risk-network 0.0.9b9__py3-none-any.whl → 0.0.9b13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
risk/__init__.py CHANGED
@@ -7,4 +7,4 @@ RISK: RISK Infers Spatial Kinships
7
7
 
8
8
  from risk.risk import RISK
9
9
 
10
- __version__ = "0.0.9-beta.9"
10
+ __version__ = "0.0.9-beta.13"
@@ -4,186 +4,364 @@ risk/neighborhoods/community
4
4
  """
5
5
 
6
6
  import community as community_louvain
7
+ import igraph as ig
8
+ import markov_clustering as mc
7
9
  import networkx as nx
8
10
  import numpy as np
9
- import markov_clustering as mc
10
- from networkx.algorithms.community import asyn_lpa_communities, greedy_modularity_communities
11
+ from leidenalg import find_partition, RBConfigurationVertexPartition
12
+ from networkx.algorithms.community import greedy_modularity_communities
11
13
 
12
14
 
13
- def calculate_greedy_modularity_neighborhoods(network: nx.Graph) -> np.ndarray:
15
+ def calculate_greedy_modularity_neighborhoods(
16
+ network: nx.Graph, edge_rank_percentile: float = 1.0
17
+ ) -> np.ndarray:
14
18
  """Calculate neighborhoods using the Greedy Modularity method.
15
19
 
16
20
  Args:
17
- network (nx.Graph): The network graph to analyze for community structure.
21
+ network (nx.Graph): The network graph.
22
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
23
+ subgraphs before clustering.
18
24
 
19
25
  Returns:
20
26
  np.ndarray: A binary neighborhood matrix where nodes in the same community have 1, and others have 0.
21
27
  """
28
+ # Create a subgraph with the shortest edges based on the rank percentile
29
+ subnetwork = _create_percentile_limited_subgraph(
30
+ network, edge_rank_percentile=edge_rank_percentile
31
+ )
22
32
  # Detect communities using the Greedy Modularity method
23
- communities = greedy_modularity_communities(network)
33
+ communities = greedy_modularity_communities(subnetwork)
34
+ # Get the list of nodes in the original NetworkX graph
35
+ nodes = list(network.nodes())
36
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
24
37
  # Create a binary neighborhood matrix
25
- n_nodes = network.number_of_nodes()
26
- neighborhoods = np.zeros((n_nodes, n_nodes), dtype=int)
27
- # Create a mapping from node to index in the matrix
28
- node_index = {node: i for i, node in enumerate(network.nodes())}
38
+ num_nodes = len(nodes)
39
+ # Initialize neighborhoods with zeros and set self-self entries to 1
40
+ neighborhoods = np.eye(num_nodes, dtype=int)
29
41
  # Fill in the neighborhood matrix for nodes in the same community
30
42
  for community in communities:
31
43
  # Iterate through all pairs of nodes in the same community
32
44
  for node_i in community:
33
- idx_i = node_index[node_i]
34
45
  for node_j in community:
35
- idx_j = node_index[node_j]
46
+ idx_i = node_index_map[node_i]
47
+ idx_j = node_index_map[node_j]
36
48
  # Set them as neighbors (1) in the binary matrix
37
49
  neighborhoods[idx_i, idx_j] = 1
38
50
 
39
51
  return neighborhoods
40
52
 
41
53
 
42
- def calculate_label_propagation_neighborhoods(network: nx.Graph) -> np.ndarray:
54
+ def calculate_label_propagation_neighborhoods(
55
+ network: nx.Graph, edge_rank_percentile: float = 1.0
56
+ ) -> np.ndarray:
43
57
  """Apply Label Propagation to the network to detect communities.
44
58
 
45
59
  Args:
46
60
  network (nx.Graph): The network graph.
61
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
62
+ subgraphs before clustering.
47
63
 
48
64
  Returns:
49
- np.ndarray: Binary neighborhood matrix on Label Propagation.
65
+ np.ndarray: A binary neighborhood matrix on Label Propagation.
50
66
  """
67
+ # Create a subgraph with the shortest edges based on the rank percentile
68
+ subnetwork = _create_percentile_limited_subgraph(
69
+ network, edge_rank_percentile=edge_rank_percentile
70
+ )
51
71
  # Apply Label Propagation for community detection
52
- communities = nx.algorithms.community.label_propagation.label_propagation_communities(network)
72
+ communities = nx.algorithms.community.label_propagation.label_propagation_communities(
73
+ subnetwork
74
+ )
75
+ # Get the list of nodes in the network
76
+ nodes = list(network.nodes())
77
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
53
78
  # Create a binary neighborhood matrix
54
- num_nodes = network.number_of_nodes()
55
- neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
56
- # Create a mapping from node to index in the matrix
57
- node_index = {node: i for i, node in enumerate(network.nodes())}
58
- # Assign neighborhoods based on community labels
79
+ num_nodes = len(nodes)
80
+ # Initialize neighborhoods with zeros and set self-self entries to 1
81
+ neighborhoods = np.eye(num_nodes, dtype=int)
82
+ # Assign neighborhoods based on community labels using the mapped indices
59
83
  for community in communities:
60
84
  for node_i in community:
61
- idx_i = node_index[node_i]
62
85
  for node_j in community:
63
- idx_j = node_index[node_j]
86
+ idx_i = node_index_map[node_i]
87
+ idx_j = node_index_map[node_j]
88
+ neighborhoods[idx_i, idx_j] = 1
89
+
90
+ return neighborhoods
91
+
92
+
93
+ def calculate_leiden_neighborhoods(
94
+ network: nx.Graph,
95
+ resolution: float = 1.0,
96
+ edge_rank_percentile: float = 1.0,
97
+ random_seed: int = 888,
98
+ ) -> np.ndarray:
99
+ """Calculate neighborhoods using the Leiden method.
100
+
101
+ Args:
102
+ network (nx.Graph): The network graph.
103
+ resolution (float, optional): Resolution parameter for the Leiden method. Defaults to 1.0.
104
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
105
+ subgraphs before clustering.
106
+ random_seed (int, optional): Random seed for reproducibility. Defaults to 888.
107
+
108
+ Returns:
109
+ np.ndarray: A binary neighborhood matrix where nodes in the same community have 1, and others have 0.
110
+ """
111
+ # Create a subgraph with the shortest edges based on the rank percentile
112
+ subnetwork = _create_percentile_limited_subgraph(
113
+ network, edge_rank_percentile=edge_rank_percentile
114
+ )
115
+ # Convert NetworkX graph to iGraph
116
+ igraph_network = ig.Graph.from_networkx(subnetwork)
117
+ # Apply Leiden algorithm using RBConfigurationVertexPartition, which supports resolution
118
+ partition = find_partition(
119
+ igraph_network,
120
+ partition_type=RBConfigurationVertexPartition,
121
+ resolution_parameter=resolution,
122
+ seed=random_seed,
123
+ )
124
+ # Get the list of nodes in the original NetworkX graph
125
+ nodes = list(network.nodes())
126
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
127
+ # Create a binary neighborhood matrix
128
+ num_nodes = len(nodes)
129
+ # Initialize neighborhoods with zeros and set self-self entries to 1
130
+ neighborhoods = np.eye(num_nodes, dtype=int)
131
+ # Assign neighborhoods based on community partitions using the mapped indices
132
+ for community in partition:
133
+ for node_i in community:
134
+ for node_j in community:
135
+ idx_i = node_index_map[igraph_network.vs[node_i]["_nx_name"]]
136
+ idx_j = node_index_map[igraph_network.vs[node_j]["_nx_name"]]
64
137
  neighborhoods[idx_i, idx_j] = 1
65
138
 
