot \\left(28 + 19\\sqrt{19}\\right) \\)"}}
|
|
763
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are three cones on a table, touching each other, with base radii of 6, 24, and 24. A truncated cone is placed on the table with its smaller base down and shares a common generatrix with each of the other cones. Find the radius of the smaller base of the truncated cone."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
764
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn $\\triangle ABC$, $m(\\angle BAC) = 30^\\circ$, $m(\\angle ACB) = 50^\\circ$, and there is a point $O$ inside the triangle such that $m(\\angle OAC) = 20^\\circ$ and $m(\\angle OCA) = 40^\\circ$. Find $m(\\angle OBA)$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 70^\\circ \\)"}}
|
|
765
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \n\\[\n\\prod_{n=1}^{1996}(1+nx^{3^n})=1+a_1x^{k_1}+a_2x^{k_2}+\\ldots+a_mx^{k_m}\n\\]\nwhere \\(a_1, a_2, \\ldots, a_m\\) are nonzero and \\(k_1 < k_2 < \\ldots < k_m\\). Find \\(a_{1234}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6160"}}
|
|
766
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA sequence of points \\((a_n, b_n)\\) in the coordinate plane satisfies \\((a_{n+1}, b_{n+1}) = (\\sqrt{3}a_n - b_n, \\sqrt{3}b_n + a_n)\\) for \\(n = 1, 2, 3, \\ldots\\). Given that \\((a_{100}, b_{100}) = (2, 4)\\), what is \\(a_1 + b_1\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{2^{98}}\\)"}}
|
|
767
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P \\) be a point on the circumcircle of square \\( ABCD \\) such that \\( PA \\cdot PC = 56 \\) and \\( PB \\cdot PD = 90 \\). What is the area of square \\( ABCD \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "106"}}
|
|
768
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all pairs of functions \\( f, g \\) both from \\(\\mathbb{R}\\) to itself such that \n\\[ f(g(y) + x f(y)) = g(xy) + f(y) \\]\nholds for all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = c, g(x) = 0 \\); \\( f(x) = -x, g(x) = x \\); \\( f(x) = x, g(x) = x + c \\)"}}
|
|
769
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve in $\\mathbb{Z}$ the equation:\n\\[\n\\sqrt{x+\\sqrt{x+\\sqrt{x+\\cdots+\\sqrt{x}}}}=y,\n\\]\nwhere the number of nested square roots is 2007."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (0, 0) \\)"}}
|
|
770
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven different real numbers \\(a\\), \\(b\\), and \\(c\\), let \\(x = \\frac{a+b}{a-b}\\), \\(y = \\frac{b+c}{b-c}\\), and \\(z = \\frac{c+a}{c-a}\\). Find an equation that reflects the special relationship among \\(x\\), \\(y\\), and \\(z\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((1+x)(1+y)(1+z) = (1-x)(1-y)(1-z)\\)"}}
|
|
771
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many equilateral triangles with all vertices in the set $\\{A, B, C, D, E, F, H\\}$ are there, where $A, B, C$ are the vertices of an equilateral triangle of side length $a$, $D, E, F$ are the midpoints of sides $(AB), (BC), (CA)$ respectively, and $H$ is the symmetrical of $D$ with respect to the line $BC$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
772
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers $ n$ for which there exist integers $ a$, $ b$, and $ c$ such that $ a + b + c = 0$ and $ a^n + b^n + c^n$ is prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is any even number."}}
|
|
773
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of positive integers \\( (a, b) \\) that satisfy the equation \\( 2a^2 = 3b^3 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( (a, b) = (18k^3, 6k^2) \\) for any positive integer \\( k \\)."}}
|
|
774
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(a\\), \\(b\\), and \\(c\\) are the roots of the equation \\(x^3 + 3px^2 + (9p-1)x + p^2 = 0\\), find the value of \\(p\\) such that \\(a^3 + b^3 + c^3\\) is minimized."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( p \\approx 0.059 \\)"}}
|
|
775
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation in \\(\\mathbb{Z}\\):\n\\[\n\\frac{x}{y} = \\frac{(x^2 - y^2)^{\\frac{y}{x}} + 1}{(x^2 - y^2)^{\\frac{y}{x}} - 1}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(x,y)\\in\\{(-3,-1),(-3,1),(3,-1),(3,1)\\}"}}
|
|
776
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWrite the sum\n\n\\[\n\\sum_{k=0}^{n} \\frac{(-1)^{k} \\binom{n}{k}}{k^{3} + 9k^{2} + 26k + 24}\n\\]\n\nin the form \\(\\frac{p(n)}{q(n)}\\) where \\(p\\) and \\(q\\) are polynomials with integer coefficients."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{2(n+3)(n+4)}\\)"}}
|
|
777
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all integers \\( (m,n) \\) such that \\( 3^m = 2mn^3 + 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(1, 1)"}}
|
|
778
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the function \\( f: \\mathbb{Z} \\rightarrow \\mathbb{Z} \\) such that \\( f(f(x+y)) = f(x^2) + f(y^2) \\) and \\( f(f(2020)) = 1010 \\), find \\( f(2025) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "505"}}
|
|
779
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer sequence \\(\\{a_n\\}\\) with \\(a_1 = a\\) and \\(a_2 = b\\), and defined by the recurrence relation\n\\[ a_{k+1} = |\\{1 \\le i \\le k \\mid a_i = a_k\\}|, \\]\nfind all pairs \\((a, b)\\) such that there exists a positive integer \\(N\\) for which \\(a_{n+2} \\ge a_n\\) for all \\(n \\ge N\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((1, 1)\\)"}}
|
|
780
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. From the set \\( A = \\{1, 2, 3, \\ldots, n\\} \\), an element is eliminated. What is the smallest possible cardinal of \\( A \\) and the eliminated element, such that the arithmetic mean of the remaining elements in \\( A \\) is \\( \\frac{439}{13} \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 66 \\), \\( k = 16 \\)"}}
|
|
781
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many nine-digit numbers can be formed using the digits $1, 2, 3, 4, 5, 6, 7, 8, 9$ such that exactly 7 digits are each less than the next digit?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "502"}}
|
|
782
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P \\) be a point inside an acute triangle \\( \\triangle ABC \\). Let \\( H_A \\), \\( H_B \\), and \\( H_C \\) be the orthocenters of triangles \\( \\triangle BCP \\), \\( \\triangle CAP \\), and \\( \\triangle ABP \\) respectively. Find all points \\( P \\) such that triangles \\( \\triangle H_AH_BH_C \\) and \\( \\triangle ABC \\) share the same circumcenter."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P \\) is the orthocenter of \\( \\triangle ABC \\)."}}
|
|
783
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the following system of equations on $\\mathbb{R}^2$:\n\\[\n\\left\\{ \\begin{array}{l}\n-2x^3 + 3x - 1 = 2x^3(y^2 - 1)\\sqrt{1 + 2y^2}\\\\\n\\sqrt[3]{x - 4} + 3 = \\sqrt{-4 - x\\sqrt{1 + 2y^2}}\n\\end{array} \\right.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(-4, -\\frac{3}{4\\sqrt{2}}), (-4, +\\frac{3}{4\\sqrt{2}})"}}
|
|
784
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn acute triangle \\(ABC\\), let \\(CE\\) and \\(BD\\) be the altitudes from \\(C\\) and \\(B\\) to sides \\(AB\\) and \\(AC\\) respectively. \\(CE\\) intersects \\(BD\\) at \\(H\\). The circle with diameter \\(DE\\) intersects \\(AB\\) and \\(AC\\) at points \\(F\\) and \\(G\\) respectively. \\(FG\\) intersects \\(AH\\) at \\(K\\). Given \\(|BC| = 25\\), \\(|BD| = 20\\), and \\(|BE| = 7\\), find \\(|AK|\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{216}{25}\\)"}}
|
|
785
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the least real number $k$ such that the inequality \\[k(a^2+1)(b^2+1)(c^2+1) \\geqslant (a+b+c)^2\\] holds for all real numbers $a$, $b$, and $c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4}{3}\\)"}}
|
|
786
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\( p = 3^w \\), \\( q = 3^x \\), \\( r = 3^y \\), and \\( s = 3^z \\), where \\( w, x, y, z \\) are positive integers, find the minimum value of \\( w + x + y + z \\) such that \\( p^2 + q^3 + r^5 = s^7 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "106"}}
|
|
787
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f, g : \\mathbb{R} \\rightarrow \\mathbb{R} \\) that satisfy the functional equation\n\\[ f(x + y) = f(x)g(y) + f(y) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 0 \\) and any \\( g(x) \\), or \\( f(x) \\) is any additive function and \\( g(x) = 1 \\), or \\( f(x) = c \\) and \\( g(x) = 0 \\), or \\( f(x) = c(e^{u(x)} - 1) \\) and \\( g(x) = e^{u(x)} \\) where \\( u(x) \\) is any additive function."}}
|
|
788
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p \\) be a prime number and \\( n \\in \\mathbb{N} \\). Define \\( Z_k = \\cos{\\frac{2 k \\pi}{p}} + i \\sin{\\frac{2 k \\pi}{p}} \\) for \\( k = 0, 1, 2, \\ldots, p-1 \\). Find \\( \\sum_{k=0}^{p-1} Z_k^n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
789
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf $x^4 + y^4 = x^2 + y^2$ for real numbers $x$ and $y$, what is the largest value that $x$ can take on?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{\\frac{\\sqrt{2} +1}{2}}\\)"}}
|
|
790
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f:(0,\\infty) \\to \\mathbb{R} \\) such that:\ni) \\( f(xy + xf(y)) = yf(x) - xf(y) \\) for all \\( x, y > 0 \\);\nii) \\( \\lim_{x \\to +\\infty} [f(x) + x] = 0 \\);\niii) \\( f(x) + x \\neq 0 \\) for all \\( x > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{x} - x \\)"}}
|
|
791
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn parallelogram \\(ABCD\\), point \\(F\\) is taken on the extension of side \\(AD\\). Line \\(BF\\) intersects diagonal \\(AC\\) at \\(E\\) and side \\(DC\\) at \\(G\\). Given that \\(EF = 32\\) and \\(GF = 24\\), find the length of \\(BE\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "16"}}
|
|
792
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor a quadratic equation \\( ax^2 + bx + b = 0 \\) with roots \\( P \\) and \\( Q \\), and given that the signs of \\( a \\) and \\( b \\) are always the same, find the value of \\( \\left(\\frac{P}{Q}\\right)^{1/2} + \\left(\\frac{Q}{P}\\right)^{1/2} + \\left(\\frac{b}{a}\\right)^{1/2} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2\\sqrt{\\frac{b}{a}} \\)"}}
|
|
793
