risk-network 0.0.12b0__py3-none-any.whl → 0.0.12b1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. risk/__init__.py +1 -1
  2. risk/annotations/__init__.py +10 -0
  3. risk/annotations/annotations.py +354 -0
  4. risk/annotations/io.py +241 -0
  5. risk/annotations/nltk_setup.py +86 -0
  6. risk/log/__init__.py +11 -0
  7. risk/log/console.py +141 -0
  8. risk/log/parameters.py +171 -0
  9. risk/neighborhoods/__init__.py +7 -0
  10. risk/neighborhoods/api.py +442 -0
  11. risk/neighborhoods/community.py +441 -0
  12. risk/neighborhoods/domains.py +360 -0
  13. risk/neighborhoods/neighborhoods.py +514 -0
  14. risk/neighborhoods/stats/__init__.py +13 -0
  15. risk/neighborhoods/stats/permutation/__init__.py +6 -0
  16. risk/neighborhoods/stats/permutation/permutation.py +240 -0
  17. risk/neighborhoods/stats/permutation/test_functions.py +70 -0
  18. risk/neighborhoods/stats/tests.py +275 -0
  19. risk/network/__init__.py +4 -0
  20. risk/network/graph/__init__.py +4 -0
  21. risk/network/graph/api.py +200 -0
  22. risk/network/graph/graph.py +268 -0
  23. risk/network/graph/stats.py +166 -0
  24. risk/network/graph/summary.py +253 -0
  25. risk/network/io.py +693 -0
  26. risk/network/plotter/__init__.py +4 -0
  27. risk/network/plotter/api.py +54 -0
  28. risk/network/plotter/canvas.py +291 -0
  29. risk/network/plotter/contour.py +329 -0
  30. risk/network/plotter/labels.py +935 -0
  31. risk/network/plotter/network.py +294 -0
  32. risk/network/plotter/plotter.py +141 -0
  33. risk/network/plotter/utils/colors.py +419 -0
  34. risk/network/plotter/utils/layout.py +94 -0
  35. risk_network-0.0.12b1.dist-info/METADATA +122 -0
  36. risk_network-0.0.12b1.dist-info/RECORD +40 -0
  37. {risk_network-0.0.12b0.dist-info → risk_network-0.0.12b1.dist-info}/WHEEL +1 -1
  38. risk_network-0.0.12b0.dist-info/METADATA +0 -796
  39. risk_network-0.0.12b0.dist-info/RECORD +0 -7
  40. {risk_network-0.0.12b0.dist-info → risk_network-0.0.12b1.dist-info}/licenses/LICENSE +0 -0
  41. {risk_network-0.0.12b0.dist-info → risk_network-0.0.12b1.dist-info}/top_level.txt +0 -0
risk/__init__.py CHANGED
@@ -7,4 +7,4 @@ RISK: Regional Inference of Significant Kinships
7
7
 
8
8
  from risk.risk import RISK
9
9
 
10
- __version__ = "0.0.12-beta.0"
10
+ __version__ = "0.0.12-beta.1"
@@ -0,0 +1,10 @@
1
+ """
2
+ risk/annotations
3
+ ~~~~~~~~~~~~~~~~
4
+ """
5
+
6
+ from risk.annotations.annotations import (
7
+ define_top_annotations,
8
+ get_weighted_description,
9
+ )
10
+ from risk.annotations.io import AnnotationsIO
@@ -0,0 +1,354 @@
1
+ """
2
+ risk/annotations/annotations
3
+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~
4
+ """
5
+
6
+ import re
7
+ from collections import Counter
8
+ from itertools import compress
9
+ from typing import Any, Dict, List, Set
10
+
11
+ import networkx as nx
12
+ import numpy as np
13
+ import pandas as pd
14
+ from nltk.tokenize import word_tokenize
15
+ from scipy.sparse import coo_matrix
16
+
17
+ from risk.annotations.nltk_setup import setup_nltk_resources
18
+ from risk.log import logger
19
+
20
+
21
+ def initialize_nltk():
22
+ """Initialize all required NLTK components."""