66
139
  return neighborhoods
67
140
 
68
141
 
69
142
  def calculate_louvain_neighborhoods(
70
- network: nx.Graph, resolution: float, random_seed: int = 888
143
+ network: nx.Graph,
144
+ resolution: float = 0.1,
145
+ edge_rank_percentile: float = 1.0,
146
+ random_seed: int = 888,
71
147
  ) -> np.ndarray:
72
148
  """Calculate neighborhoods using the Louvain method.
73
149
 
74
150
  Args:
75
151
  network (nx.Graph): The network graph.
76
- resolution (float): Resolution parameter for the Louvain method.
152
+ resolution (float, optional): Resolution parameter for the Louvain method. Defaults to 0.1.
153
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
154
+ subgraphs before clustering.
77
155
  random_seed (int, optional): Random seed for reproducibility. Defaults to 888.
78
156
 
79
157
  Returns:
80
- np.ndarray: Binary neighborhood matrix on the Louvain method.
158
+ np.ndarray: A binary neighborhood matrix on the Louvain method.
81
159
  """
160
+ # Create a subgraph with the shortest edges based on the rank percentile
161
+ subnetwork = _create_percentile_limited_subgraph(
162
+ network, edge_rank_percentile=edge_rank_percentile
163
+ )
82
164
  # Apply Louvain method to partition the network
83
165
  partition = community_louvain.best_partition(
84
- network, resolution=resolution, random_state=random_seed
166
+ subnetwork, resolution=resolution, random_state=random_seed
85
167
  )
168
+ # Get the list of nodes in the network and create a mapping to indices
169
+ nodes = list(network.nodes())
170
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
86
171
  # Create a binary neighborhood matrix
87
- num_nodes = network.number_of_nodes()
88
- neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
89
- # Create a mapping from node to index in the matrix
90
- node_index = {node: i for i, node in enumerate(network.nodes())}
172
+ num_nodes = len(nodes)
173
+ # Initialize neighborhoods with zeros and set self-self entries to 1
174
+ neighborhoods = np.eye(num_nodes, dtype=int)
91
175
  # Group nodes by community
92
176
  community_groups = {}
93
177
  for node, community in partition.items():
94
178
  community_groups.setdefault(community, []).append(node)
95
179
 
96
- # Assign neighborhoods based on community partitions
180
+ # Assign neighborhoods based on community partitions using the mapped indices
97
181
  for community, nodes in community_groups.items():
98
182
  for node_i in nodes:
99
- idx_i = node_index[node_i]
100
183
  for node_j in nodes:
101
- idx_j = node_index[node_j]
184
+ idx_i = node_index_map[node_i]
185
+ idx_j = node_index_map[node_j]
102
186
  neighborhoods[idx_i, idx_j] = 1
103
187
 
104
188
  return neighborhoods
105
189
 
106
190
 
107
- def calculate_markov_clustering_neighborhoods(network: nx.Graph) -> np.ndarray:
108
- """Apply Markov Clustering (MCL) to the network.
191
+ def calculate_markov_clustering_neighborhoods(
192
+ network: nx.Graph, edge_rank_percentile: float = 1.0
193
+ ) -> np.ndarray:
194
+ """Apply Markov Clustering (MCL) to the network and return a binary neighborhood matrix.
109
195
 
110
196
  Args:
111
197
  network (nx.Graph): The network graph.
198
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
199
+ subgraphs before clustering.
112
200
 
113
201
  Returns:
114
- np.ndarray: Binary neighborhood matrix on Markov Clustering.
202
+ np.ndarray: A binary neighborhood matrix on Markov Clustering.
115
203
  """
116
- # Convert the graph to an adjacency matrix
117
- adjacency_matrix = nx.to_numpy_array(network)
118
- # Run Markov Clustering (MCL)
119
- result = mc.run_mcl(adjacency_matrix) # MCL with default parameters
120
- # Get clusters (communities) from MCL result
204
+ # Create a subgraph with the shortest edges based on the rank percentile
205
+ subnetwork = _create_percentile_limited_subgraph(
206
+ network, edge_rank_percentile=edge_rank_percentile
207
+ )
208
+ # Step 1: Convert the subnetwork to an adjacency matrix
209
+ subnetwork_nodes = list(subnetwork.nodes())
210
+ adjacency_matrix = nx.to_numpy_array(subnetwork, nodelist=subnetwork_nodes)
211
+ # Step 2: Run Markov Clustering (MCL) on the subnetwork's adjacency matrix
212
+ result = mc.run_mcl(adjacency_matrix)
121
213
  clusters = mc.get_clusters(result)
122
- # Create a binary neighborhood matrix
123
- num_nodes = network.number_of_nodes()
124
- neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
125
- # Create a mapping from node to index in the matrix
126
- node_index = {node: i for i, node in enumerate(network.nodes())}
127
- # Assign neighborhoods based on MCL clusters
214
+ # Step 3: Prepare the original network nodes and indices
215
+ nodes = list(network.nodes())
216
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
217
+ num_nodes = len(nodes)
218
+ # Step 4: Initialize the neighborhood matrix for the original network
219
+ neighborhoods = np.eye(num_nodes, dtype=int)
220
+ # Step 5: Fill the neighborhoods matrix using the clusters from the subnetwork
128
221
  for cluster in clusters:
129
222
  for node_i in cluster:
130
- idx_i = node_index[node_i]
131
223
  for node_j in cluster:
132
- idx_j = node_index[node_j]
133
- neighborhoods[idx_i, idx_j] = 1
224
+ # Map the indices back to the original network's node indices
225
+ original_node_i = subnetwork_nodes[node_i]
226
+ original_node_j = subnetwork_nodes[node_j]
227
+
228
+ if original_node_i in node_index_map and original_node_j in node_index_map:
229
+ idx_i = node_index_map[original_node_i]
230
+ idx_j = node_index_map[original_node_j]
231
+ neighborhoods[idx_i, idx_j] = 1
134
232
 