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be nonzero real numbers, each different from the others, such that \\(a + \\frac{2}{b} = b + \\frac{2}{c} = c + \\frac{2}{a}\\). Find the value of \\(\\left(a + \\frac{2}{b}\\right)^2 + \\left(b + \\frac{2}{c}\\right)^2 + \\left(c + \\frac{2}{a}\\right)^2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
794
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a positive integer \\( n \\) where \\( n > 2004 \\), we place the numbers 1 through \\( n^2 \\) into the squares of an \\( n \\times n \\) chessboard such that each square contains one number. A square is called a \"good square\" if:\n1. There are at least 2004 squares in the same row with numbers less than the number in the square.\n2. There are at least 2004 squares in the same column with numbers less than the number in the square.\nFind the maximum number of \"good squares\" on the chessboard."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n^2 - 2004n \\)"}}
|
|
795
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind at least one composite integer \\( n \\) such that \\(\\frac{2^n - 2}{n}\\) is an integer."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "215326"}}
|
|
796
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\to \\mathbb{R} \\) such that \\( f\\left(\\frac{x-3}{x+1}\\right) + f\\left(\\frac{x+3}{1-x}\\right) = x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{x^3 + 7x}{2(1 - x^2)} \\) for \\( x \\notin \\{-1, +1\\} \\)"}}
|
|
797
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest subset \\( A \\) of \\( \\{1, 2, \\ldots, 2017\\} \\) such that when the elements of \\( A \\) are arranged in order from least to greatest, say \\( \\{A_1, A_2, \\ldots, A_m\\} \\), no two elements \\( A_i \\) and \\( A_j \\) (\\( i - j > 1 \\)) have the property \\( i - j \\mid A_i - A_j \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1345"}}
|
|
798
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the following inequality for \\(0 \\le x < 2\\pi\\):\n\n\\[\n\\frac{3 \\sin^2 x + 2 \\cos^2 x + 4 \\sin x - (1 + 4\\sqrt{2}) \\sin x \\cos x + 4 \\cos x - (2 + 2\\sqrt{2})}{2 \\sin x - 2\\sqrt{2} \\sin x \\cos x + 2 \\cos x - \\sqrt{2}} > 2\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\pi}{4} < x < \\frac{3\\pi}{4} \\quad \\text{or} \\quad \\pi < x < \\frac{5\\pi}{4} \\quad \\text{or} \\quad \\frac{7\\pi}{4} < x < 2\\pi\\)"}}
|
|
799
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the largest $K > 0$ such that $K(a^2 + b^2 + c^2) \\le (a + b + c)^2$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
800
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor what value of the parameter \\( m \\) does the equation \\((x^{2} - 2mx - 4(m^{2} + 1))(x^{2} - 4x - 2m(m^{2} + 1)) = 0\\) have three distinct roots?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
801
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe sequence \\( x_n \\) satisfies the relation \\( 2 \\cos(n x_n) + \\cos(x_n - n x_n) = \\cos(2x_n + n x_n) \\). Find \\( \\lim_{n \\to \\infty} \\cos(x_n) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 \\)."}}
|
|
802
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R}^+ \\longrightarrow \\mathbb{R}^+ \\) such that:\n\n\\[ f\\left(\\frac{x + y}{2}\\right) = \\frac{2f(x)f(y)}{f(x) + f(y)} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{ax + b} \\)"}}
|
|
803
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA polynomial $P(x)$ of degree $2013$ with real coefficients satisfies $P(n) = 3^n$ for $n = 0, 1, \\ldots, 2013$. Evaluate $P(2014)$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 3^{2014} - 2^{2014} \\)"}}
|
|
804
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the range of $b$ such that for all real numbers $a$, the parabola $y=(x-2)(x-3)$ has two points of intersection with the line $y=a(bx-a-5).$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left[2, \\frac{13}{6}\\right)\\)"}}
|
|
805
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\geq 2 \\) be an integer. Find the largest real number \\( \\lambda \\) such that the inequality \n\\[ a^2_n \\geq \\lambda \\sum^{n-1}_{i=1} a_i + 2 \\cdot a_n \\]\nholds for any positive integers \\( a_1, a_2, \\ldots, a_n \\) satisfying \\( a_1 < a_2 < \\ldots < a_n. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2n-4}{n-1}\\)"}}
|
|
806
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum value of \\( k \\) such that for all positive \\( a, b, c \\) satisfying \\( a + b + c = ab + bc + ca \\), the inequality\n\\[ (a + b + c) \\left( \\frac{1}{a + b} + \\frac{1}{b + c} + \\frac{1}{c + a} - k \\right) \\geq k \\]\nholds."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 1 \\)"}}
|
|
807
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute triangle \\(ABC\\), the distance from the orthocenter to the centroid is half the radius of the circumscribed circle. \\(D\\), \\(E\\), and \\(F\\) are the feet of the altitudes of triangle \\(ABC\\). If \\(r_1\\) and \\(r_2\\) are, respectively, the radii of the inscribed and circumscribed circles of triangle \\(DEF\\), determine \\(\\frac{r_1}{r_2}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{7}{32}\\)"}}
|
|
808
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R}^+ \\to \\mathbb{R}^+ \\) satisfying\n\\[ f \\left( \\frac{1}{x} \\right) \\ge 1 - \\frac{\\sqrt{f(x) f \\left( \\frac{1}{x} \\right)}}{x} \\ge x^2 f(x) \\]\nfor all \\( x \\in \\mathbb{R}^+ \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = \\frac{1}{x^2 + 1} \\)"}}
|
|
809
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all polynomials \\( f \\in \\mathbb{Z}[x] \\) such that for every \"cute\" subset \\( \\{ p, q \\} \\) (where \\( p \\) is a prime number and \\( q \\) is a composite number), the subset \\( \\{ f(p) + q, f(q) + p \\} \\) is also \"cute\"."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 0 \\)"}}
|
|
810
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are 4 balls in a box marked 1, 2, 3, and 4. Players A and B take alternate turns, with A starting first. Each move consists of drawing a ball randomly (with equal probability of 1/4 for each ball), writing its index on a piece of paper, and returning the ball to the box. The game ends when the sum of all numbers written down is divisible by 3, and the player who made the last move wins. What is the probability that player A wins?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{13}{23}\\)"}}
|
|
811
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all finite sets \\( A \\subset \\mathbb{N}^* \\) such that \\( |A| \\ge 2 \\) and for all \\( a, b \\in A \\) with \\( a \\ne b \\), the condition \\(\\dfrac{a+b}{\\gcd(a,b)} \\in A\\) is satisfied."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( A = \\{u, u^2 - u\\} \\) for any positive integer \\( u \\ge 3 \\)"}}
|
|
812
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor which positive integers \\( n \\) does there exist a polynomial \\( P(x) \\) with integer coefficients such that \\( P(d) = \\frac{n}{d} \\) for all positive divisors \\( d \\) of \\( n \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 1 \\) or \\( n \\) is a prime number."}}
|
|
813
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA large sphere is on a horizontal field on a sunny day. At a certain time, the shadow of the sphere reaches out a distance of 10 meters from the point where the sphere touches the ground. At the same instant, a meter stick (held vertically with one end on the ground) casts a shadow of length 2 meters. What is the radius of the sphere in meters? (Assume the sun's rays are parallel and the meter stick is a line segment.)"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 10\\sqrt{5} - 20 \\)"}}
|
|
814
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven triangle \\(ABC\\) with \\(AB = 12\\), \\(AC = 13\\), and \\(BC = 15\\). Point \\(M\\) is on \\(BC\\) such that the incircles of triangles \\(AMB\\) and \\(AMC\\) have equal radii. Find the ratio \\(AM:MC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{30}{23}\\)"}}
|
|
815
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( a \\) and \\( b \\) are natural numbers such that \\( a + 13b \\) is divisible by 11 and \\( a + 11b \\) is divisible by 13, find the least possible value of \\( a + b \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "28"}}
|
|
816
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the quadrilateral \\(ABCD\\), \\(AB = CD\\), \\(\\angle BCD = 57^\\circ\\), and \\(\\angle ADB + \\angle CBD = 180^\\circ\\). Find the measure of \\(\\angle BAD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(57^\\circ\\)"}}
|
|
817
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a convex $2n$-gon $M = A_1A_2 \\ldots A_{2n}$, diagonals $A_iA_{n+i}$ are drawn for $i = 1, 2, \\ldots, n$. It is given that no three diagonals intersect at one point. The interior of the polygon is divided into smaller polygons by these diagonals. What is the smallest number of these smaller polygons that can be triangles?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
818
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the maximum area of a quadrilateral given that the distances from a point inside the quadrilateral to its four vertices are $1$, $2$, $3$, and $4$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{25}{2}\\)"}}
|
|
819
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a regular quadrangular pyramid \\( SABCD \\) with all edges equal to 5, points \\( P, Q, R \\) are taken on the edges \\( SA \\), \\( AB \\), \\( BC \\) respectively, such that \\( PA = AQ = RC = 2 \\). Find the distance from vertex \\( D \\) to the plane \\( PQR \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{7}{2}\\)"}}
|
|
820
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the polynomial \\( ax^3 + x^2 + bx + 1 \\) with three real positive roots, find the minimum value of \\( P = \\frac{5a^2 - 3ab + 2}{a^2(a - b)} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 12\\sqrt{3} \\)"}}
|
|
821
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose that $20-\\sqrt{2015}$ is a root of the quadratic equation $x^2 + ax + b$, where $b$ is a negative real number and $a$ is an integer. What is the largest possible value of $a$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "24"}}
|
|
822
