risk-network 0.0.13b4__py3-none-any.whl → 0.0.13b5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (50) hide show
  1. risk/__init__.py +3 -2
  2. risk/_annotation/__init__.py +10 -0
  3. risk/{annotation/annotation.py → _annotation/_annotation.py} +18 -11
  4. risk/{annotation/io.py → _annotation/_io.py} +20 -12
  5. risk/{annotation/nltk_setup.py → _annotation/_nltk_setup.py} +7 -5
  6. risk/_log/__init__.py +11 -0
  7. risk/{log/console.py → _log/_console.py} +22 -12
  8. risk/{log/parameters.py → _log/_parameters.py} +25 -14
  9. risk/_neighborhoods/__init__.py +8 -0
  10. risk/{neighborhoods/api.py → _neighborhoods/_api.py} +23 -14
  11. risk/{neighborhoods/community.py → _neighborhoods/_community.py} +19 -11
  12. risk/{neighborhoods/domains.py → _neighborhoods/_domains.py} +15 -9
  13. risk/{neighborhoods/neighborhoods.py → _neighborhoods/_neighborhoods.py} +24 -35
  14. risk/_neighborhoods/_stats/__init__.py +13 -0
  15. risk/_neighborhoods/_stats/_permutation/__init__.py +6 -0
  16. risk/{neighborhoods/stats/permutation/permutation.py → _neighborhoods/_stats/_permutation/_permutation.py} +9 -6
  17. risk/{neighborhoods/stats/permutation/test_functions.py → _neighborhoods/_stats/_permutation/_test_functions.py} +6 -4
  18. risk/{neighborhoods/stats/tests.py → _neighborhoods/_stats/_tests.py} +12 -7
  19. risk/_network/__init__.py +8 -0
  20. risk/_network/_graph/__init__.py +7 -0
  21. risk/{network/graph/api.py → _network/_graph/_api.py} +13 -10
  22. risk/{network/graph/graph.py → _network/_graph/_graph.py} +24 -13
  23. risk/{network/graph/stats.py → _network/_graph/_stats.py} +8 -5
  24. risk/{network/graph/summary.py → _network/_graph/_summary.py} +21 -12
  25. risk/{network/io.py → _network/_io.py} +45 -24
  26. risk/_network/_plotter/__init__.py +6 -0
  27. risk/{network/plotter/api.py → _network/_plotter/_api.py} +9 -7
  28. risk/{network/plotter/canvas.py → _network/_plotter/_canvas.py} +14 -10
  29. risk/{network/plotter/contour.py → _network/_plotter/_contour.py} +17 -11
  30. risk/{network/plotter/labels.py → _network/_plotter/_labels.py} +38 -23
  31. risk/{network/plotter/network.py → _network/_plotter/_network.py} +17 -11
  32. risk/{network/plotter/plotter.py → _network/_plotter/_plotter.py} +19 -15
  33. risk/_network/_plotter/_utils/__init__.py +7 -0
  34. risk/{network/plotter/utils/colors.py → _network/_plotter/_utils/_colors.py} +19 -11
  35. risk/{network/plotter/utils/layout.py → _network/_plotter/_utils/_layout.py} +8 -5
  36. risk/risk.py +8 -8
  37. {risk_network-0.0.13b4.dist-info → risk_network-0.0.13b5.dist-info}/METADATA +1 -1
  38. risk_network-0.0.13b5.dist-info/RECORD +41 -0
  39. {risk_network-0.0.13b4.dist-info → risk_network-0.0.13b5.dist-info}/WHEEL +1 -1
  40. risk/annotation/__init__.py +0 -10
  41. risk/log/__init__.py +0 -11
  42. risk/neighborhoods/__init__.py +0 -7
  43. risk/neighborhoods/stats/__init__.py +0 -13
  44. risk/neighborhoods/stats/permutation/__init__.py +0 -6
  45. risk/network/__init__.py +0 -4
  46. risk/network/graph/__init__.py +0 -4
  47. risk/network/plotter/__init__.py +0 -4
  48. risk_network-0.0.13b4.dist-info/RECORD +0 -40
  49. {risk_network-0.0.13b4.dist-info → risk_network-0.0.13b5.dist-info}/licenses/LICENSE +0 -0
  50. {risk_network-0.0.13b4.dist-info → risk_network-0.0.13b5.dist-info}/top_level.txt +0 -0
@@ -1,6 +1,6 @@
1
1
  """
2
- risk/network/graph/stats
3
- ~~~~~~~~~~~~~~~~~~~~~~~~
2
+ risk/_network/_graph/_stats
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  from typing import Any, Dict, Union
@@ -16,7 +16,8 @@ def calculate_significance_matrices(
16
16
  pval_cutoff: float = 0.05,
17
17
  fdr_cutoff: float = 0.05,
18
18
  ) -> Dict[str, Any]:
19
- """Calculate significance matrices based on p-values and specified tail.
19
+ """
20
+ Calculate significance matrices based on p-values and specified tail.
20
21
 
21
22
  Args:
22
23
  depletion_pvals (np.ndarray): Matrix of depletion p-values.
@@ -89,7 +90,8 @@ def _select_significance_matrices(
89
90
  log_enrichment_matrix: np.ndarray,
90
91
  enrichment_alpha_threshold_matrix: np.ndarray,
91
92
  ) -> tuple:
92
- """Select significance matrices based on the specified tail type.
93
+ """
94
+ Select significance matrices based on the specified tail type.
93
95
 
94
96
  Args:
95
97
  tail (str): The tail type for significance selection. Options are 'left', 'right', or 'both'.
@@ -143,7 +145,8 @@ def _compute_threshold_matrix(
143
145
  pval_cutoff: float = 0.05,
144
146
  fdr_cutoff: float = 0.05,
145
147
  ) -> np.ndarray:
146