135
233
  return neighborhoods
136
234
 
137
235
 
138
- def calculate_spinglass_neighborhoods(network: nx.Graph) -> np.ndarray:
139
- """Apply Spin Glass Community Detection to the network.
236
+ def calculate_spinglass_neighborhoods(
237
+ network: nx.Graph, edge_rank_percentile: float = 1.0
238
+ ) -> np.ndarray:
239
+ """Apply Spinglass Community Detection to the network, handling disconnected components.
140
240
 
141
241
  Args:
142
242
  network (nx.Graph): The network graph.
243
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
244
+ subgraphs before clustering.
143
245
 
144
246
  Returns:
145
- np.ndarray: Binary neighborhood matrix on Spin Glass communities.
247
+ np.ndarray: A binary neighborhood matrix based on Spinglass communities.
146
248
  """
147
- # Apply Asynchronous Label Propagation (LPA)
148
- communities = asyn_lpa_communities(network)
149
- # Create a binary neighborhood matrix
150
- num_nodes = network.number_of_nodes()
151
- neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
152
- # Create a mapping from node to index in the matrix
153
- node_index = {node: i for i, node in enumerate(network.nodes())}
154
- # Assign neighborhoods based on community labels from LPA
155
- for community in communities:
156
- for node_i in community:
157
- idx_i = node_index[node_i]
158
- for node_j in community:
159
- idx_j = node_index[node_j]
160
- neighborhoods[idx_i, idx_j] = 1
249
+ # Create a subgraph with the shortest edges based on the rank percentile
250
+ subnetwork = _create_percentile_limited_subgraph(
251
+ network, edge_rank_percentile=edge_rank_percentile
252
+ )
253
+ # Step 1: Find connected components in the graph
254
+ components = list(nx.connected_components(subnetwork))
255
+ # Prepare to store community results
256
+ nodes = list(network.nodes())
257
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
258
+ num_nodes = len(nodes)
259
+ # Initialize neighborhoods with zeros and set self-self entries to 1
260
+ neighborhoods = np.eye(num_nodes, dtype=int)
261
+ # Step 2: Run Spinglass on each connected component
262
+ for component in components:
263
+ # Extract the subgraph corresponding to the current component
264
+ subgraph = network.subgraph(component)
265
+ # Convert the subgraph to an iGraph object
266
+ igraph_subgraph = ig.Graph.from_networkx(subgraph)
267
+ # Ensure the subgraph is connected before running Spinglass
268
+ if not igraph_subgraph.is_connected():
269
+ print("Warning: Subgraph is not connected. Skipping...")
270
+ continue
271
+
272
+ # Apply Spinglass community detection
273
+ try:
274
+ communities = igraph_subgraph.community_spinglass()
275
+ except Exception as e:
276
+ print(f"Error running Spinglass on component: {e}")
277
+ continue
278
+
279
+ # Step 3: Assign neighborhoods based on community labels
280
+ for community in communities:
281
+ for node_i in community:
282
+ for node_j in community:
283
+ idx_i = node_index_map[igraph_subgraph.vs[node_i]["_nx_name"]]
284
+ idx_j = node_index_map[igraph_subgraph.vs[node_j]["_nx_name"]]
285
+ neighborhoods[idx_i, idx_j] = 1
161
286
 
162
287
  return neighborhoods
163
288
 
164
289
 
165
- def calculate_walktrap_neighborhoods(network: nx.Graph) -> np.ndarray:
290
+ def calculate_walktrap_neighborhoods(
291
+ network: nx.Graph, edge_rank_percentile: float = 1.0
292
+ ) -> np.ndarray:
166
293
  """Apply Walktrap Community Detection to the network.
167
294
 
168
295
  Args:
169
296
  network (nx.Graph): The network graph.
297
+ edge_rank_percentile (float, optional): Shortest edge rank percentile threshold for creating
298
+ subgraphs before clustering.
170
299
 
171
300
  Returns:
172
- np.ndarray: Binary neighborhood matrix on Walktrap communities.
301
+ np.ndarray: A binary neighborhood matrix on Walktrap communities.
173
302
  """
174
- # Apply Asynchronous Label Propagation (LPA)
175
- communities = asyn_lpa_communities(network)
303
+ # Create a subgraph with the shortest edges based on the rank percentile
304
+ subnetwork = _create_percentile_limited_subgraph(
305
+ network, edge_rank_percentile=edge_rank_percentile
306
+ )
307
+ # Convert NetworkX graph to iGraph
308
+ igraph_network = ig.Graph.from_networkx(subnetwork)
309
+ # Apply Walktrap community detection
310
+ communities = igraph_network.community_walktrap().as_clustering()
311
+ # Get the list of nodes in the original NetworkX graph
312
+ nodes = list(network.nodes())
313
+ node_index_map = {node: idx for idx, node in enumerate(nodes)}
176
314
  # Create a binary neighborhood matrix
177
- num_nodes = network.number_of_nodes()
178
- neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
179
- # Create a mapping from node to index in the matrix
180
- node_index = {node: i for i, node in enumerate(network.nodes())}
181
- # Assign neighborhoods based on community labels from LPA
315
+ num_nodes = len(nodes)
316
+ # Initialize neighborhoods with zeros and set self-self entries to 1
317
+ neighborhoods = np.eye(num_nodes, dtype=int)
318
+ # Assign neighborhoods based on community labels
182
319
  for community in communities:
183
320
  for node_i in community:
184
- idx_i = node_index[node_i]
185
321
  for node_j in community:
186
- idx_j = node_index[node_j]
322
+ idx_i = node_index_map[igraph_network.vs[node_i]["_nx_name"]]
323
+ idx_j = node_index_map[igraph_network.vs[node_j]["_nx_name"]]
187
324
  neighborhoods[idx_i, idx_j] = 1
188
325
 