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all integer values of \\( n > 3 \\) for which a regular \\( n \\)-gon can be divided into equal triangles by several (possibly intersecting) diagonals."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All even integers \\( n > 3 \\)"}}
|
|
823
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Determine, in terms of \\( n \\), the greatest integer which divides every number of the form \\( p + 1 \\), where \\( p \\equiv 2 \\mod 3 \\) is a prime number which does not divide \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 3 \\) if \\( n \\) is odd, and \\( 6 \\) if \\( n \\) is even."}}
|
|
824
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCalculate the sum $$\\frac{1}{1 \\cdot 4 \\cdot 7} + \\frac{1}{4 \\cdot 7 \\cdot 10} + \\cdots + \\frac{1}{25 \\cdot 28 \\cdot 31}.$$"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{9}{217}\\)"}}
|
|
825
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA scientist recorded the heights of 5 trees standing in a row, where each tree was either twice as tall or half as tall as the one to its right. The recorded heights are as follows:\n\n- Tree 1: \\(\\rule{0.4cm}{0.15mm}\\) meters\n- Tree 2: 11 meters\n- Tree 3: \\(\\rule{0.5cm}{0.15mm}\\) meters\n- Tree 4: \\(\\rule{0.5cm}{0.15mm}\\) meters\n- Tree 5: \\(\\rule{0.5cm}{0.15mm}\\) meters\n\nThe average height of the trees is \\(\\rule{0.5cm}{0.15mm}\\text{ .}2\\) meters. Determine the average height of the trees in meters."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "24.2"}}
|
|
826
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{R} \\rightarrow \\mathbb{R} \\) such that:\n\\[ 2f(f(xy) - f(x+y)) = xy + f(x)f(y) \\]\nfor all \\( x, y \\in \\mathbb{R} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 2 - x \\)"}}
|
|
827
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the triangle \\(ABC\\), the length of the height from the vertex \\(A\\) is \\(1\\), and the point \\(D\\) is the midpoint of the side \\(AC\\). What can the length of the segment \\(BD\\) be?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Any positive real number."}}
|
|
828
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation \\( x^6 + 6x^5 + 15x^4 + 17x^3 + 6x^2 - 3x - 1 = 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = \\frac{1}{2}(12 + 4\\sqrt{5})^{\\frac{1}{3}} - 1 \\) and \\( x = \\frac{1}{2}(12 - 4\\sqrt{5})^{\\frac{1}{3}} - 1 \\)"}}
|
|
829
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive real solutions of the equation \\( x + \\left\\lfloor \\frac{x}{6} \\right\\rfloor = \\left\\lfloor \\frac{x}{2} \\right\\rfloor + \\left\\lfloor \\frac{2x}{3} \\right\\rfloor \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\mathbb{Z} - \\{6k+1 : k \\in \\mathbb{Z}\\}\\)"}}
|
|
830
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many natural numbers \\( n \\) satisfy the following conditions?\n1. The decimal expansion of \\( n \\) contains 1000 digits.\n2. All of the digits of \\( n \\) are odd.\n3. The absolute value of the difference between any two adjacent digits of \\( n \\) is 2."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 8 \\cdot 3^{499} \\)"}}
|
|
831
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the area of isosceles triangle \\(ABC\\) given:\n- \\(AB = AC\\)\n- Line \\(AC\\) is defined by the equation \\(4x - y + 5 = 0\\)\n- Line \\(BC\\) is defined by the equation \\(x - 2y + 3 = 0\\)\n- Point \\(E(1.2, 5.6)\\) lies on line \\(AB\\)\n- What is the area \\([ABC]\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{105}{8}\\)"}}
|
|
832
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S = \\{1, 2, \\ldots, 32\\} \\). Find the least \\( k \\) such that any subset \\( A \\) of \\( S \\) with \\( k \\) elements contains distinct \\( a, b, c \\) such that \\( a \\) divides \\( b \\) and \\( b \\) divides \\( c \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "25"}}
|
|
833
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the following system in $\\mathbb{R}^3$:\n\\[ x + \\sin x = y \\]\n\\[ y + \\sin y = z \\]\n\\[ z + \\sin z = x \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = y = z = n\\pi \\) where \\( n \\in \\mathbb{Z} \\)"}}
|
|
834
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many subsets $\\gamma = \\{a_1, a_2, \\ldots, a_k\\}$ of the first $n$ positive integers, arranged in increasing order, are there that begin with an odd number and thereafter alternate in parity? Include the empty set in the count."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( F_{n+2} \\)"}}
|
|
835
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nMinh enters the numbers from 1 to 81 in a $9 \\times 9$ grid in some order. She calculates the product of the numbers in each row and column. What is the least number of rows and columns that could have a product divisible by 3?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "11"}}
|
|
836
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhich is greater, $\\sqrt[2012]{2013!}$ or $\\sqrt[2013]{2012!}$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "$\\sqrt[2012]{2013!} > \\sqrt[2013]{2012!}$"}}
|
|
837
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be a triangle with vertices \\(A = (1, 0)\\), \\(B = (3, 0)\\), and \\(C = (2, 1)\\). Calculate the inclination \\(m\\) of the line that passes through the point \\((0, 0)\\) and divides this triangle into two regions of equal areas."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4 - \\sqrt{7}}{9}\\)"}}
|
|
838
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( x \\) belongs to the interval \\([1, k]\\), there are 2017 solutions to the equation \\( x^3 - \\lfloor x^3 \\rfloor = (x - \\lfloor x \\rfloor)^3 \\). Find the minimum value of \\( k \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 6 + \\sqrt{\\frac{133}{3}} \\)"}}
|
|
839
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a school with 2008 students, each student is a member of certain committees. Each committee has at most 1004 members, and every two students are in at least one common committee. Determine the smallest possible number of committees in the school."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
840
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn isosceles triangle $ABC$, the base angles at $B$ and $C$ measure $40$ degrees. The bisector of angle $B$ intersects $AC$ at point $D$, and $BD$ is extended to point $E$ so that $DE = AD$. Find $\\angle BEC$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "80"}}
|
|
841
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCalculate the sum \\( S = \\prod_{k=0}^{2^{2003}} \\left( 4 \\sin^2 \\frac{k\\pi}{2^{2004}} - 3 \\right) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "3"}}
|
|
842
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be an isosceles trapezoid with \\(AB \\parallel CD\\). Denote by \\(I_1, I_2, I_3, I_4\\) the incenters of triangles \\(ABC\\), \\(BCD\\), \\(CDA\\), and \\(DAB\\) respectively. Find the area of quadrilateral \\(I_1I_2I_3I_4\\) if \\(BC = \\sqrt{13}\\) and \\(AC = 5\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{5\\sqrt{13} - 13}{3}\\)"}}
|
|
843
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nTwo points \\( A(x_a, y_b) \\) and \\( B(x_a + 5, y_b + 12) \\) are on the parabola \\( 5x^2 - px - 5y + q = 0 \\) such that \\( x_a + y_b = 5 \\). How many possible positive integer pairs \\((p, q)\\) are there where \\( q \\leq 2050 \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "41"}}
|
|
844
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven four numbers \\(a, b, c, d\\) such that the first three are in arithmetic progression (AP) and the last three are in geometric progression (GP), and \\(a - d = 30\\). Find the sum \\(a + b + c + d\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "78"}}
|
|
845
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( m \\) and \\( n \\) be positive integers such that \\( n^2 < 8m < n^2 + 60(\\sqrt{n+1} - \\sqrt{n}) \\). Determine the maximum possible value of \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "54"}}
|
|
846
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $O$ be the point of intersection of the diagonals of the trapezoid $ABCD$ with bases $AB$ and $CD$. It is known that $\\angle AOB = \\angle DAB = 90^\\circ$. Points $E$ and $F$ are taken on sides $AD$ and $BC$ respectively such that $EF \\parallel AB$ and $EF = AD$. Find the angle $\\angle AOE$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(45^\\circ\\)"}}
|
|
847
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the functions \\( f(x) = x \\cdot e^{\\frac{1}{x}} \\) and \\( g(x) = \\frac{(x-1)^2}{x-d} + e \\) where \\( d \\in (0,1) \\), find \\( d \\) such that:\n\\[\n\\begin{cases}\nf(x) < g(x), & x \\in (d, 1) \\\\\nf(x) > g(x), & x \\in (1, \\infty)\n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( d = 1 - \\frac{2}{e} \\)"}}
|
|
848
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many different solutions does the congruence $x^3 + 3x^2 + x + 3 \\equiv 0 \\pmod{25}$ have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6"}}
|
|
849
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a triangular pyramid \\(DABC\\) with all plane angles at the apex \\(D\\) equal to \\(\\frac{\\pi}{3}\\), the lengths \\(DA = 2\\), \\(DB = 4\\), and \\(DC = 3\\). Points \\(P\\), \\(M\\), and \\(K\\) are the midpoints of edges \\(DA\\), \\(DB\\), and \\(BC\\), respectively. Find the distance from point \\(M\\) to the straight line \\(PK\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{\\frac{11}{12}}\\)"}}
|
|
850
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the range of the function \\(\\frac{\\tan(3x)}{\\tan(2x)}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(-\\infty, \\frac{1}{9}\\right] \\cup \\left(\\frac{3}{2}, \\infty\\right)\\)"}}
|
|
851
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( P \\) be a point inside isosceles triangle \\( ABC \\) with \\( AB = AC \\). Let the feet of the perpendiculars from \\( P \\) onto sides \\( BC \\), \\( CA \\), \\( AB \\) be \\( D \\), \\( E \\), \\( F \\) respectively. Given that \\( BD = 9 \\), \\( CD = 5 \\), \\( PE = 2 \\), \\( PF = 5 \\), find \\( AB \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 4\\sqrt{7} \\)"}}
|
|
852
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of the expression \\( p^5 + 3\\sqrt{3}q^5 + \\sqrt{3}r^5 + s^5 - 15pqrs \\) for \\( p, q, r, s > 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-27"}}