- """Compute a threshold matrix indicating significance based on p-value and FDR cutoffs.
148
+ """
149
+ Compute a threshold matrix indicating significance based on p-value and FDR cutoffs.
147
150
 
148
151
  Args:
149
152
  pvals (np.ndarray): Array of p-values for statistical tests.
@@ -1,6 +1,6 @@
1
1
  """
2
- risk/network/graph/summary
3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~
2
+ risk/_network/_graph/_summary
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  from typing import Any, Dict, Tuple, Union
@@ -9,11 +9,12 @@ import numpy as np
9
9
  import pandas as pd
10
10
  from statsmodels.stats.multitest import fdrcorrection
11
11
 
12
- from risk.log.console import log_header, logger
12
+ from ..._log import log_header, logger
13
13
 
14
14
 
15
15
  class Summary:
16
- """Handles the processing, storage, and export of network analysis results.
16
+ """
17
+ Handles the processing, storage, and export of network analysis results.
17
18
 
18
19
  The Results class provides methods to process significance and depletion data, compute
19
20
  FDR-corrected q-values, and structure information on domains and annotations into a
@@ -27,7 +28,8 @@ class Summary:
27
28
  neighborhoods: Dict[str, Any],
28
29
  graph, # Avoid type hinting Graph to prevent circular imports
29
30
  ):
30
- """Initialize the Results object with analysis components.
31
+ """
32
+ Initialize the Results object with analysis components.
31
33
 
32
34
  Args:
33
35
  annotation (Dict[str, Any]): Annotation data, including ordered annotations and matrix of associations.
@@ -39,7 +41,8 @@ class Summary:
39
41
  self.graph = graph
40
42
 
41
43
  def to_csv(self, filepath: str) -> None:
42
- """Export significance results to a CSV file.
44
+ """
45
+ Export significance results to a CSV file.
43
46
 
44
47
  Args:
45
48
  filepath (str): The path where the CSV file will be saved.
@@ -50,7 +53,8 @@ class Summary:
50
53
  logger.info(f"Analysis summary exported to CSV file: {filepath}")
51
54
 
52
55
  def to_json(self, filepath: str) -> None:
53
- """Export significance results to a JSON file.
56
+ """
57
+ Export significance results to a JSON file.
54
58
 
55
59
  Args:
56
60
  filepath (str): The path where the JSON file will be saved.
@@ -61,7 +65,8 @@ class Summary:
61
65
  logger.info(f"Analysis summary exported to JSON file: {filepath}")
62
66
 
63
67
  def to_txt(self, filepath: str) -> None:
64
- """Export significance results to a text file.
68
+ """
69
+ Export significance results to a text file.
65
70
 
66
71
  Args:
67
72
  filepath (str): The path where the text file will be saved.
@@ -74,7 +79,8 @@ class Summary:
74
79
  logger.info(f"Analysis summary exported to text file: {filepath}")
75
80
 
76
81
  def load(self) -> pd.DataFrame:
77
- """Load and process domain and annotation data into a DataFrame with significance metrics.
82
+ """
83
+ Load and process domain and annotation data into a DataFrame with significance metrics.
78
84
 
79
85
  Returns:
80
86
  pd.DataFrame: Processed DataFrame containing significance scores, p-values, q-values,
@@ -171,7 +177,8 @@ class Summary:
171
177
  return results
172
178
 
173
179
  def _calculate_qvalues(self, pvals: np.ndarray) -> np.ndarray:
174
- """Calculate q-values (FDR) for each row of a p-value matrix.
180
+ """
181
+ Calculate q-values (FDR) for each row of a p-value matrix.
175
182
 
176
183
  Args:
177
184
  pvals (np.ndarray): 2D array of p-values.
@@ -190,7 +197,8 @@ class Summary:
190
197
  enrichment_qvals: np.ndarray,
191
198
  depletion_qvals: np.ndarray,
192
199
  ) -> Tuple[Union[float, None], Union[float, None], Union[float, None], Union[float, None]]:
193
- """Retrieve the most significant p-values and q-values (FDR) for a given annotation.
200
+ """
201
+ Retrieve the most significant p-values and q-values (FDR) for a given annotation.
194
202
 
195
203
  Args:
196
204
  domain_id (int): The domain ID associated with the annotation.
@@ -226,7 +234,8 @@ class Summary:
226
234
  )
227
235
 
228
236
  def _get_annotation_members(self, description: str) -> str:
229
- """Retrieve node labels associated with a given annotation description.
237
+ """
238
+ Retrieve node labels associated with a given annotation description.
230
239
 
231
240
  Args:
232
241
  description (str): The annotation description.
@@ -1,6 +1,6 @@
1
1
  """
2
- risk/network/io
3
- ~~~~~~~~~~~~~~~
2
+ risk/_network/_io
3
+ ~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  import copy
@@ -15,11 +15,12 @@ import networkx as nx
15
15
  import numpy as np
16
16
  import pandas as pd
17
17
 