189
326
  return neighborhoods
327
+
328
+
329
+ def _create_percentile_limited_subgraph(G: nx.Graph, edge_rank_percentile: float) -> nx.Graph:
330
+ """Create a subgraph containing the shortest edges based on the specified rank percentile
331
+ of all edge lengths in the input graph.
332
+
333
+ Args:
334
+ G (nx.Graph): The input graph with 'length' attributes on edges.
335
+ edge_rank_percentile (float): The rank percentile (between 0 and 1) to filter edges.
336
+
337
+ Returns:
338
+ nx.Graph: A subgraph with nodes and edges where the edges are within the shortest
339
+ specified rank percentile.
340
+ """
341
+ # Step 1: Extract edges with their lengths
342
+ edges_with_length = [(u, v, d) for u, v, d in G.edges(data=True) if "length" in d]
343
+ if not edges_with_length:
344
+ raise ValueError(
345
+ "No edge lengths found in the graph. Ensure edges have 'length' attributes."
346
+ )
347
+
348
+ # Step 2: Sort edges by length in ascending order
349
+ edges_with_length.sort(key=lambda x: x[2]["length"])
350
+ # Step 3: Calculate the cutoff index for the given rank percentile
351
+ cutoff_index = int(edge_rank_percentile * len(edges_with_length))
352
+ if cutoff_index == 0:
353
+ raise ValueError("The rank percentile is too low, resulting in no edges being included.")
354
+
355
+ # Step 4: Create the subgraph by selecting only the shortest edges within the rank percentile
356
+ subgraph = nx.Graph()
357
+ subgraph.add_nodes_from(G.nodes(data=True)) # Retain all nodes from the original graph
358
+ subgraph.add_edges_from(edges_with_length[:cutoff_index])
359
+ # Step 5: Remove nodes with no edges
360
+ subgraph.remove_nodes_from(list(nx.isolates(subgraph)))
361
+ # Step 6: Check if the resulting subgraph has no edges and issue a warning
362
+ if subgraph.number_of_edges() == 0:
363
+ raise Warning(
364
+ "The resulting subgraph has no edges. Consider adjusting the rank percentile."
365
+ )
366
+
367
+ return subgraph
@@ -15,6 +15,7 @@ from sklearn.metrics.pairwise import cosine_similarity
15
15
  from risk.neighborhoods.community import (
16
16
  calculate_greedy_modularity_neighborhoods,
17
17
  calculate_label_propagation_neighborhoods,
18
+ calculate_leiden_neighborhoods,
18
19
  calculate_louvain_neighborhoods,
19
20
  calculate_markov_clustering_neighborhoods,
20
21
  calculate_spinglass_neighborhoods,
@@ -29,22 +30,20 @@ warnings.filterwarnings(action="ignore", category=DataConversionWarning)
29
30
  def get_network_neighborhoods(
30
31
  network: nx.Graph,
31
32
  distance_metric: Union[str, List, Tuple, np.ndarray] = "louvain",
32
- edge_length_threshold: Union[float, List, Tuple, np.ndarray] = 1.0,
33
- louvain_resolution: float = 1.0,
33
+ edge_rank_percentile: Union[float, List, Tuple, np.ndarray] = 1.0,
34
+ louvain_resolution: float = 0.1,
35
+ leiden_resolution: float = 1.0,
34
36
  random_seed: int = 888,
35
37
  ) -> np.ndarray:
36
38
  """Calculate the combined neighborhoods for each node based on the specified community detection algorithm(s).
37
39
 
38
40
  Args:
39
41
  network (nx.Graph): The network graph.
40
- distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use. Can be a string for one
41
- metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
42
- 'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
43
- edge_length_threshold (float, List, Tuple, or np.ndarray, optional): Edge length threshold(s) for creating subgraphs.
44
- Can be a single float for one threshold or a list/tuple of floats corresponding to multiple thresholds.
45
- Defaults to 1.0.
46
- louvain_resolution (float, optional): Resolution parameter for the Louvain method. Defaults to 1.0.
47
- random_seed (int, optional): Random seed for methods requiring random initialization. Defaults to 888.
42
+ distance_metric (str, List, Tuple, or np.ndarray, optional): The distance metric(s) to use.
43
+ edge_rank_percentile (float, List, Tuple, or np.ndarray, optional): Shortest edge rank percentile threshold(s) for creating subgraphs.
44
+ louvain_resolution (float, optional): Resolution parameter for the Louvain method.
45
+ leiden_resolution (float, optional): Resolution parameter for the Leiden method.
46
+ random_seed (int, optional): Random seed for methods requiring random initialization.
48
47
 
49
48
  Returns:
50
49
  np.ndarray: Summed neighborhood matrix from all selected algorithms.
@@ -56,11 +55,11 @@ def get_network_neighborhoods(
56
55
  # Ensure distance_metric is a list/tuple for multi-algorithm handling
57
56
  if isinstance(distance_metric, (str, np.ndarray)):
58
57
  distance_metric = [distance_metric]
59
- # Ensure edge_length_threshold is a list/tuple for multi-threshold handling
60
- if isinstance(edge_length_threshold, (float, int)):
61
- edge_length_threshold = [edge_length_threshold] * len(distance_metric)
58
+ # Ensure edge_rank_percentile is a list/tuple for multi-threshold handling
59
+ if isinstance(edge_rank_percentile, (float, int)):
60
+ edge_rank_percentile = [edge_rank_percentile] * len(distance_metric)
62
61
  # Check that the number of distance metrics matches the number of edge length thresholds
63
- if len(distance_metric) != len(edge_length_threshold):
62
+ if len(distance_metric) != len(edge_rank_percentile):
64
63
  raise ValueError(
65
64
  "The number of distance metrics must match the number of edge length thresholds."
66
65
  )
@@ -69,29 +68,47 @@ def get_network_neighborhoods(
69
68
  num_nodes = network.number_of_nodes()
70
69
  combined_neighborhoods = np.zeros((num_nodes, num_nodes), dtype=int)
71
70
 