23
+ setup_nltk_resources()
24
+
25
+ # After resources are available, initialize the components
26
+ from nltk.corpus import stopwords
27
+ from nltk.stem import WordNetLemmatizer
28
+
29
+ global STOP_WORDS, LEMMATIZER
30
+ STOP_WORDS = set(stopwords.words("english"))
31
+ LEMMATIZER = WordNetLemmatizer()
32
+
33
+
34
+ # Initialize NLTK components
35
+ initialize_nltk()
36
+
37
+
38
+ def load_annotations(
39
+ network: nx.Graph, annotations_input: Dict[str, Any], min_nodes_per_term: int = 2
40
+ ) -> Dict[str, Any]:
41
+ """Convert annotations input to a sparse matrix and reindex based on the network's node labels.
42
+
43
+ Args:
44
+ network (nx.Graph): The network graph.
45
+ annotations_input (Dict[str, Any]): A dictionary with annotations.
46
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
47
+ term to be included. Defaults to 2.
48
+
49
+ Returns:
50
+ Dict[str, Any]: A dictionary containing ordered nodes, ordered annotations, and the sparse binary annotations
51
+ matrix.
52
+
53
+ Raises:
54
+ ValueError: If no annotations are found for the nodes in the network.
55
+ ValueError: If no annotations have at least min_nodes_per_term nodes in the network.
56
+ """
57
+ # Step 1: Map nodes and annotations to indices
58
+ node_label_order = [attr["label"] for _, attr in network.nodes(data=True) if "label" in attr]
59
+ node_to_idx = {node: i for i, node in enumerate(node_label_order)}
60
+ annotation_to_idx = {annotation: i for i, annotation in enumerate(annotations_input)}
61
+ # Step 2: Construct a sparse binary matrix directly
62
+ row = []
63
+ col = []
64
+ data = []
65
+ for annotation, nodes in annotations_input.items():
66
+ for node in nodes:
67
+ if node in node_to_idx and annotation in annotation_to_idx:
68
+ row.append(node_to_idx[node])
69
+ col.append(annotation_to_idx[annotation])
70
+ data.append(1)
71
+
72
+ # Create a sparse binary matrix
73
+ num_nodes = len(node_to_idx)
74
+ num_annotations = len(annotation_to_idx)
75
+ annotations_pivot = coo_matrix((data, (row, col)), shape=(num_nodes, num_annotations)).tocsr()
76
+ # Step 3: Filter out annotations with fewer than min_nodes_per_term occurrences
77
+ valid_annotations = annotations_pivot.sum(axis=0).A1 >= min_nodes_per_term
78
+ annotations_pivot = annotations_pivot[:, valid_annotations]
79
+ # Step 4: Raise errors for empty matrices
80
+ if annotations_pivot.nnz == 0:
81
+ raise ValueError("No terms found in the annotation file for the nodes in the network.")
82
+
83
+ num_remaining_annotations = annotations_pivot.shape[1]
84
+ if num_remaining_annotations == 0:
85
+ raise ValueError(
86
+ f"No annotation terms found with at least {min_nodes_per_term} nodes in the network."
87
+ )
88
+
89
+ # Step 5: Extract ordered nodes and annotations
90
+ ordered_nodes = tuple(node_label_order)
91
+ ordered_annotations = tuple(
92
+ annotation for annotation, is_valid in zip(annotation_to_idx, valid_annotations) if is_valid
93
+ )
94
+
95
+ # Log the filtering details
96
+ logger.info(f"Minimum number of nodes per annotation term: {min_nodes_per_term}")
97
+ logger.info(f"Number of input annotation terms: {num_annotations}")
98
+ logger.info(f"Number of remaining annotation terms: {num_remaining_annotations}")
99
+
100
+ return {
101
+ "ordered_nodes": ordered_nodes,
102
+ "ordered_annotations": ordered_annotations,
103
+ "matrix": annotations_pivot,
104
+ }
105
+
106
+
107
+ def define_top_annotations(
108
+ network: nx.Graph,
109
+ ordered_annotation_labels: List[str],
110
+ neighborhood_significance_sums: List[int],
111
+ significant_significance_matrix: np.ndarray,
112
+ significant_binary_significance_matrix: np.ndarray,
113
+ min_cluster_size: int = 5,
114
+ max_cluster_size: int = 1000,
115
+ ) -> pd.DataFrame:
116
+ """Define top annotations based on neighborhood significance sums and binary significance matrix.