18
- from risk.log import log_header, logger, params
18
+ from .._log import log_header, logger, params
19
19
 
20
20
 
21
21
  class NetworkIO:
22
- """A class for loading, processing, and managing network data.
22
+ """
23
+ A class for loading, processing, and managing network data.
23
24
 
24
25
  The NetworkIO class provides methods to load network data from various formats (e.g., GPickle, NetworkX)
25
26
  and process the network by adjusting node coordinates, calculating edge lengths, and validating graph structure.
@@ -31,7 +32,8 @@ class NetworkIO:
31
32
  surface_depth: float = 0.0,
32
33
  min_edges_per_node: int = 0,
33
34
  ):
34
- """Initialize the NetworkIO class.
35
+ """
36
+ Initialize the NetworkIO class.
35
37
 
36
38
  Args:
37
39
  compute_sphere (bool, optional): Whether to map nodes to a sphere. Defaults to True.
@@ -55,7 +57,8 @@ class NetworkIO:
55
57
  surface_depth: float = 0.0,
56
58
  min_edges_per_node: int = 0,
57
59
  ) -> nx.Graph:
58
- """Load a network from a GPickle file.
60
+ """
61
+ Load a network from a GPickle file.
59
62
 
60
63
  Args:
61
64
  filepath (str): Path to the GPickle file.
@@ -74,7 +77,8 @@ class NetworkIO:
74
77
  return networkio._load_network_gpickle(filepath=filepath)
75
78
 