72
- # Loop through each distance metric and corresponding edge length threshold
73
- for metric, threshold in zip(distance_metric, edge_length_threshold):
74
- # Create a subgraph based on the specific edge length threshold for this algorithm
75
- subgraph = _create_percentile_limited_subgraph(network, edge_length_percentile=threshold)
71
+ # Loop through each distance metric and corresponding edge rank percentile
72
+ for metric, percentile in zip(distance_metric, edge_rank_percentile):
76
73
  # Call the appropriate neighborhood function based on the metric
77
- if metric == "louvain":
78
- neighborhoods = calculate_louvain_neighborhoods(
79
- subgraph, louvain_resolution, random_seed=random_seed
74
+ if metric == "greedy_modularity":
75
+ neighborhoods = calculate_greedy_modularity_neighborhoods(
76
+ network, edge_rank_percentile=percentile
80
77
  )
81
- elif metric == "greedy_modularity":
82
- neighborhoods = calculate_greedy_modularity_neighborhoods(subgraph)
83
78
  elif metric == "label_propagation":
84
- neighborhoods = calculate_label_propagation_neighborhoods(subgraph)
79
+ neighborhoods = calculate_label_propagation_neighborhoods(
80
+ network, edge_rank_percentile=percentile
81
+ )
82
+ elif metric == "leiden":
83
+ neighborhoods = calculate_leiden_neighborhoods(
84
+ network,
85
+ resolution=leiden_resolution,
86
+ edge_rank_percentile=percentile,
87
+ random_seed=random_seed,
88
+ )
89
+ elif metric == "louvain":
90
+ neighborhoods = calculate_louvain_neighborhoods(
91
+ network,
92
+ resolution=louvain_resolution,
93
+ edge_rank_percentile=percentile,
94
+ random_seed=random_seed,
95
+ )
85
96
  elif metric == "markov_clustering":
86
- neighborhoods = calculate_markov_clustering_neighborhoods(subgraph)
87
- elif metric == "walktrap":
88
- neighborhoods = calculate_walktrap_neighborhoods(subgraph)
97
+ neighborhoods = calculate_markov_clustering_neighborhoods(
98
+ network, edge_rank_percentile=percentile
99
+ )
89
100
  elif metric == "spinglass":
90
- neighborhoods = calculate_spinglass_neighborhoods(subgraph)
101
+ neighborhoods = calculate_spinglass_neighborhoods(
102
+ network, edge_rank_percentile=percentile
103
+ )
104
+ elif metric == "walktrap":
105
+ neighborhoods = calculate_walktrap_neighborhoods(
106
+ network, edge_rank_percentile=percentile
107
+ )
91
108
  else:
92
109
  raise ValueError(
93
- "Incorrect distance metric specified. Please choose from 'greedy_modularity', 'louvain',"
94
- "'label_propagation', 'markov_clustering', 'walktrap', 'spinglass'."
110
+ "Incorrect distance metric specified. Please choose from 'greedy_modularity', 'label_propagation',"
111
+ "'leiden', 'louvain', 'markov_clustering', 'spinglass', 'walktrap'."
95
112
  )
96
113
 
97
114
  # Sum the neighborhood matrices
@@ -100,50 +117,16 @@ def get_network_neighborhoods(
100
117
  # Ensure that the maximum value in each row is set to 1
101
118
  # This ensures that for each row, only the strongest relationship (the maximum value) is retained,
102
119
  # while all other values are reset to 0. This transformation simplifies the neighborhood matrix by
103
- # focusing on the most significant connection per row.
104
- combined_neighborhoods = _set_max_to_one(combined_neighborhoods)
120
+ # focusing on the most significant connection per row (or nodes).
121
+ combined_neighborhoods = _set_max_row_value_to_one(combined_neighborhoods)
105
122
 
106
123
  return combined_neighborhoods
107
124
 
108
125
 
109
- def _create_percentile_limited_subgraph(G: nx.Graph, edge_length_percentile: float) -> nx.Graph:
110
- """Create a subgraph containing all nodes and edges where the edge length is below the
111
- specified percentile of all edge lengths in the input graph.
112
-
113
- Args:
114
- G (nx.Graph): The input graph with 'length' attributes on edges.
115
- edge_length_percentile (float): The percentile (between 0 and 1) to filter edges by length.
116
-
117
- Returns:
118
- nx.Graph: A subgraph with all nodes and edges where the edge length is below the
119
- calculated threshold length.
120
- """
121
- # Extract edge lengths and handle missing lengths
122
- edge_lengths = [d["length"] for _, _, d in G.edges(data=True) if "length" in d]
123
- if not edge_lengths:
124
- raise ValueError(
125
- "No edge lengths found in the graph. Ensure edges have 'length' attributes."
126
- )
127
-
128
- # Calculate the specific edge length for the given percentile
129
- percentile_length = np.percentile(edge_lengths, edge_length_percentile * 100)
130
- # Create the subgraph by directly filtering edges during iteration
131
- subgraph = nx.Graph()
132
- subgraph.add_nodes_from(G.nodes(data=True)) # Retain all nodes from the original graph
133
- # Add edges below the specified percentile length in a single pass
134
- for u, v, d in G.edges(data=True):
135
- if d.get("length", 1) <= percentile_length:
136
- subgraph.add_edge(u, v, **d)
137
-
138
- # Return the subgraph; optionally check if it's too sparse
139
- if subgraph.number_of_edges() == 0:
140
- raise Warning("The resulting subgraph has no edges. Consider adjusting the percentile.")
141
-
142
- return subgraph
143
-
144
-
145
- def _set_max_to_one(matrix: np.ndarray) -> np.ndarray:
146
- """For each row in the input matrix, set the maximum value(s) to 1 and all other values to 0.
126
+ def _set_max_row_value_to_one(matrix: np.ndarray) -> np.ndarray:
127
+ """For each row in the input matrix, set the maximum value(s) to 1 and all other values to 0. This is particularly
128
+ useful for neighborhood matrices that have undergone multiple neighborhood detection algorithms, where the
129
+ maximum value in each row represents the most significant relationship per node in the combined neighborhoods.
147
130
 