|
|
853
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a square \\(ABCD\\) with side length 2, let \\((O)\\) be the incircle of \\(ABCD\\). Let \\(T\\) be the point of tangency of \\((O)\\) with \\(AB\\), \\(N\\) be the intersection of \\(DT\\) and \\(AC\\), \\(M\\) be the intersection of \\(NA\\) with \\((O)\\), and \\(P\\) be the intersection of \\(MB\\) and \\(DT\\). Find the area of triangle \\(MNP\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{45 \\sqrt{2} - 58}{42}\\)"}}
|
|
854
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\), if \\(\\cos A + \\cos B = \\sin C\\), which type of triangle satisfies this equation?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "Right triangle with the right angle at \\(A\\) or \\(B\\)."}}
|
|
855
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all non-constant polynomials \\( P(x) \\) with integer coefficients such that for any relatively prime integers \\( a \\) and \\( b \\), the sequence \\( \\{ P(an + b) \\}_{n \\geq 1} \\) contains an infinite number of terms, any two of which are relatively prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = \\pm x^n \\)"}}
|
|
856
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f: \\mathbb{Z}^+ \\to \\mathbb{Z}^+ \\) such that\n\\[ f(n+2) \\cdot (f(n+1) - k) = f(n) \\cdot (f(n+1) + k) \\]\nfor all \\( n \\in \\mathbb{Z}^+ \\) and a given positive integer \\( k \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n) = kn + d \\)"}}
|
|
857
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSix cards and six envelopes are numbered from $1$ to $6$. Each envelope must contain exactly one card, and no card can be placed in the envelope with the same number. Additionally, the card numbered $1$ must be placed in the envelope numbered $2$. Find the number of ways this can be done."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "53"}}
|
|
858
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the maximum possible value of a positive integer $n$, such that for any choice of seven distinct elements from $\\{1,2,\\ldots,n\\}$, there exist two numbers $x$ and $y$ satisfying $1 < \\frac{x}{y} \\le 2$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "126"}}
|
|
859
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( ABCDA'B'C'D' \\) be a rectangular parallelepiped, where \\( ABCD \\) is the lower face and \\( A, B, C, D \\) are below \\( A', B', C', D' \\), respectively. The parallelepiped is divided into eight parts by three planes parallel to its faces. For each vertex \\( P \\), let \\( V_P \\) denote the volume of the part containing \\( P \\). Given that \\( V_A = 40 \\), \\( V_C = 300 \\), \\( V_{B'} = 360 \\), and \\( V_{C'} = 90 \\), find the volume of the parallelepiped \\( ABCDA'B'C'D' \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2015"}}
|
|
860
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA square of side length 1 and a circle of radius $\\dfrac{\\sqrt{3}}{3}$ share the same center. What is the area inside the circle but outside the square?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\dfrac{2\\pi}{9} - \\dfrac{\\sqrt{3}}{3}\\)"}}
|
|
861
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider an isosceles triangle \\(ABC\\) such that \\(AB = AC\\) and \\(\\angle A = 20^\\circ\\). Let \\(M\\) be the foot of the altitude from \\(C\\) and let \\(N\\) be the point on side \\(AC\\) such that \\(CN = \\frac{1}{2}BC\\). Find the measure of angle \\(\\angle AMN\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
862
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe midpoints of the four sides of a rectangle are $(-3, 0)$, $(2, 0)$, $(5, 4)$, and $(0, 4)$. What is the area of the rectangle?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "40"}}
|
|
863
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven three non-negative real numbers \\(a\\), \\(b\\), and \\(c\\) such that \\(a + b + c = k\\) where \\(k > 0\\), find the minimum value of \\(\\frac{a^2 + b^2 + c^2}{a^2b^2 + b^2c^2 + c^2a^2}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{8}{k^2}\\)"}}
|
|
864
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all permutations \\( (a_1, a_2, \\ldots, a_n) \\) of \\( (1, 2, 3, \\ldots, n) \\) such that there exists exactly one index \\( i \\) for which \\( a_i > a_{i+1} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^n - n - 1 \\)"}}
|
|
865
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( D \\) be a point inside the equilateral triangle \\( \\triangle ABC \\) such that \\( |AD| = \\sqrt{2} \\), \\( |BD| = 3 \\), and \\( |CD| = \\sqrt{5} \\). Find the measure of \\( \\angle ADB \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "105^{\\circ}"}}
|
|
866
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural numbers $n$ such that the polynomial $f(x) = x^n + 4$ is reducible in $\\mathbb{Z}[x]$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is divisible by 4."}}
|
|
867
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the function \\( f(x) = x^4 - (2k+4)x^2 + (k-2)^2 \\), where \\( k \\) is an integer. Suppose that \\( f(x) \\) can be written in the form \\( f(x) = P(x)Q(x) \\), where \\( P(x) \\) and \\( Q(x) \\) are quadratic polynomials with integer coefficients. If \\( k \\leq 2005 \\), then the largest possible root of \\( P(x) \\) can be written in the form \\( a + \\sqrt{b} \\), where \\( a \\), \\( b \\), and \\( c \\) are integers, and \\( c \\) is square-free. Compute \\( a + b \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "46"}}
|
|
868
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA rectangular piece of paper measures $8$ inches by $17$ inches. It is folded so that a right angle is formed between the two segments of the original bottom edge. What is the area in square inches of the new figure?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "104"}}
|
|
869
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all $x, y \\in \\mathbb{R}$ which satisfy the following system of inequalities:\n\\[\n\\begin{cases}\n2x^2 + 10x - 15y \\leq 0, \\\\\n9y^2 - 12xy + 25 \\leq 0.\n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{5}{\\sqrt{2}}, \\frac{5(1+\\sqrt{2})}{3}\\right)\\) or \\(\\left(\\frac{-5}{\\sqrt{2}}, \\frac{5(1-\\sqrt{2})}{3}\\right)\\)"}}
|
|
870
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind an expression for\n\n\\[\n\\left(\\cos \\frac{a}{2} + \\cos \\frac{b}{2}\\right) \\left(\\cos \\frac{a}{2^2} + \\cos \\frac{b}{2^2}\\right) \\cdots \\left(\\cos \\frac{a}{2^n} + \\cos \\frac{b}{2^n}\\right).\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{\\sin \\frac{a+b}{2}\\sin \\frac{a-b}{2}}{2^{n}\\sin \\frac{a+b}{2^{n+1}}\\sin \\frac{a-b}{2^{n+1}}}\\)"}}
|
|
871
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality in real numbers:\n\\[ \\log_{\\sqrt{x}}(\\log_{2}(4^x - 2)) \\le 2 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No solution"}}
|
|
872
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all positive integers $n$ for which the number $2^{2n-1} - 2^n + 1$ is a perfect square."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = 3 \\)"}}
|
|
873
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all natural number solutions \\((x, y)\\) to the equation \\(3y^2 = x^4 + x\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No solutions."}}
|
|
874
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven positive real numbers \\( x_1, x_2, \\ldots, x_n \\) such that \\(\\dfrac{1}{x_1} + \\dfrac{1}{x_2} + \\cdots + \\dfrac{1}{x_n} = 1\\), find the minimum value of the expression:\n\\[ P = \\dfrac{1}{\\sqrt{1 + x_1^2}} + \\dfrac{1}{\\sqrt{1 + x_2^2}} + \\cdots + \\dfrac{1}{\\sqrt{1 + x_n^2}} \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\dfrac{1}{\\sqrt{2}}\\)"}}
|
|
875
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a_k \\ (k=1, 2, \\cdots, 7)\\) be distinct positive integers. If \\(ka_k \\ (k=1, 2, \\cdots, 7)\\) are in arithmetic progression, find the smallest possible value of \\(|a_7 - a_1|\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "360"}}
|
|
876
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nConsider the sequence ${a_n}$ defined by $a_1=3$, $a_2=17$, and $a_{n+2}=6a_{n+1}-a_n$. Find the limit of the sum $\\lim \\sum \\frac{1}{a_k-3(-1)^k}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{4}\\)"}}
|
|
877
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve in $ \\mathbb{C} $ the equation $ |z|+|z-5i|=|z-2i|+|z-3i|. $"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( z = mi \\) where \\( m \\in (-\\infty, 0] \\cup [5, +\\infty) \\)"}}
|
|
878
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers $n$ such that for every positive integer $k$ greater than or equal to $n$, there exists a multiple of $n$ whose sum of digits is $k$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "all \\( n \\) that are not divisible by \\( 3 \\)"}}
|
|
879
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nAn acute triangle \\(ABC\\) is inscribed in a circle. Two altitudes \\(AM\\) and \\(CN\\) are extended to meet the circle at \\(P\\) and \\(Q\\) respectively. Given that \\(PQ:AC = 3:2\\), find \\(\\cos \\angle ABC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{4}\\)"}}
|
|
880
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nValery has rods of lengths $1$ cm, $2$ cm, $3$ cm, ..., $n$ cm. She chooses $k$ rods such that any three of the chosen rods can form a triangle. Determine the greatest value $k$ can take."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k = n - \\left\\lceil \\frac{n}{2} \\right\\rceil \\)"}}
|
|
881
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the sequence \\((X_n)\\) defined by:\n\\[ X_0 = 1, \\]\n\\[ X_1 = 2, \\]\n\\[ X_{n+1} = \\sqrt{X_n + 6\\sqrt{X_{n-1}}}, \\]\nfind the value of the sequence."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( X_n = 2^{2 - 2^{1-n}} \\)"}}
|
|
882
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the Cartesian plane, let \\( A = (1,0) \\) and \\( B = \\left( 2, 2\\sqrt{3} \\right) \\). An equilateral triangle \\( ABC \\) is constructed such that \\( C \\) lies in the first quadrant. Let \\( P = (x, y) \\) be the center of \\( \\triangle ABC \\). Then \\( x \\cdot y \\) can be written as \\( \\frac{p\\sqrt{q}}{r} \\), where \\( p \\) and \\( r \\) are relatively prime positive integers and \\( q \\) is an integer that is not divisible by the square of any prime. Find \\( p + q + r \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "40"}}