76
79
  def _load_network_gpickle(self, filepath: str) -> nx.Graph:
77
- """Private method to load a network from a GPickle file.
80
+ """
81
+ Private method to load a network from a GPickle file.
78
82
 
79
83
  Args:
80
84
  filepath (str): Path to the GPickle file.
@@ -100,7 +104,8 @@ class NetworkIO:
100
104
  surface_depth: float = 0.0,
101
105
  min_edges_per_node: int = 0,
102
106
  ) -> nx.Graph:
103
- """Load a NetworkX graph.
107
+ """
108
+ Load a NetworkX graph.
104
109
 
105
110
  Args:
106
111
  network (nx.Graph): A NetworkX graph object.
@@ -119,7 +124,8 @@ class NetworkIO:
119
124
  return networkio._load_network_networkx(network=network)
120
125
 
121
126
  def _load_network_networkx(self, network: nx.Graph) -> nx.Graph:
122
- """Private method to load a NetworkX graph.
127
+ """
128
+ Private method to load a NetworkX graph.
123
129
 
124
130
  Args:
125
131
  network (nx.Graph): A NetworkX graph object.
@@ -147,7 +153,8 @@ class NetworkIO:
147
153
  surface_depth: float = 0.0,
148
154
  min_edges_per_node: int = 0,
149
155
  ) -> nx.Graph:
150
- """Load a network from a Cytoscape file.
156
+ """
157
+ Load a network from a Cytoscape file.
151
158
 
152
159
  Args:
153
160
  filepath (str): Path to the Cytoscape file.
@@ -180,7 +187,8 @@ class NetworkIO:
180
187
  target_label: str = "target",
181
188
  view_name: str = "",
182
189
  ) -> nx.Graph:
183
- """Private method to load a network from a Cytoscape file.
190
+ """
191
+ Private method to load a network from a Cytoscape file.
184
192
 
185
193
  Args:
186
194
  filepath (str): Path to the Cytoscape file.
@@ -316,7 +324,8 @@ class NetworkIO:
316
324
  surface_depth: float = 0.0,
317
325
  min_edges_per_node: int = 0,
318
326
  ) -> nx.Graph:
319
- """Load a network from a Cytoscape JSON (.cyjs) file.
327
+ """
328
+ Load a network from a Cytoscape JSON (.cyjs) file.
320
329
 
321
330
  Args:
322
331
  filepath (str): Path to the Cytoscape JSON file.
@@ -341,7 +350,8 @@ class NetworkIO:
341
350
  )
342
351
 
343
352
  def _load_network_cyjs(self, filepath, source_label="source", target_label="target"):
344
- """Private method to load a network from a Cytoscape JSON (.cyjs) file.
353
+ """
354
+ Private method to load a network from a Cytoscape JSON (.cyjs) file.
345
355
 
346
356
  Args:
347
357
  filepath (str): Path to the Cytoscape JSON file.
@@ -396,7 +406,8 @@ class NetworkIO:
396
406
  return self._initialize_graph(G)
397
407
 
398
408
  def _initialize_graph(self, G: nx.Graph) -> nx.Graph:
399
- """Initialize the graph by processing and validating its nodes and edges.
409
+ """
410
+ Initialize the graph by processing and validating its nodes and edges.
400
411
 
401
412
  Args:
402
413
  G (nx.Graph): The input NetworkX graph.
@@ -414,7 +425,8 @@ class NetworkIO:
414
425
  return G
415
426
 
416
427
  def _remove_invalid_graph_properties(self, G: nx.Graph) -> None:
417
- """Remove invalid properties from the graph, including self-loops, nodes with fewer edges than
428
+ """
429
+ Remove invalid properties from the graph, including self-loops, nodes with fewer edges than
418
430
  the threshold, and isolated nodes.
419
431
 
420
432
  Args:
@@ -449,7 +461,8 @@ class NetworkIO:
449
461
  logger.debug(f"Final edge count: {num_final_edges}")
450
462
 
