risk-network 0.0.7b7__py3-none-any.whl → 0.0.7b8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
risk/__init__.py CHANGED
@@ -7,4 +7,4 @@ RISK: RISK Infers Spatial Kinships
7
7
 
8
8
  from risk.risk import RISK
9
9
 
10
- __version__ = "0.0.7-beta.7"
10
+ __version__ = "0.0.7-beta.8"
@@ -4,6 +4,7 @@ risk/neighborhoods/domains
4
4
  """
5
5
 
6
6
  from contextlib import suppress
7
+ from itertools import product
7
8
  from tqdm import tqdm
8
9
  from typing import Tuple
9
10
 
@@ -165,21 +166,20 @@ def _optimize_silhouette_across_linkage_and_metrics(
165
166
  total_combinations = len(linkage_methods) * len(linkage_metrics)
166
167
 
167
168
  # Evaluating optimal linkage method and metric
168
- for method in tqdm(
169
- linkage_methods,
169
+ for method, metric in tqdm(
170
+ product(linkage_methods, linkage_metrics),
170
171
  desc="Evaluating optimal linkage method and metric",
171
172
  total=total_combinations,
172
173
  bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]",
173
174
  ):
174
- for metric in linkage_metrics:
175
- with suppress(Exception):
176
- Z = linkage(m, method=method, metric=metric)
177
- threshold, score = _find_best_silhouette_score(Z, m, metric, linkage_criterion)
178
- if score > best_overall_score:
179
- best_overall_score = score
180
- best_overall_threshold = threshold
181
- best_overall_method = method
182
- best_overall_metric = metric
175
+ with suppress(Exception):
176
+ Z = linkage(m, method=method, metric=metric)
177
+ threshold, score = _find_best_silhouette_score(Z, m, metric, linkage_criterion)
178
+ if score > best_overall_score:
179
+ best_overall_score = score
180
+ best_overall_threshold = threshold
181
+ best_overall_method = method
182
+ best_overall_metric = metric
183
183
 
184
184
  return best_overall_method, best_overall_metric, best_overall_threshold
185
185
 
@@ -54,10 +54,10 @@ def get_network_neighborhoods(
54
54
  network, edge_length_percentile=edge_length_threshold
55
55
  )
56
56
 
57
- if distance_metric == "greedy_modularity":
58
- return calculate_greedy_modularity_neighborhoods(network)
59
57
  if distance_metric == "louvain":
60
58
  return calculate_louvain_neighborhoods(network, louvain_resolution, random_seed=random_seed)
59
+ if distance_metric == "greedy_modularity":
60
+ return calculate_greedy_modularity_neighborhoods(network)
61
61
  if distance_metric == "label_propagation":
62
62
  return calculate_label_propagation_neighborhoods(network)
63
63
  if distance_metric == "markov_clustering":
risk/stats/hypergeom.py CHANGED
@@ -22,9 +22,7 @@ def compute_hypergeom_test(
22
22
  Returns:
23
23
  dict: Dictionary containing depletion and enrichment p-values.
24
24
  """
25
- # Ensure both matrices are binary (presence/absence)
26
- neighborhoods = (neighborhoods > 0).astype(int)
27
- annotations = (annotations > 0).astype(int)
25
+ # Get the total number of nodes in the network
28
26
  total_node_count = neighborhoods.shape[0]
29
27
 