|
|
883
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( D \\) be a point on side \\( [BC] \\) of \\( \\triangle ABC \\) such that \\( |AB| = 3 \\), \\( |CD| = 1 \\), and \\( |AC| = |BD| = \\sqrt{5} \\). If the \\( B \\)-altitude of \\( \\triangle ABC \\) meets \\( AD \\) at \\( E \\), what is \\( |CE| \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{3}{2}\\)"}}
|
|
884
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDwarfs of height 1, 2, 3, ..., N are arranged around a circular table in some order. The positive difference of adjacent dwarfs is taken and these differences are summed to give T. Find the maximum value of T."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{N^2}{2} \\) if \\( N \\) is even, \\( \\frac{N^2 - 1}{2} \\) if \\( N \\) is odd."}}
|
|
885
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers $m$ such that there are infinitely many positive integers $n$ for which $\\{ 1^n, 2^n, \\dots, m^n \\}$ forms a complete residue system modulo $m$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( m \\) must be square-free."}}
|
|
886
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an acute triangle and \\(O\\) be its circumcenter. Let \\(D\\) be the midpoint of \\([AB]\\). The circumcircle of \\(\\triangle ADO\\) meets \\([AC]\\) at \\(A\\) and \\(E\\). If \\(|AE|=7\\), \\(|DE|=8\\), and \\(m(\\widehat{AOD}) = 45^\\circ\\), what is the area of \\(\\triangle ABC\\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(56\\sqrt{2}\\)"}}
|
|
887
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the inner region of triangle \\(ABC\\), a point \\(P\\) is located such that \\(BP = AC\\) and \\(\\angle PAB = \\angle PCB = \\angle ABC\\). Find \\(\\angle ABC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(45^\\circ\\)"}}
|
|
888
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind distinct positive integers \\( n_1 < n_2 < \\dots < n_7 \\) with the least possible sum such that their product \\( n_1 \\times n_2 \\times \\dots \\times n_7 \\) is divisible by 2016."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "31"}}
|
|
889
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve for \\( x \\) in the equation \\( x = \\sqrt{4 + \\sqrt{4 - \\sqrt{4 + \\sqrt{4 - x}}}} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{\\sqrt{13} + 1}{2} \\)"}}
|
|
890
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are 100 cards with numbers from 1 to 100 on the table. Andriy and Nick each take the same number of cards such that if Andriy has a card with a number \\( n \\), then Nick has a card with a number \\( 2n+2 \\). What is the maximal number of cards that could be taken by the two guys?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "66"}}
|
|
891
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p \\) be a prime number. Define a set as interesting if it contains \\( p+2 \\) (not necessarily distinct) positive integers such that the sum of any \\( p \\) numbers is a multiple of each of the other two. Find all interesting sets."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\{1, 1, \\ldots, 1\\}\\) and \\(\\{p, 1, 1, \\ldots, 1\\}\\)"}}
|
|
892
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many 1998-digit numbers \\( \\left(x_{1} x_{2} \\ldots x_{1998} \\right) \\) are there such that \\( \\left(x_{1} x_{2} \\ldots x_{1998} \\right) = 7 \\cdot 10^{1996} \\left(x_{1} + x_{2} + \\ldots + x_{1998} \\right) \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
893
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( N \\) objects and \\( B \\) boxes (\\( B \\geq 2 \\)), find an inequality involving \\( N \\) and \\( B \\) such that if the inequality is satisfied, at least two of the boxes have the same number of objects."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( N < \\frac{B(B-1)}{2} \\)"}}
|
|
894
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all triplets $(x,y,z)\\in\\mathbb{R}^3$ such that\n\\[\nx^2 - yz = |y - z| + 1,\n\\]\n\\[\ny^2 - zx = |z - x| + 1,\n\\]\n\\[\nz^2 - xy = |x - y| + 1.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{5}{3}, -\\frac{4}{3}, -\\frac{4}{3}\\right), \\left(-\\frac{4}{3}, \\frac{5}{3}, -\\frac{4}{3}\\right), \\left(-\\frac{4}{3}, -\\frac{4}{3}, \\frac{5}{3}\\right), \\left(-\\frac{5}{3}, \\frac{4}{3}, \\frac{4}{3}\\right), \\left(\\frac{4}{3}, -\\frac{5}{3}, \\frac{4}{3}\\right), \\left(\\frac{4}{3}, \\frac{4}{3}, -\\frac{5}{3}\\right)\\)"}}
|
|
895
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality: $[ x ] + [ -x ] < [ 2x ] + [ -2x ]$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x \\in \\left\\{ n + \\frac{1}{2} \\mid n \\in \\mathbb{Z} \\right\\} \\)"}}
|
|
896
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all functions \\( f : (0, 1) \\to (0, 1) \\) such that \\( f \\left( \\frac{1}{2} \\right) = \\frac{1}{2} \\) and \\( (f(ab))^2 = (af(b) + f(a))(f(b) + bf(a)) \\) for all \\( a, b \\in (0, 1) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = 1 - x \\)"}}
|
|
897
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the sum of the x-coordinates of the points of intersection of 180 lines (including the coordinate axes) that form 1 degree angles with one another at the origin, with the line \\( y = 100 - x \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8950"}}
|
|
898
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the simultaneous equations:\n\\[ x + [y] + \\{z\\} = 3.9 \\]\n\\[ y + [z] + \\{x\\} = 3.5 \\]\n\\[ z + [x] + \\{y\\} = 2 \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 1.7, y = 2.8, z = 0.2 \\)"}}
|
|
899
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the function \\( g(n) \\) defined as:\n\\[ g(n) = \\begin{cases} \n1 & \\text{if } n \\geq 1, \\\\\n0 & \\text{if } n \\leq 0,\n\\end{cases} \\]\nand the function \\( f(n, m) \\) defined for all integers \\( n \\geq 0 \\) and \\( m \\geq 0 \\) by:\n\\[ f(0, m) = 0, \\]\n\\[ f(n+1, m) = \\left(1 - g(m) + g(m) \\cdot g(m - 1 - f(n, m))\\right) \\cdot \\left(1 + f(n, m)\\right), \\]\nfind all possible functions \\( f(n, m) \\) that satisfy these conditions for all integers \\( n \\geq 0 \\) and \\( m \\geq 0 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(n, m) = \\begin{cases} \nn & \\text{if } m = 0, \\\\\nn \\mod m & \\text{if } m \\neq 0.\n\\end{cases} \\)"}}
|
|
900
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven triangle \\(ABC\\) with point \\(D\\) on \\(\\overleftrightarrow{AC}\\) such that \\(BD = CD\\), and point \\(E\\) on \\(\\overline{BC}\\) (between \\(B\\) and \\(C\\)). A line through \\(E\\) parallel to \\(\\overleftrightarrow{BD}\\) intersects \\(\\overleftrightarrow{AB}\\) at \\(F\\). Let \\(G\\) be the intersection of \\(\\overleftrightarrow{AE}\\) and \\(\\overleftrightarrow{BD}\\), and \\(H\\) be the intersection of \\(\\overleftrightarrow{AC}\\) and \\(\\overleftrightarrow{EF}\\). If \\(\\angle CEH = 50^\\circ\\) and \\(\\angle CFH = 17^\\circ\\), find \\(\\angle BCG\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "67^\\circ \\text{ or } 33^\\circ"}}
|
|
901
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the inequality $\\sqrt[n]{x^n+k}+\\sqrt[n]{x^n-k}<2x$ for $1<n$ and $0<k$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x > 0\\)"}}
|
|
902
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nUse Fermat's Little Theorem to find the smallest odd prime number which divides \\( 1155^{55} - 1 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "31"}}
|
|
903
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABC\\) be an equilateral triangle with side length 4. Squares \\(ABDE\\) and \\(ACFG\\) are constructed such that point \\(C\\) is inside square \\(ABDE\\) and point \\(B\\) is outside square \\(ACFG\\). Find the area of the quadrilateral \\(DEFG\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8"}}
|
|
904
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the system of equations \\[\\begin{array}{rcl} f(x) + g(x) &=& 0 \\\\ f(x)-(g(x))^3 &=& 0 \\end{array}\\] where \\( f(x) = x^2 + ax + b \\) and \\( g(x) = x^2 + cx + d \\), and the system has more than one real root, determine the maximum number of distinct real roots that the equation \\( f(x)g(x) = 0 \\) can have."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
905
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all triples of integers $(m, p, q)$ such that $2^m p^2 + 1 = q^7$, where $m > 0$ and $p$ and $q$ are primes."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "No solutions."}}
|
|
906
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor what values of $k$ does the inequality $\\left(\\cos A - \\frac{1}{5}\\right)\\left(\\cos B - \\frac{1}{5}\\right)\\left(\\cos C - \\frac{1}{5}\\right) \\leq k$ hold for all triangles $ABC$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4}{125}\\)"}}
|
|
907
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA function \\( f: \\mathbb{N} \\to \\mathbb{N} \\) satisfies the following conditions:\n1. \\( f(a+b) = f(f(a) + b) \\)\n2. \\( f(a+b) = f(a) + f(b) \\) if \\( 0 \\leq a+b < 10 \\)\n3. \\( f(10) = 1 \\)\n\nHow many three-digit numbers \\( n \\) are there such that \\( f(n) = f(2^{3^{4^5}}) \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "100"}}
|
|
908
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many natural numbers smaller than $2017$ can be uniquely written as a sum of three powers of $2$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "184"}}
|
|
909
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all polynomials $f$ with integer coefficients such that for any two distinct primes $p$ and $q$, $f(p)$ and $f(q)$ are relatively prime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = x^m \\) or \\( f(x) = -x^m \\) for any non-negative integer \\( m \\)"}}
|
|
910
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe sum of all positive integers $m$ for which $\\frac{13!}{m}$ is a perfect square can be written as $2^{a}3^{b}5^{c}7^{d}11^{e}13^{f}$, where $a, b, c, d, e,$ and $f$ are positive integers. Find $a+b+c+d+e+f$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "12"}}
|
|
911