451
463
  def _assign_edge_weights(self, G: nx.Graph) -> None:
452
- """Assign default edge weights to the graph.
464
+ """
465
+ Assign default edge weights to the graph.
453
466
 
454
467
  Args:
455
468
  G (nx.Graph): A NetworkX graph object.
@@ -459,7 +472,8 @@ class NetworkIO:
459
472
  nx.set_edge_attributes(G, default_weight, "weight")
460
473
 
461
474
  def _validate_nodes(self, G: nx.Graph) -> None:
462
- """Validate the graph structure and attributes with attribute fallback for positions and labels.
475
+ """
476
+ Validate the graph structure and attributes with attribute fallback for positions and labels.
463
477
 
464
478
  Args:
465
479
  G (nx.Graph): A NetworkX graph object.
@@ -519,7 +533,8 @@ class NetworkIO:
519
533
  )
520
534
 
521
535
  def _assign_edge_lengths(self, G: nx.Graph) -> None:
522
- """Prepare the network by adjusting surface depth and calculating edge lengths.
536
+ """
537
+ Prepare the network by adjusting surface depth and calculating edge lengths.
523
538
 
524
539
  Args:
525
540
  G (nx.Graph): The input network graph.
@@ -537,7 +552,8 @@ class NetworkIO:
537
552
  compute_sphere: bool = True,
538
553
  surface_depth: float = 0.0,
539
554
  ) -> nx.Graph:
540
- """Prepare the graph by normalizing coordinates and optionally mapping nodes to a sphere.
555
+ """
556
+ Prepare the graph by normalizing coordinates and optionally mapping nodes to a sphere.
541
557
 
542
558
  Args:
543
559
  G (nx.Graph): The input graph.
@@ -558,7 +574,8 @@ class NetworkIO:
558
574
  return G_depth
559
575
 
560
576
  def _calculate_and_set_edge_lengths(self, G: nx.Graph, compute_sphere: bool) -> None:
561
- """Compute and assign edge lengths in the graph.
577
+ """
578
+ Compute and assign edge lengths in the graph.
562
579
 
563
580
  Args:
564
581
  G (nx.Graph): The input graph.
@@ -592,7 +609,8 @@ class NetworkIO:
592
609
  G.edges[u, v]["length"] = distance
593
610
 
594
611
  def _map_to_sphere(self, G: nx.Graph) -> None:
595
- """Map the x and y coordinates of graph nodes onto a 3D sphere.
612
+ """
613
+ Map the x and y coordinates of graph nodes onto a 3D sphere.
596
614
 
597
615
  Args:
598
616
  G (nx.Graph): The input graph with nodes having 'x' and 'y' coordinates.
@@ -616,7 +634,8 @@ class NetworkIO:
616
634
  nx.set_node_attributes(G, xyz_coords)
617
635
 
618
636
  def _normalize_graph_coordinates(self, G: nx.Graph) -> None:
619
- """Normalize the x and y coordinates of the nodes in the graph to the [0, 1] range.
637
+ """
638
+ Normalize the x and y coordinates of the nodes in the graph to the [0, 1] range.
620
639
 
621
640
  Args:
622
641
  G (nx.Graph): The input graph with nodes having 'x' and 'y' coordinates.
@@ -633,7 +652,8 @@ class NetworkIO:
633
652
  G.nodes[node]["x"], G.nodes[node]["y"] = normalized_xy[i]
634
653
 
635
654
  def _create_depth(self, G: nx.Graph, surface_depth: float = 0.0) -> nx.Graph:
636
- """Adjust the 'z' attribute of each node based on the subcluster strengths and normalized surface depth.
655
+ """
656
+ Adjust the 'z' attribute of each node based on the subcluster strengths and normalized surface depth.
637
657
 
638
658
  Args:
639
659
  G (nx.Graph): The input graph.
@@ -677,7 +697,8 @@ class NetworkIO:
677
697
  filetype: str,
678
698
  filepath: str = "",
679
699
  ) -> None:
680
- """Log the loading of the network with relevant parameters.
700
+ """
701
+ Log the loading of the network with relevant parameters.
681
702
 