148
131
  Args:
149
132
  matrix (np.ndarray): A 2D numpy array representing the neighborhood matrix.
@@ -617,8 +617,7 @@ class Labels:
617
617
  """
618
618
  # Return custom labels if domain is in ids_to_labels
619
619
  if ids_to_labels and domain in ids_to_labels:
620
- terms = ids_to_labels[domain].replace(" ", TERM_DELIMITER)
621
- return terms
620
+ return ids_to_labels[domain]
622
621
 
623
622
  else:
624
623
  terms = self.graph.domain_id_to_domain_terms_map[domain].split(" ")
risk/risk.py CHANGED
@@ -52,7 +52,8 @@ class RISK(NetworkIO, AnnotationsIO):
52
52
  annotations: Dict[str, Any],
53
53
  distance_metric: Union[str, List, Tuple, np.ndarray] = "louvain",
54
54
  louvain_resolution: float = 0.1,
55
- edge_length_threshold: Union[float, List, Tuple, np.ndarray] = 0.5,
55
+ leiden_resolution: float = 1.0,
56
+ edge_rank_percentile: Union[float, List, Tuple, np.ndarray] = 0.5,
56
57
  null_distribution: str = "network",
57
58
  random_seed: int = 888,
58
59
  ) -> Dict[str, Any]:
@@ -65,7 +66,8 @@ class RISK(NetworkIO, AnnotationsIO):
65
66
  metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
66
67
  'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
67
68
  louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
68
- edge_length_threshold (float, List, Tuple, or np.ndarray, optional): Edge length threshold(s) for creating subgraphs.
69
+ leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
70
+ edge_rank_percentile (float, List, Tuple, or np.ndarray, optional): Shortest edge rank percentile threshold(s) for creating subgraphs.
69
71
  Can be a single float for one threshold or a list/tuple of floats corresponding to multiple thresholds.
70
72
  Defaults to 0.5.
71
73
  null_distribution (str, optional): Type of null distribution ('network' or 'annotations'). Defaults to "network".
@@ -79,7 +81,8 @@ class RISK(NetworkIO, AnnotationsIO):
79
81
  params.log_neighborhoods(
80
82
  distance_metric=distance_metric,
81
83
  louvain_resolution=louvain_resolution,
82
- edge_length_threshold=edge_length_threshold,
84
+ leiden_resolution=leiden_resolution,
85
+ edge_rank_percentile=edge_rank_percentile,
83
86
  statistical_test_function="hypergeom",
84
87
  null_distribution=null_distribution,
85
88
  random_seed=random_seed,
@@ -93,7 +96,8 @@ class RISK(NetworkIO, AnnotationsIO):
93
96
  network,
94
97
  distance_metric,
95
98
  louvain_resolution=louvain_resolution,
96
- edge_length_threshold=edge_length_threshold,
99
+ leiden_resolution=leiden_resolution,
100
+ edge_rank_percentile=edge_rank_percentile,
97
101
  random_seed=random_seed,
98
102
  )
99
103
  # Run hypergeometric test to compute neighborhood significance
@@ -112,7 +116,8 @@ class RISK(NetworkIO, AnnotationsIO):
112
116
  annotations: Dict[str, Any],
113
117
  distance_metric: Union[str, List, Tuple, np.ndarray] = "louvain",
114
118
  louvain_resolution: float = 0.1,
115
- edge_length_threshold: Union[float, List, Tuple, np.ndarray] = 0.5,
119
+ leiden_resolution: float = 1.0,
120
+ edge_rank_percentile: Union[float, List, Tuple, np.ndarray] = 0.5,
116
121
  null_distribution: str = "network",
117
122
  random_seed: int = 888,
118
123
  ) -> Dict[str, Any]:
@@ -125,7 +130,8 @@ class RISK(NetworkIO, AnnotationsIO):
125
130
  metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
126
131
  'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
127
132
  louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
128
- edge_length_threshold (float, List, Tuple, or np.ndarray, optional): Edge length threshold(s) for creating subgraphs.
133
+ leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
134
+ edge_rank_percentile (float, List, Tuple, or np.ndarray, optional): Shortest edge rank percentile threshold(s) for creating subgraphs.
129
135
  Can be a single float for one threshold or a list/tuple of floats corresponding to multiple thresholds.
130
136
  Defaults to 0.5.
131
137
  null_distribution (str, optional): Type of null distribution ('network' or 'annotations'). Defaults to "network".
@@ -139,7 +145,8 @@ class RISK(NetworkIO, AnnotationsIO):
139
145
  params.log_neighborhoods(
140
146
  distance_metric=distance_metric,
141
147
  louvain_resolution=louvain_resolution,
142
- edge_length_threshold=edge_length_threshold,
148
+ leiden_resolution=leiden_resolution,
149
+ edge_rank_percentile=edge_rank_percentile,
143
150
  statistical_test_function="poisson",
144
151
  null_distribution=null_distribution,
145
152
  random_seed=random_seed,
@@ -153,7 +160,8 @@ class RISK(NetworkIO, AnnotationsIO):
153
160
  network,
154
161
  distance_metric,
155
162
  louvain_resolution=louvain_resolution,
156
- edge_length_threshold=edge_length_threshold,
163
+ leiden_resolution=leiden_resolution,
164
+ edge_rank_percentile=edge_rank_percentile,
157
165
  random_seed=random_seed,
158
166
  )
159
167
  # Run Poisson test to compute neighborhood significance
@@ -172,7 +180,8 @@ class RISK(NetworkIO, AnnotationsIO):
172
180
  annotations: Dict[str, Any],
173
181
  distance_metric: Union[str, List, Tuple, np.ndarray] = "louvain",
174
182
  louvain_resolution: float = 0.1,
175
- edge_length_threshold: Union[float, List, Tuple, np.ndarray] = 0.5,
183
+ leiden_resolution: float = 1.0,
184
+ edge_rank_percentile: Union[float, List, Tuple, np.ndarray] = 0.5,
176
185
  score_metric: str = "sum",
177
186
  null_distribution: str = "network",
178
187
  num_permutations: int = 1000,
@@ -188,7 +197,8 @@ class RISK(NetworkIO, AnnotationsIO):
188
197
  metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
189
198
  'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
190
199
  louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
191
- edge_length_threshold (float, List, Tuple, or np.ndarray, optional): Edge length threshold(s) for creating subgraphs.
200
+ leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
201
+ edge_rank_percentile (float, List, Tuple, or np.ndarray, optional): Shortest edge rank percentile threshold(s) for creating subgraphs.
192
202
  Can be a single float for one threshold or a list/tuple of floats corresponding to multiple thresholds.
193
203
  Defaults to 0.5.
194
204
  score_metric (str, optional): Scoring metric for neighborhood significance. Defaults to "sum".
@@ -205,7 +215,8 @@ class RISK(NetworkIO, AnnotationsIO):
205
215
  params.log_neighborhoods(
206
216
  distance_metric=distance_metric,
207
217
  louvain_resolution=louvain_resolution,
208
- edge_length_threshold=edge_length_threshold,
218
+ leiden_resolution=leiden_resolution,
219
+ edge_rank_percentile=edge_rank_percentile,
209
220
  statistical_test_function="permutation",
210
221
  score_metric=score_metric,
211
222
  null_distribution=null_distribution,
@@ -222,7 +233,8 @@ class RISK(NetworkIO, AnnotationsIO):
222
233
  network,
223
234
  distance_metric,
224
235
  louvain_resolution=louvain_resolution,
225
- edge_length_threshold=edge_length_threshold,
236
+ leiden_resolution=leiden_resolution,
237
+ edge_rank_percentile=edge_rank_percentile,
226
238
  random_seed=random_seed,
227
239
  )
228
240
 