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[\n\\left\\{\n\\begin{matrix}\n\\sqrt{x^2+7}+\\sqrt{-2-x}+\\sqrt{-1-10y}=8\\\\ \nx\\sqrt{y^2-4y+5}+\\sqrt{x^2+1}=y\\sqrt{x^2+1}-\\sqrt{y^2-4y+5}\n\\end{matrix}\n\\right.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((-3, -1)\\)"}}
|
|
912
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the value of \\( \\sum_{n=1}^{\\infty} \\frac{(-1)^{f(n)}}{n} \\), where \\( f(n) \\) denotes the sum of all the exponents in the prime factorization of \\( n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "0"}}
|
|
913
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\(a, b, c \\geq 0\\) and \\(a + b + c = 3\\), find the minimum value of \\(k\\) such that \\(a^k + b^k + c^k \\geq ab + bc + ca\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\frac{\\ln 9 - \\ln 8}{\\ln 3 - \\ln 2} \\)"}}
|
|
914
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThere are several candles of the same size in the Chapel of Bones. On the first day, one candle is lit for an hour. On the second day, two candles are lit for an hour. On the third day, three candles are lit for an hour, and so on, until the last day when all the candles are lit for an hour. By the end of that day, all the candles are completely consumed. Find all the possible numbers of candles."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "All odd numbers"}}
|
|
915
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs $(a,b)$ of real numbers such that $\\lfloor an + b \\rfloor$ is a perfect square for all positive integers $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((a, b) = (0, k^2 + u)\\) for \\(k \\in \\mathbb{Z}_{\\ge 0}\\) and \\(u \\in [0, 1)\\)"}}
|
|
916
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor \\( m, n \\in \\mathbb{N} \\), find the value of \\( 4^m - 3^n \\) which is the least positive integer greater than 1 that cannot be written in the form \\( 4^r + 3^s \\) for some non-negative integers \\( r \\) and \\( s \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "37"}}
|
|
917
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p \\) be an odd prime. Find the positive integer \\( n \\) such that \\( n + p^{2021} \\) is a power of \\( p \\) and \\( p^{2022} \\mid \\binom{2n}{n} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = p^a - p^{2021} \\text{ where } a \\geq 4043 \\)"}}
|
|
918
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[\n\\left\\{\\begin{aligned}\n\\dfrac12\\sin(1-y+x^2)\\cos2x&=\\cos(y-1-x^2)\\sin x\\cos x\\\\\n\\log_{2^x}\\dfrac{2^{y+2x}}{2^{1+x^2}}&=2-x\n\\end{aligned}\n\\right.\n\\]\nsubject to the condition $y-1-x^2+2x \\geq 0$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(2, 1)"}}
|
|
919
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nUnder what conditions does the equality \\( a - b = \\sqrt{4n - 3} \\) hold for \\( n^2 + 1 = ab \\) with \\( a, b, n \\) being positive integers and \\( a > b \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n = r^2 + r + 1 \\) for some nonnegative integer \\( r \\)"}}
|
|
920
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P$ with real coefficients such that $P(x)P(2x^2-1)=P(x^2)P(2x-1)$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = a(x-1)^n \\) where \\( a \\neq 0 \\) and \\( n \\) is a non-negative integer."}}
|
|
921
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA positive integer \\( n \\geq 2 \\) is called peculiar if the number \n\\[\n\\binom{n}{i} + \\binom{n}{j} - i - j\n\\]\nis even for all integers \\( i \\) and \\( j \\) such that \\( 0 \\leq i \\leq j \\leq n \\). Determine all peculiar numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^k - 2\\) for integer \\(k\\)."}}
|
|
922
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn an acute triangle \\(ABC\\), point \\(H\\) is the intersection of altitude \\(CE\\) to \\(AB\\) and altitude \\(BD\\) to \\(AC\\). A circle with \\(DE\\) as its diameter intersects \\(AB\\) and \\(AC\\) at \\(F\\) and \\(G\\), respectively. \\(FG\\) and \\(AH\\) intersect at point \\(K\\). Given \\(BC=25\\), \\(BD=20\\), and \\(BE=7\\), find the length of \\(AK\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{216}{25}\\)"}}
|
|
923
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the global minima of the function $2(x-2)^2 + 3(y-1)^2$ subject to the condition $0 \\le x \\le y \\le 3$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{6}{5}\\)"}}
|
|
924
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the coefficient of \\( x^2 \\) in the expression obtained by multiplying out and collecting coefficients of equal powers in the expression\n\n\\[\n\\underbrace{(\\dots(((x - 2)^2 - 2)^2 - 2)^2 - \\dots - 2)^2}_{n\\,\\,\\,\\text{times}}.\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{3}4^{n-1}(4^n - 1)\\)"}}
|
|
925
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\( \\triangle ABC \\), \\( \\angle A = 23^\\circ \\) and \\( \\angle B = 46^\\circ \\). Let \\( \\Gamma \\) be a circle centered at \\( C \\) with radius \\( AC \\). The external angle bisector of \\( \\angle B \\) intersects \\( \\Gamma \\) at points \\( M \\) and \\( N \\). Find \\( \\angle MAN \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 60^\\circ \\)"}}
|
|
926
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a cubic equation \\(x^3 + ax^2 + bx + c\\) with rational coefficients \\(a, b, c\\), and one of its roots is \\(1 - \\sqrt[3]{2} + \\sqrt[3]{4}\\). Find the cubic equation."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x^3 - 3x^2 + 9x - 9 = 0\\)"}}
|
|
927
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many 2 x 2 matrices are there with entries from the set {0, 1, ..., k} in which there are no zero rows and no zero columns?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( k^4 + 4k^3 + 2k^2 \\)"}}
|
|
928
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThree numbers are in arithmetic progression and their sum is $k$ (where $k \\in \\mathbb{R}$). If the first number remains the same and $\\frac{k}{6}$ is added to the third number, the resulting sequence forms a geometric progression. Find the three numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\left(\\frac{k}{6}, \\frac{k}{3}, \\frac{k}{2}\\right)\\) or \\(\\left(\\frac{2k}{3}, \\frac{k}{3}, 0\\right)\\)"}}
|
|
929
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a, b, c \\geq 0\\) and \\(a + b + c = 6\\), find the maximum value of \n\\[ P = \\frac{(a^2 + 3bc)(4b + c)}{4}. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{4}{3}(35 + 13\\sqrt{13})\\)"}}
|
|
930
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a unit square. Draw a quadrant of a circle with \\(A\\) as the center and \\(B, D\\) as the endpoints of the arc. Similarly, draw a quadrant of a circle with \\(B\\) as the center and \\(A, C\\) as the endpoints of the arc. Inscribe a circle \\(\\Gamma\\) that touches both arcs \\(AC\\) and \\(BD\\) externally and also touches the side \\(CD\\). Find the radius of \\(\\Gamma\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{16}\\)"}}
|
|
931
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( x, y > 0 \\). Find the minimum value of \\( A = \\frac{(x+y)^2}{x^2 + y^2} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
932
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\( \\triangle ABC \\), given that \\( \\frac{|AM|}{|MB|} = \\frac{2}{3} \\) and \\( \\frac{|BN|}{|NC|} = \\frac{1}{4} \\), find \\( \\frac{|OC|}{|MO|} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10"}}
|
|
933
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many distinct $(a_{1},a_{2},...,a_{n})$ satisfy the equation:\n\n\\[a_{1}^{n+1}+a_{2}^{n+1}+...+a_{n}^{n+1}-a_{1}a_{2}...a_{n}=na_{n}a_{n-1}...a_{1}-1\\]\n\nwhere $n$ is the product of primes greater than 2."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2^{n-1}\\)"}}
|
|
934
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the least possible value of \\(a + b\\) if \\(a\\) and \\(b\\) are positive integers such that \\(13\\) divides \\(a + 11b\\) and \\(11\\) divides \\(a + 13b\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "28"}}
|
|
935
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\ge 3 \\) be an integer. A regular \\( n \\)-gon \\( P \\) is given. We randomly select three distinct vertices of \\( P \\). The probability that these three vertices form an isosceles triangle is \\( \\frac{1}{m} \\), where \\( m \\) is an integer. How many such integers \\( n \\le 2024 \\) are there?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "675"}}
|
|
936
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\( x \\) is a positive real number such that \\( x + \\frac{1}{x} = 5 \\) and \\( x^2 + \\frac{1}{x^3} = 8 \\), find the value of \\( x^3 + \\frac{1}{x^2} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "125"}}
|
|
937
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the last two digits of the sum $2017^{2018^{2019}} + 2018^{2019^{2020}} + 2019^{2020^{2021}}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "30"}}
|
|
938
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven real numbers \\(a, b, c, d, e\\) such that \\(a^{2010} + b^{2010} + c^{2010} + d^{2010} + e^{2010} = 2010\\), find the maximum value of \\(a^{400} b^{401} c^{402} d^{403} e^{404}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt[2010]{400^{400}401^{401}402^{402}403^{403}404^{404}}\\)"}}
|
|
939
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. Compute \\( r_n \\), the maximal radius of \\( n \\) congruent circles that can be packed into a unit circle. If this is too hard, find asymptotics for \\( r_n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( r_n \\sim \\frac{\\sqrt{\\pi}}{\\sqrt{12n}} \\)"}}
|
|
940
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\n\\( 11 \\) different books are on a \\( 3 \\)-shelf bookcase. In how many different ways can the books be arranged such that at most one shelf is empty?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "75 * 11!"}}
|
|
941
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\(a, b, c \\in \\mathbb{N^*}\\) such that \\((a^2 + b^2)^c = (ab)^{1999}\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a = 2^{999}, b = 2^{999}, c = 1998\\)"}}
|
|
942
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a circle with center $O$ and radius $5$, a chord $AB$ has a length of $6$. A square $PQRS$ is inscribed in the sector $OAB$ such that $P$ is on the radius $OA$, $S$ is on the radius $OB$, and $Q$ and $R$ are on the arc between $A$ and $B$. Find the area of the square $PQRS$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{900}{109}\\)"}}