682
703
  Args:
683
704
  filetype (str): The type of the file being loaded (e.g., 'CSV', 'JSON').
@@ -0,0 +1,6 @@
1
+ """
2
+ risk/_network/_plotter
3
+ ~~~~~~~~~~~~~~~~~~~~~~
4
+ """
5
+
6
+ from ._api import PlotterAPI
@@ -1,19 +1,20 @@
1
1
  """
2
- risk/network/plotter/api
3
- ~~~~~~~~~~~~~~~~~~~~~~~~
2
+ risk/_network/_plotter/_api
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  from typing import List, Tuple, Union
7
7
 
8
8
  import numpy as np
9
9
 
10
- from risk.log import log_header
11
- from risk.network.graph.graph import Graph
12
- from risk.network.plotter.plotter import Plotter
10
+ from ..._log import log_header
11
+ from .._graph import Graph
12
+ from ._plotter import Plotter
13
13
 
14
14
 
15
15
  class PlotterAPI:
16
- """Handles the loading of network plotter objects.
16
+ """
17
+ Handles the loading of network plotter objects.
17
18
 
18
19
  The PlotterAPI class provides methods to load and configure Plotter objects for plotting network graphs.
19
20
  """
@@ -29,7 +30,8 @@ class PlotterAPI:
29
30
  background_alpha: Union[float, None] = 1.0,
30
31
  pad: float = 0.3,
31
32
  ) -> Plotter:
32
- """Get a Plotter object for plotting.
33
+ """
34
+ Get a Plotter object for plotting.
33
35
 
34
36
  Args:
35
37
  graph (Graph): The graph to plot.
@@ -1,6 +1,6 @@
1
1
  """
2
- risk/network/plotter/canvas
3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~
2
+ risk/_network/_plotter/_canvas
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  from typing import List, Tuple, Union
@@ -8,17 +8,18 @@ from typing import List, Tuple, Union
8
8
  import matplotlib.pyplot as plt
9
9
  import numpy as np
10
10
 
11
- from risk.log import params
12
- from risk.network.graph.graph import Graph
13
- from risk.network.plotter.utils.colors import to_rgba
14
- from risk.network.plotter.utils.layout import calculate_bounding_box
11
+ from ..._log import params
12
+ from .._graph import Graph
13
+ from ._utils._colors import to_rgba
14
+ from ._utils._layout import calculate_bounding_box
15
15
 
16
16
 
17
17
  class Canvas:
18
18
  """A class for laying out the canvas in a network graph."""
19
19
 
20
20
  def __init__(self, graph: Graph, ax: plt.Axes) -> None:
21
- """Initialize the Canvas with a Graph and axis for plotting.
21
+ """
22
+ Initialize the Canvas with a Graph and axis for plotting.
22
23
 
23
24
  Args:
24
25
  graph (Graph): The Graph object containing the network data.
@@ -41,7 +42,8 @@ class Canvas:
41
42
  title_space_offset: float = 0.075,
42
43
  subtitle_offset: float = 0.025,
43
44
  ) -> None:
44
- """Plot title and subtitle on the network graph with customizable parameters.
45
+ """
46
+ Plot title and subtitle on the network graph with customizable parameters.
45
47
 
46
48
  Args:
47
49
  title (str, optional): Title of the plot. Defaults to None.
@@ -122,7 +124,8 @@ class Canvas:
122
124
  outline_alpha: Union[float, None] = 1.0,
123
125
  fill_alpha: Union[float, None] = 0.0,
124
126
  ) -> None:
125
- """Plot a circle around the network graph to represent the network perimeter.
127
+ """
128
+ Plot a circle around the network graph to represent the network perimeter.
126
129
 
127
130
  Args:
128
131
  scale (float, optional): Scaling factor for the perimeter diameter. Defaults to 1.0.
@@ -257,7 +260,8 @@ class Canvas:
257
260
  center_offset_x: float = 0.0,
258
261
  center_offset_y: float = 0.0,
259
262
  ) -> Tuple[float, float]:
260
- """Calculate the adjusted center for the network perimeter circle based on user-defined offsets.
263
+ """
264
+ Calculate the adjusted center for the network perimeter circle based on user-defined offsets.
261
265
 