@@ -408,7 +420,8 @@ class RISK(NetworkIO, AnnotationsIO):
408
420
  network: nx.Graph,
409
421
  distance_metric: Union[str, List, Tuple, np.ndarray] = "louvain",
410
422
  louvain_resolution: float = 0.1,
411
- edge_length_threshold: Union[float, List, Tuple, np.ndarray] = 0.5,
423
+ leiden_resolution: float = 1.0,
424
+ edge_rank_percentile: Union[float, List, Tuple, np.ndarray] = 0.5,
412
425
  random_seed: int = 888,
413
426
  ) -> np.ndarray:
414
427
  """Load significant neighborhoods for the network.
@@ -420,7 +433,8 @@ class RISK(NetworkIO, AnnotationsIO):
420
433
  metric or a list/tuple/ndarray of metrics ('greedy_modularity', 'louvain', 'label_propagation',
421
434
  'markov_clustering', 'walktrap', 'spinglass'). Defaults to 'louvain'.
422
435
  louvain_resolution (float, optional): Resolution parameter for Louvain clustering. Defaults to 0.1.
423
- edge_length_threshold (float, List, Tuple, or np.ndarray, optional): Edge length threshold(s) for creating subgraphs.
436
+ leiden_resolution (float, optional): Resolution parameter for Leiden clustering. Defaults to 1.0.
437
+ edge_rank_percentile (float, List, Tuple, or np.ndarray, optional): Shortest edge rank percentile threshold(s) for creating subgraphs.
424
438
  Can be a single float for one threshold or a list/tuple of floats corresponding to multiple thresholds.
425
439
  Defaults to 0.5.
426
440
  random_seed (int, optional): Seed for random number generation. Defaults to 888.
@@ -431,19 +445,22 @@ class RISK(NetworkIO, AnnotationsIO):
431
445
  # Display the chosen distance metric
432
446
  if distance_metric == "louvain":
433
447
  for_print_distance_metric = f"louvain (resolution={louvain_resolution})"
448
+ elif distance_metric == "leiden":
449
+ for_print_distance_metric = f"leiden (resolution={leiden_resolution})"
434
450
  else:
435
451
  for_print_distance_metric = distance_metric
436
452
  # Log and display neighborhood settings
437
453
  logger.debug(f"Distance metric: '{for_print_distance_metric}'")
438
- logger.debug(f"Edge length threshold: {edge_length_threshold}")
454
+ logger.debug(f"Edge length threshold: {edge_rank_percentile}")
439
455
  logger.debug(f"Random seed: {random_seed}")
440
456
 