|
|
943
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn how many ways can the set of integers $\\{1,2,\\ldots,1995\\}$ be partitioned into three non-empty sets so that none of these sets contains any pair of consecutive integers?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2^{1993} - 1 \\)"}}
|
|
944
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation \\( x = 2 + (2 + 3x^3)^3 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "-1"}}
|
|
945
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( k \\in \\mathbb{N} \\), find all \\( a \\in \\mathbb{N} \\) such that \\( x^a + y^a \\mid x^k + y^k \\) for all \\( x, y \\in \\mathbb{N} \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( a = \\frac{k}{s} \\) where \\( s \\) is an odd divisor of \\( k \\)"}}
|
|
946
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFor any integer \\( n \\ge 2 \\), denote by \\( A_n \\) the set of solutions of the equation\n\\[ x = \\left\\lfloor \\frac{x}{2} \\right\\rfloor + \\left\\lfloor \\frac{x}{3} \\right\\rfloor + \\cdots + \\left\\lfloor \\frac{x}{n} \\right\\rfloor. \\]\nDetermine the set \\( A_2 \\cup A_3 \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\{-7, -5, -4, -3, -2, -1, 0\\}\\)"}}
|
|
947
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the total gold-plated area in a unit square where the diagonal is covered by small golden squares with sides parallel to the unit square, and each neighbor's side length is either half or double of the previous square, with midpoints on the diagonal at distances $\\dfrac{1}{2}, \\dfrac{1}{4}, \\dfrac{1}{8}, \\ldots$ of the diagonal?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{5}{27}\\)"}}
|
|
948
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nThe polynomial \\( p(x) = a_0 + a_1 x + a_2 x^2 + \\cdots + a_8 x^8 + 2009 x^9 \\) has the property that \\( p\\left(\\frac{1}{k}\\right) = \\frac{1}{k} \\) for \\( k = 1, 2, 3, 4, 5, 6, 7, 8, 9 \\). There are relatively prime positive integers \\( m \\) and \\( n \\) such that \\( p\\left(\\frac{1}{10}\\right) = \\frac{m}{n} \\). Find \\( n - 10m \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "20090"}}
|
|
949
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIf \\( z_1 \\) satisfies the inequality \\( |z - 1 - 2i| \\leq 1 \\), find the minimum value of \\( \\arg(z_1) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\tan^{-1} \\frac{3}{4}\\)"}}
|
|
950
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n \\) be a positive integer. For any \\( k \\), denote by \\( a_k \\) the number of permutations of \\( \\{1,2,\\dots,n\\} \\) with exactly \\( k \\) disjoint cycles. Evaluate the expression\n\\[ a_n n^n + a_{n-1} n^{n-1} + \\dots + a_1 n. \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(2n - 1)!}{(n - 1)!}\\)"}}
|
|
951
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the minimum value of $\\lambda$ such that the inequality\n\\[\n\\frac{{3abc}}{{{a^3} + {b^3} + {c^3}}} + \\lambda \\ge \\left( {1 + \\lambda } \\right)\\frac{{ab + bc + ca}}{{{a^2} + {b^2} + {c^2}}}\n\\]\nholds for all non-negative real numbers $a, b, c$ with $a + b + c > 0$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2"}}
|
|
952
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( a \\) and \\( b \\) be positive integers such that \\( \\gcd(a, b) = 1 \\). Find all pairs \\( (m, n) \\) of positive integers such that \\( a^m + b^m \\) divides \\( a^n + b^n \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\) is an odd multiple of \\( m \\)."}}
|
|
953
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials \\( P(x) \\) such that \\( P(x) = P(1-x) \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = R\\left(\\left(x-\\frac{1}{2}\\right)^2\\right) \\) or \\( P(x) = Q(x) + Q(1-x) \\) for some polynomials \\( R \\) and \\( Q \\)."}}
|
|
954
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the average of the quantity\n\n\\[\n(a_{1} - a_{2})^{2} + (a_{2} - a_{3})^{2} + \\cdots + (a_{n-1} - a_{n})^{2}\n\\]\n\ntaken over all permutations \\((a_{1}, a_{2}, \\ldots, a_{n})\\) of \\((1, 2, \\ldots, n)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(n-1)n(n+1)}{6}\\)"}}
|
|
955
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn triangle \\(ABC\\) with \\(AB > AC\\), the angle bisectors of \\(\\angle B\\) and \\(\\angle C\\) intersect sides \\(AC\\) and \\(AB\\) at points \\(P\\) and \\(Q\\), respectively. Let \\(I\\) be the incenter of \\(\\Delta ABC\\). Given that \\(IP = IQ\\), find the value of \\(\\angle A\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(60^\\circ\\)"}}
|
|
956
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nWhat is the maximum number of subsets of size $5$, taken from the set $A=\\{1,2,3,...,20\\}$, such that any $2$ of them share exactly $1$ element?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "16"}}
|
|
957
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSuppose \\(a_i, b_i, c_i, i=1,2,\\cdots,n\\), are \\(3n\\) real numbers in the interval \\([0,1]\\). Define the sets \\(S = \\{(i,j,k) \\mid a_i + b_j + c_k < 1\\}\\) and \\(T = \\{(i,j,k) \\mid a_i + b_j + c_k > 2\\}\\). Given that \\(|S| \\geq 2018\\) and \\(|T| \\geq 2018\\), find the minimal possible value of \\(n\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "20"}}
|
|
958
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all functions \\( f: \\mathbb{Z}_{>0} \\to \\mathbb{Z}_{>0} \\) satisfying\n\\[ f(ax + by) = af(x) + bf(y) + a + b - 1 \\]\nfor all positive integers \\( x, y \\), where \\( a \\) and \\( b \\) are coprime integers greater than 1."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = cx - 1 \\) for some constant \\( c \\)."}}
|
|
959
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a\\) and \\(b\\) be two real numbers such that \\(a^2 + b^2 = 1\\). Find the minimum value of \\( \\left| a + \\frac{a}{b} + b + \\frac{b}{a} \\right| \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(2 - \\sqrt{2}\\)"}}
|
|
960
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA regular pyramid is placed on a cube \\(ABCDA_1B_1C_1D_1\\) such that its base coincides with the square \\(A_1B_1C_1D_1\\), and its vertex \\(M\\) is outside the cube. If the length of all edges of the pyramid is \\(2 - \\sqrt{2}\\), find the distance from point \\(A\\) to the line \\(MC_1\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1"}}
|
|
961
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet the vertices $A$ and $C$ of a right triangle $ABC$ be on the arc with center $B$ and radius $20$. A semicircle with diameter $[AB]$ is drawn to the inner region of the arc. The tangent from $C$ to the semicircle touches the semicircle at $D$ other than $B$. Let $CD$ intersect the arc at $F$. What is the length of $|FD|$?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "4"}}
|
|
962
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the least prime \\( p \\) such that \\( p-1 \\) is equal to the difference of the squares of two positive multiples of 4."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "113"}}
|
|
963
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nHow many positive integers \\( n \\) are there such that\n\\[ \\sqrt[41]{\\sqrt{n} + \\sqrt{n + 2009^{2009}}} \\in \\mathbb{N}?\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "2475"}}
|
|
964
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nA bird sits on each of the 8 vertices of a cube. Whenever a gunshot is fired, each bird flies to the diagonally opposite vertex within the same face. How many ways are there for the birds to fly such that each vertex still has one bird on it after the gunshot?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "81"}}
|
|
965
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\(a, b > 0\\), find the minimum value of the function \n\\[ f(x) = \\sqrt{(x+a)^2 + b^2} + \\sqrt{(x+b)^2 + a^2} \\]\nin terms of \\(a\\) and \\(b\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt{2(a^2 + b^2)}\\)"}}
|
|
966
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nYou are given $2024$ yellow and $2024$ blue points on the plane, with no three points collinear. A pair of nonnegative integers $(a, b)$ is called [i]good[/i] if there exists a half-plane containing exactly $a$ yellow and $b$ blue points, with points on the boundary line considered outside the half-plane. Find the smallest possible number of good pairs."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "6073"}}
|
|
967
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( S = \\{1, 2, \\ldots, 100\\} \\). Consider a partition of \\( S \\) into \\( S_1, S_2, \\ldots, S_n \\) for some \\( n \\), where \\( S_i \\) are nonempty, pairwise disjoint, and \\( S = \\bigcup_{i=1}^n S_i \\). Let \\( a_i \\) be the average of the elements of the set \\( S_i \\). Define the score of this partition by \n\\[\n\\frac{a_1 + a_2 + \\ldots + a_n}{n}.\n\\]\nDetermine the minimum possible score among all \\( n \\) and partitions of \\( S \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "10"}}
|
|
968
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( M \\) be a finite set of real numbers such that whenever we choose 3 elements of \\( M \\), we can find 2 of them whose sum is also in \\( M \\). What is the maximum number of elements that \\( M \\) can have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "7"}}
|
|
969
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(ABCD\\) be a parallelogram with \\(\\angle ABC = 105^\\circ\\). Inside the parallelogram, there is a point \\(E\\) such that \\(\\triangle BEC\\) is equilateral and \\(\\angle CED = 135^\\circ\\). Let \\(K\\) be the midpoint of side \\(AB\\). Calculate the measure of the angle \\(\\angle BKC\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(45^\\circ\\)"}}
|
|
970
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a row of 2008 white stones and 1 black stone, a move consists of selecting one black stone and changing the color of its neighboring stone(s). Determine all possible initial positions of the black stone such that it is possible to make all stones black after a finite number of moves."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1005"}}
|
|
971