262
266
  Args:
263
267
  center (Tuple[float, float]): Original center coordinates of the network graph.
@@ -1,6 +1,6 @@
1
1
  """
2
- risk/network/plotter/contour
3
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2
+ risk/_network/_plotter/_contour
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
4
  """
5
5
 
6
6
  from typing import Any, Dict, List, Tuple, Union
@@ -11,16 +11,17 @@ from scipy import linalg
11
11
  from scipy.ndimage import label
12
12
  from scipy.stats import gaussian_kde
13
13
 
14
- from risk.log import logger, params
15
- from risk.network.graph.graph import Graph
16
- from risk.network.plotter.utils.colors import get_annotated_domain_colors, to_rgba
14
+ from ..._log import logger, params
15
+ from .._graph import Graph
16
+ from ._utils import get_annotated_domain_colors, to_rgba
17
17
 
18
18
 
19
19
  class Contour:
20
20
  """Class to generate Kernel Density Estimate (KDE) contours for nodes in a network graph."""
21
21
 
22
22
  def __init__(self, graph: Graph, ax: plt.Axes) -> None:
23
- """Initialize the Contour with a Graph and axis for plotting.
23
+ """
24
+ Initialize the Contour with a Graph and axis for plotting.
24
25
 
25
26
  Args:
26
27
  graph (Graph): The Graph object containing the network data.
@@ -40,7 +41,8 @@ class Contour:
40
41
  alpha: Union[float, None] = 1.0,
41
42
  fill_alpha: Union[float, None] = None,
42
43
  ) -> None:
43
- """Draw KDE contours for nodes in various domains of a network graph, highlighting areas of high density.
44
+ """
45
+ Draw KDE contours for nodes in various domains of a network graph, highlighting areas of high density.
44
46
 
45
47
  Args:
46
48
  levels (int, optional): Number of contour levels to plot. Defaults to 5.
@@ -105,7 +107,8 @@ class Contour:
105
107
  alpha: Union[float, None] = 1.0,
106
108
  fill_alpha: Union[float, None] = None,
107
109
  ) -> None:
108
- """Plot a subcontour for a given set of nodes or a list of node sets using Kernel Density Estimation (KDE).
110
+ """
111
+ Plot a subcontour for a given set of nodes or a list of node sets using Kernel Density Estimation (KDE).
109
112
 
110
113
  Args:
111
114
  nodes (List, Tuple, or np.ndarray): List of node labels or list of lists of node labels to plot the contour for.
@@ -179,7 +182,8 @@ class Contour:
179
182
  linewidth: float = 1.5,
180
183
  fill_alpha: Union[float, None] = 0.2,
181
184
  ) -> None:
182
- """Draw a Kernel Density Estimate (KDE) contour plot for a set of nodes on a given axis.
185
+ """
186
+ Draw a Kernel Density Estimate (KDE) contour plot for a set of nodes on a given axis.
183
187
 
184
188
  Args:
185
189
  ax (plt.Axes): The axis to draw the contour on.
@@ -283,7 +287,8 @@ class Contour:
283
287
  ids_to_colors: Union[Dict[int, Any], None] = None,
284
288
  random_seed: int = 888,
285
289
  ) -> List[Tuple]:
286
- """Get colors for the contours based on node annotation or a specified colormap.
290
+ """
291
+ Get colors for the contours based on node annotation or a specified colormap.
287
292
 
288
293
  Args:
289
294
  cmap (str, optional): Name of the colormap to use for generating contour colors. Defaults to "gist_rainbow".
@@ -317,7 +322,8 @@ class Contour:
317
322
  )
318
323
 
319
324
  def _is_connected(self, z: np.ndarray) -> bool:
320
- """Determine if a thresholded grid represents a single, connected component.
325
+ """
326
+ Determine if a thresholded grid represents a single, connected component.
321
327
 
322
328
  Args:
323
329
  z (np.ndarray): A binary grid where the component connectivity is evaluated.