30
28
  if null_distribution == "network":
risk/stats/poisson.py CHANGED
@@ -22,9 +22,6 @@ def compute_poisson_test(
22
22
  Returns:
23
23
  dict: Dictionary containing depletion and enrichment p-values.
24
24
  """
25
- # Ensure both matrices are binary (presence/absence)
26
- neighborhoods = (neighborhoods > 0).astype(int)
27
- annotations = (annotations > 0).astype(int)
28
25
  # Matrix multiplication to get the number of annotated nodes in each neighborhood
29
26
  annotated_in_neighborhood = neighborhoods @ annotations
30
27
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: risk-network
3
- Version: 0.0.7b7
3
+ Version: 0.0.7b8
4
4
  Summary: A Python package for biological network analysis
5
5
  Author: Ira Horecka
6
6
  Author-email: Ira Horecka <ira89@icloud.com>
@@ -1,4 +1,4 @@
1
- risk/__init__.py,sha256=0dNrjhRgqzBRG5Rqy_GKy_8ETWm10xSCYvaOm6fdI0Q,112
1
+ risk/__init__.py,sha256=kEtmAgswqdIS5KBKHJO1NZkxJRF6s4ww_cjSOrBuJ4A,112
2
2
  risk/constants.py,sha256=XInRaH78Slnw_sWgAsBFbUHkyA0h0jL0DKGuQNbOvjM,550
3
3
  risk/risk.py,sha256=6666BzdMTgOaQl98ZKiJ19c6XBot26eTJ0iIlk-ZCZQ,20515
4
4
  risk/annotations/__init__.py,sha256=vUpVvMRE5if01Ic8QY6M2Ae3EFGJHdugEe9PdEkAW4Y,138
@@ -9,22 +9,22 @@ risk/log/console.py,sha256=im9DRExwf6wHlcn9fewoDcKIpo3vPcorZIaNAl-0csY,355
9
9
  risk/log/params.py,sha256=Rfdg5UcGCrG80m6V79FyORERWUqIzHFO7tGiY4zAImM,6347
10
10
  risk/neighborhoods/__init__.py,sha256=tKKEg4lsbqFukpgYlUGxU_v_9FOqK7V0uvM9T2QzoL0,206
11
11
  risk/neighborhoods/community.py,sha256=stYYBXeZlGLMV-k8ckQeIqThT6v9y-S3hETobAo9590,6817
12
- risk/neighborhoods/domains.py,sha256=bxJUxqFTynzX0mf3E8-AA4_Rfccje1reeVVhfzb1-pE,10672
13
- risk/neighborhoods/neighborhoods.py,sha256=r-JeUb6dTjzMtnaMDvJy6MI3mTl-yUzILcdcjtOhFdM,18218
12
+ risk/neighborhoods/domains.py,sha256=vTCKtRE0oFcY862squrF7_cqCjnckiC9Sl0Qh2FM81k,10665
13
+ risk/neighborhoods/neighborhoods.py,sha256=5WVXCZ0f-MzUfDITdNlL0NgDS3DBamdc_ZVPA-p9j7U,18218
14
14
  risk/network/__init__.py,sha256=iEPeJdZfqp0toxtbElryB8jbz9_t_k4QQ3iDvKE8C_0,126
15
15
  risk/network/geometry.py,sha256=H1yGVVqgbfpzBzJwEheDLfvGLSA284jGQQTn612L4Vc,6759
16
16
  risk/network/graph.py,sha256=_LEoom4EEowGALuJKSXcev9RAAHu2FqIeq3u7mkifW0,16479
17
17
  risk/network/io.py,sha256=gG50kOknO-D3HkW1HsbHMkTMvjUtn3l4W4Jwd-rXNr8,21202
18
18
  risk/network/plot.py,sha256=3OucCoKJwx9M9H4lqAvcQdM9YiCSyIxz21jyqDbpffc,62286
19
19
  risk/stats/__init__.py,sha256=WcgoETQ-hS0LQqKRsAMIPtP15xZ-4eul6VUBuUx4Wzc,220
20
- risk/stats/hypergeom.py,sha256=DcGYjmfcgt1qshNZPJt5IHGIHtxw9tWRS1r6QJ6V3dI,2378
21
- risk/stats/poisson.py,sha256=CnLk65CHViR4YhAaN3ix37iyLm_YQYGo851bSnGyyxY,1950
20
+ risk/stats/hypergeom.py,sha256=o6Qnj31gCAKxr2uQirXrbv7XvdDJGEq69MFW-ubx_hA,2272
21
+ risk/stats/poisson.py,sha256=8x9hB4DCukq4gNIlIKO-c_jYG1-BTwTX53oLauFyfj8,1793
22
22
  risk/stats/stats.py,sha256=kvShov-94W6ffgDUTb522vB9hDJQSyTsYif_UIaFfSM,7059
23
23
  risk/stats/permutation/__init__.py,sha256=neJp7FENC-zg_CGOXqv-iIvz1r5XUKI9Ruxhmq7kDOI,105
24
24
  risk/stats/permutation/permutation.py,sha256=kmSZ7bQ-AD0TFiQDgIwfxTeqHa4pjp7fIcOzAqyhUNY,9714
25
25
  risk/stats/permutation/test_functions.py,sha256=HuDIM-V1jkkfE1rlaIqrWWBSKZt3dQ1f-YEDjWpnLSE,2343
26
- risk_network-0.0.7b7.dist-info/LICENSE,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
27
- risk_network-0.0.7b7.dist-info/METADATA,sha256=LDTOo8S-g09TbNgixGR4nCBkyaHW_usy0zE8kNsqTRg,43142
28
- risk_network-0.0.7b7.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
29
- risk_network-0.0.7b7.dist-info/top_level.txt,sha256=NX7C2PFKTvC1JhVKv14DFlFAIFnKc6Lpsu1ZfxvQwVw,5
30
- risk_network-0.0.7b7.dist-info/RECORD,,
26
+ risk_network-0.0.7b8.dist-info/LICENSE,sha256=jOtLnuWt7d5Hsx6XXB2QxzrSe2sWWh3NgMfFRetluQM,35147
27
+ risk_network-0.0.7b8.dist-info/METADATA,sha256=aFjqRdtk2rsHn0AHuofhj9ZtkFFuuxfgLd_DnyX52qA,43142
28
+ risk_network-0.0.7b8.dist-info/WHEEL,sha256=GV9aMThwP_4oNCtvEC2ec3qUYutgWeAzklro_0m4WJQ,91
29
+ risk_network-0.0.7b8.dist-info/top_level.txt,sha256=NX7C2PFKTvC1JhVKv14DFlFAIFnKc6Lpsu1ZfxvQwVw,5
30
+ risk_network-0.0.7b8.dist-info/RECORD,,