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( n > 3 \\) be an integer. Denote the set \\( T = \\{1, 2, \\ldots, n\\} \\). A subset \\( S \\) of \\( T \\) is called a \"wanting set\" if there exists a positive integer \\( c \\leq \\frac{n}{2} \\) such that \\( |s_1 - s_2| \\neq c \\) for every pair of elements \\( s_1, s_2 \\in S \\). What is the maximum number of elements a \"wanting set\" can have?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( \\left\\lfloor \\frac{2n}{3} \\right\\rfloor \\)"}}
|
|
972
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b \\in \\mathbb{R}\\) and \\(\\begin{cases} a^3 - 3ab^2 = 19 \\\\ b^3 - 3ba^2 = 98 \\end{cases}\\). Find \\(A = a^2 + b^2\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\sqrt[3]{9965}\\)"}}
|
|
973
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all positive integers $(n, m)$ such that $n^m - m^n = 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(3, 2)"}}
|
|
974
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, d, e\\) be nonnegative reals. Find the least possible value of \n\\[\n(a+b+c+d+e)^2 \\left( \\frac{1}{a^2+b^2+c^2} + \\frac{1}{b^2+c^2+d^2} + \\frac{1}{c^2+d^2+e^2} + \\frac{1}{d^2+e^2+a^2} + \\frac{1}{e^2+a^2+b^2} \\right).\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "18\n\n(Note: The answer is based on the claim made in the forum, but a rigorous proof is not provided in the given discussions.)"}}
|
|
975
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine the number of integers \\( n \\) with \\( 1 \\le n \\le N = 1990^{1990} \\) such that \\( n^2 - 1 \\) and \\( N \\) are coprime."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 591 \\times 1990^{1989} \\)"}}
|
|
976
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind the greatest real number \\( r \\) such that\n\\[ ab \\ge r (1 - a - b) \\]\nfor all positive real numbers \\( a \\) and \\( b \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( r = 0 \\)"}}
|
|
977
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( D \\) be a point on side \\( [BC] \\) of triangle \\( ABC \\) such that \\( [AD] \\) is an angle bisector, \\( |BD| = 4 \\), and \\( |DC| = 3 \\). Let \\( E \\) be a point on side \\( [AB] \\) and different than \\( A \\) such that \\( m(\\widehat{BED}) = m(\\widehat{DEC}) \\). If the perpendicular bisector of segment \\( [AE] \\) meets the line \\( BC \\) at \\( M \\), what is \\( |CM| \\)?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "9"}}
|
|
978
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c\\) be nonnegative real numbers satisfying \\(a + b + c = 3\\). Find the minimum value of \\(P = (a - 2b)(b - 2c)(c - 2a)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{40 - 28\\sqrt{7}}{9}\\)"}}
|
|
979
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn a right triangle \\(ABC\\) with the right angle at \\(C\\) and hypotenuse of length 1, find the maximum possible area of the triangle formed by the intersection of the medians from \\(A\\) and \\(B\\) and the angle bisector from \\(C\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{150}\\)"}}
|
|
980
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nCalculate the sum $\\sum_{k=1}^{m} (-1)^k \\dfrac{(n+k+1)!}{n!(n+k)}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((-1)^m \\dfrac{(n+m)!}{n!} - 1\\)"}}
|
|
981
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a class of 2n students with distinct heights, in how many ways can Principal Nancy arrange these students into two rows of n students each, such that each student in the front row is shorter than the corresponding student directly behind them in the back row?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{(2n)!}{2^n}\\)"}}
|
|
982
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven that \\( f(1) = 1 \\), find the function \\( f \\) that satisfies the following conditions:\n\\[\n\\begin{cases}\nf(2x + 1) = f(x) + 1 \\\\\nf(x) + f(y) \\geq f(x + y) \\\\\n\\text{There exist infinitely many } k \\in \\mathbb{N} \\text{ such that } f(k) = 1.\n\\end{cases}\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = S_2(x) \\) (the sum of the digits of \\( x \\) in binary)"}}
|
|
983
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all possible values of $\\left\\lfloor \\frac{x-n}{n} \\right\\rfloor + \\left\\lfloor \\frac{-x-1}{n} \\right\\rfloor$ where $x \\in \\mathbb{R}$ and $n \\in \\mathbb{Z} - \\{0\\}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\{-3, -2, -1, 0\\}"}}
|
|
984
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind \\((x, y)\\) that satisfy:\n\\[\n\\sqrt{35 - 2\\sqrt{45 - 2x}} = x - 5\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x = 10\\)"}}
|
|
985
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a trapezoid with height 4 and two perpendicular diagonals, where one diagonal has a length of 5, find the value of \\(15S\\), where \\(S\\) is the area of the trapezoid."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "250"}}
|
|
986
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the functional equation \\( f(x-y) = f(x)f(y) + g(x)g(y) \\) where \\( f, g : \\mathbb{R} \\to \\mathbb{R} \\) are continuous functions, find all possible functions \\( f \\) and \\( g \\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( f(x) = a, g(x) = b \\) where \\( b^2 = a - a^2 \\) and \\( 0 \\le a \\le 1 \\) or \\( f(x) = \\cos(ax), g(x) = \\sin(ax) \\)"}}
|
|
987
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven \\( c \\geq b \\geq a \\geq 0 \\) and \\( m \\) is a positive real number, find the greatest value of the function:\n\\[ f(a, b, c) = (b-a)(m-a^2) + (c-b)(m-c^2) + (c-a)(m-b^2). \\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( 2\\sqrt{\\frac{32m^3}{81}} \\)"}}
|
|
988
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all polynomials $P(x)$ with nonnegative integer coefficients satisfying:\n i) $P(x)$ has minimum degree\n ii) $4^n + P(n) \\equiv 0 \\pmod{27}$ for all positive integers $n$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = 9x^2 + 15x + 26 \\)"}}
|
|
989
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the system of equations:\n\\[\n-11.7\\cos(x) + 11.4\\cos(y) = 0\n\\]\n\\[\n11.7\\sin(x) + 11.4\\sin(y) = 4.9\n\\]"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(x \\approx \\cos^{-1}(0.91) - 7.6^\\circ\\), \\(y \\approx 7.6^\\circ\\)"}}
|
|
990
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nFind all pairs of positive integers $(x, y)$ such that $x^2$ is divisible by $2xy^2 - y^3 + 1$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\((x, y) = (2t, 1), (t, 2t), (8t^4 - t, 2t)\\)"}}
|
|
991
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven the fraction $\\frac{503}{2022}$, find the resulting fraction after Alina's transformation. Alina's transformation involves finding the minimum preperiod of the fraction, then taking the number that makes up the period and rearranging the last digit to the beginning of the number."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{2779}{10110}\\)"}}
|
|
992
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nGiven a trapezoid \\(ABCD\\) with \\(BC \\parallel AD\\) and \\(2AB = CD\\), and \\(\\angle BAD + \\angle CDA = 120^\\circ\\). Find the angles of trapezoid \\(ABCD\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(A = 90^\\circ, B = 90^\\circ, C = 150^\\circ, D = 30^\\circ\\)"}}
|
|
993
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nAce, Bea, and Cee are each given a positive integer. They are told that the sum of the three numbers is 15. Ace announces that he can deduce that the other two have different numbers, while Bea independently announces that she can deduce that no two of the three numbers are the same. Hearing both announcements, Cee announces that he knows all three numbers. Find Ace's, Bea's, and Cee's numbers."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "(2, 8, 5)"}}
|
|
994
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet $c$ be a nonnegative integer. Find all infinite sequences of positive integers $\\{a_{n}\\}_{n\\geq 1}$ such that for all positive integers $n$, there are exactly $a_n$ positive integers $i$ for which $a_i \\leq a_{n+1} + c$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(a_n = n + c + 1\\)"}}
|
|
995
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nSolve the equation $x + \\sqrt{x^2 - 9} = \\frac{2(x + 3)}{(x - 3)^2}$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( x = 8 - \\sqrt{13} \\)"}}
|
|
996
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\( p \\) be an odd prime. For all natural numbers \\( n \\), define \\( f_n(x) = (x+1)^n - x^n \\). \\( f_n(x) \\) is called [i]nice[/i] if the set \\( \\{ f_n(x) \\mod p \\mid x \\in \\mathbb{N} \\} \\) equals \\( \\{0, 1, \\dots, p-1\\} \\). For each \\( p \\), find all values of \\( n \\) for which \\( f_n(x) \\) is [i]nice[/i]."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( n \\equiv 2 \\pmod{p-1} \\)"}}
|
|
997
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nDetermine all polynomials $p$ with real coefficients for which $p(0)=0$ and\n$$f(f(n))+n=4f(n)\\qquad\\text{for all }n\\in\\mathbb N,$$\nwhere $f(n)=\\lfloor p(n)\\rfloor$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\( P(x) = (2+\\sqrt{3})x \\)"}}
|
|
998
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nOn a semicircle with diameter $|AB|=d$, points $C$ and $D$ are given such that $|BC|=|CD|=a$ and $|DA|=b$, where $a$, $b$, and $d$ are different positive integers. Find the minimum possible value of $d$."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "8"}}
|
|
999
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nLet \\(a, b, c, x, y, z\\) be non-negative numbers such that \\(a + b + c = x + y + z = 1\\). Find the maximum value of \\((a - x^2)(b - y^2)(c - z^2)\\)."}], "rewards": ["accuracy"], "metadata": {"expected_answer": "\\(\\frac{1}{16}\\)"}}
|
|
1000
|
-
{"messages": [{"role": "user", "content": "Solve the following math problem step by step. Show your reasoning, then provide your final answer inside \\boxed{}.\n\nIn the plane, 2022 points are chosen such that no three points lie on the same line. Each point is colored red or blue such that each triangle formed by three distinct red points contains at least one blue point. What is the largest possible number of red points?"}], "rewards": ["accuracy"], "metadata": {"expected_answer": "1012"}}
|