441
457
  # Compute neighborhoods based on the network and distance metric
442
458
  neighborhoods = get_network_neighborhoods(
443
459
  network,
444
460
  distance_metric,
445
- edge_length_threshold,
461
+ edge_rank_percentile,
446
462
  louvain_resolution=louvain_resolution,
463
+ leiden_resolution=leiden_resolution,
447
464
  random_seed=random_seed,
448
465
  )
449
466
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: risk-network
3
- Version: 0.0.9b9
3
+ Version: 0.0.9b13
4
4
  Summary: A Python package for biological network analysis
5
5
  Author: Ira Horecka
6
6
  Author-email: Ira Horecka <ira89@icloud.com>
@@ -695,6 +695,7 @@ Requires-Python: >=3.8
695
695
  Description-Content-Type: text/markdown
696
696
  License-File: LICENSE
697
697
  Requires-Dist: ipywidgets
698
+ Requires-Dist: leidenalg
698
699
  Requires-Dist: markov-clustering
699
700
  Requires-Dist: matplotlib
700
701
  Requires-Dist: networkx
@@ -702,6 +703,7 @@ Requires-Dist: nltk==3.8.1
702
703
  Requires-Dist: numpy
703
704
  Requires-Dist: openpyxl
704
705
  Requires-Dist: pandas
706
+ Requires-Dist: python-igraph
705
707
  Requires-Dist: python-louvain
706
708
  Requires-Dist: scikit-learn
707
709
  Requires-Dist: scipy
@@ -1,6 +1,6 @@
1
- risk/__init__.py,sha256=wOa6WyqiT30Dx0Mk77M-4ilHgFK5rf0eRjG7ceeU8Gw,112
1
+ risk/__init__.py,sha256=bXkN8xIF7g0uIiSoCAXatSRkI_KRTbjWye4l_trCCfk,113
2
2
  risk/constants.py,sha256=XInRaH78Slnw_sWgAsBFbUHkyA0h0jL0DKGuQNbOvjM,550
3
- risk/risk.py,sha256=kntBxYwAEpoAjXN_l6BM3yxFKyuAKmd8OMGl2P00pZ4,22416
3
+ risk/risk.py,sha256=MXu8T93NUgMDl3NaZDbm0j9c4KWwzx-kmp9Rd1ax0N4,23534
4
4
  risk/annotations/__init__.py,sha256=kXgadEXaCh0z8OyhOhTj7c3qXGmWgOhaSZ4gSzSb59U,147
5
5
  risk/annotations/annotations.py,sha256=WVT9wzTm8lTpMw_3SnbyljWR77yExo0rb1zVgJza8nw,14284
6
6
  risk/annotations/io.py,sha256=tk1dAsxIwW5oLxB294ppiuZd4__Y5pj8se8KhitRSNA,10554
@@ -8,9 +8,9 @@ risk/log/__init__.py,sha256=gy7C5L6D222AYUChq5lkc0LsCJ_QMQPaFiBJKbecdac,201
8
8
  risk/log/console.py,sha256=C52s3FgQ2e9kQWcXL8m7rs_pnKXt5Yy8PBHmQkOTiNo,4537
9
9
  risk/log/parameters.py,sha256=o4StqYCa0kt7_Ht4mKa1DwwvhGUwkC_dGBaiUIc0GB0,5683
10
10
  risk/neighborhoods/__init__.py,sha256=C-SD0G-9skSLjLFdAB6v6lAjO8la2v6Fqy63h2MY28k,186
11
- risk/neighborhoods/community.py,sha256=MAgIblbuisEPwVU6mFZd4Yd9NUKlaHK99suw51r1Is0,7065
11
+ risk/neighborhoods/community.py,sha256=hsWr6sNW3lCZn9L2f8oYBVmIANnJpoAL9194fg6K1eQ,15408
12
12
  risk/neighborhoods/domains.py,sha256=t91xSpx9Ty9hSlhRq2_XwyPpBP7sjKhovcPPvkwWtf0,11398
13
- risk/neighborhoods/neighborhoods.py,sha256=0TAP-xi4hgtnrK0cKQPHQHq9IVGHOMF1wYEcx6tsxRA,22241
13
+ risk/neighborhoods/neighborhoods.py,sha256=XB2Gd0xghKKBNkwp1H-1138NegTlAiyOqAkv_vaLEZM,21150
14
14
  risk/network/__init__.py,sha256=iEPeJdZfqp0toxtbElryB8jbz9_t_k4QQ3iDvKE8C_0,126
15
15
  risk/network/geometry.py,sha256=gFtYUj9j9aul4paKq_qSGJn39Nazxu_MXv8m-tYYtrk,6840
16
16
  risk/network/io.py,sha256=AWSbZGLZHtl72KSlafQlcYoG00YLSznG7UYDi_wDT7M,22958
@@ -20,7 +20,7 @@ risk/network/graph/summary.py,sha256=h2bpUjfwI1NMflkKwplGQEGPswfAtunormdTIEQYbvs
20
20
  risk/network/plot/__init__.py,sha256=MfmaXJgAZJgXZ2wrhK8pXwzETlcMaLChhWXKAozniAo,98
21
21
  risk/network/plot/canvas.py,sha256=W8dFv4XYTzCWXBchgsc0esOQRn4usM4LkwNGPSDMobE,13357
22
22
  risk/network/plot/contour.py,sha256=VONX9l6owrZvWtR0mWQ6z2GSd1YXIv5wV_sf5ROQLT4,15581
23
- risk/network/plot/labels.py,sha256=eorP80CmAbHmt7de2qHna1tHGKL8YiHknwFW2R3tvjI,45734
23
+ risk/network/plot/labels.py,sha256=aU_ClDGVPHyQ3H5E_ygx8hsMhrpJB0i9Cn65PlLmw7s,45679
24
24
  risk/network/plot/network.py,sha256=_K8Am2y6zSGrm3fAgMbXxzgspbugJi3uK4_tG8qqGoI,14015
25
25
  risk/network/plot/plotter.py,sha256=eS1vHqvOA2O001Rq7WiDcgqcehJ3fg4OPfvkezH4erw,5771
26
26
  risk/network/plot/utils/colors.py,sha256=9zuU2O-Nkpljb1yVGUR_IjqD1y-wH6Bf6Vm1MMVB0Lo,18718
@@ -32,8 +32,8 @@ risk/stats/stats.py,sha256=z8NrhiVj4BzJ250bVLfytpmfC7RzYu7mBuIZD_l0aCA,7222
32
32
  risk/stats/permutation/__init__.py,sha256=neJp7FENC-zg_CGOXqv-iIvz1r5XUKI9Ruxhmq7kDOI,105
33
33
  risk/stats/permutation/permutation.py,sha256=meBNSrbRa9P8WJ54n485l0H7VQJlMSfHqdN4aCKYCtQ,10105
34
34
  risk/stats/permutation/test_functions.py,sha256=lftOude6hee0pyR80HlBD32522JkDoN5hrKQ9VEbuoY,2345
35
- risk_network-0.0.9b9.dist-info/LICENSE,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
36
- risk_network-0.0.9b9.dist-info/METADATA,sha256=iBZOFuXgFhOXgRkBH90TC3Fkk7r1iAX6Yq0bPuGjxck,47497
37
- risk_network-0.0.9b9.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
38
- risk_network-0.0.9b9.dist-info/top_level.txt,sha256=NX7C2PFKTvC1JhVKv14DFlFAIFnKc6Lpsu1ZfxvQwVw,5
39
- risk_network-0.0.9b9.dist-info/RECORD,,
35
+ risk_network-0.0.9b13.dist-info/LICENSE,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
36
+ risk_network-0.0.9b13.dist-info/METADATA,sha256=tbqUuKfdv5QjAprQruLMmTk5wzGWrwVqg528BeWcynQ,47552
37
+ risk_network-0.0.9b13.dist-info/WHEEL,sha256=P9jw-gEje8ByB7_hXoICnHtVCrEwMQh-630tKvQWehc,91
38
+ risk_network-0.0.9b13.dist-info/top_level.txt,sha256=NX7C2PFKTvC1JhVKv14DFlFAIFnKc6Lpsu1ZfxvQwVw,5
39
+ risk_network-0.0.9b13.dist-info/RECORD,,