117
+
118
+ Args:
119
+ network (NetworkX graph): The network graph.
120
+ ordered_annotation_labels (list of str): List of ordered annotation labels.
121
+ neighborhood_significance_sums (list of int): List of neighborhood significance sums.
122
+ significant_significance_matrix (np.ndarray): Enrichment matrix below alpha threshold.
123
+ significant_binary_significance_matrix (np.ndarray): Binary significance matrix below alpha threshold.
124
+ min_cluster_size (int, optional): Minimum cluster size. Defaults to 5.
125
+ max_cluster_size (int, optional): Maximum cluster size. Defaults to 1000.
126
+
127
+ Returns:
128
+ pd.DataFrame: DataFrame with top annotations and their properties.
129
+ """
130
+ # Sum the columns of the significant significance matrix (positive floating point values)
131
+ significant_significance_scores = significant_significance_matrix.sum(axis=0)
132
+ # Create DataFrame to store annotations, their neighborhood significance sums, and significance scores
133
+ annotations_significance_matrix = pd.DataFrame(
134
+ {
135
+ "id": range(len(ordered_annotation_labels)),
136
+ "full_terms": ordered_annotation_labels,
137
+ "significant_neighborhood_significance_sums": neighborhood_significance_sums,
138
+ "significant_significance_score": significant_significance_scores,
139
+ }
140
+ )
141
+ annotations_significance_matrix["significant_annotations"] = False
142
+ # Apply size constraints to identify potential significant annotations
143
+ annotations_significance_matrix.loc[
144
+ (
145
+ annotations_significance_matrix["significant_neighborhood_significance_sums"]
146
+ >= min_cluster_size
147
+ )
148
+ & (
149
+ annotations_significance_matrix["significant_neighborhood_significance_sums"]
150
+ <= max_cluster_size
151
+ ),
152
+ "significant_annotations",
153
+ ] = True
154
+ # Initialize columns for connected components analysis
155
+ annotations_significance_matrix["num_connected_components"] = 0
156
+ annotations_significance_matrix["size_connected_components"] = None
157
+ annotations_significance_matrix["size_connected_components"] = annotations_significance_matrix[
158
+ "size_connected_components"
159
+ ].astype(object)
160
+ annotations_significance_matrix["num_large_connected_components"] = 0
161
+
162
+ for attribute in annotations_significance_matrix.index.values[
163
+ annotations_significance_matrix["significant_annotations"]
164
+ ]:
165
+ # Identify significant neighborhoods based on the binary significance matrix
166
+ significant_neighborhoods = list(
167
+ compress(list(network), significant_binary_significance_matrix[:, attribute])
168
+ )
169
+ significant_network = nx.subgraph(network, significant_neighborhoods)
170
+ # Analyze connected components within the significant subnetwork
171
+ connected_components = sorted(
172
+ nx.connected_components(significant_network), key=len, reverse=True
173
+ )
174
+ size_connected_components = np.array([len(c) for c in connected_components])
175
+
176
+ # Filter the size of connected components by min_cluster_size and max_cluster_size
177
+ filtered_size_connected_components = size_connected_components[
178
+ (size_connected_components >= min_cluster_size)
179
+ & (size_connected_components <= max_cluster_size)
180
+ ]
181
+ # Calculate the number of connected components and large connected components
182
+ num_connected_components = len(connected_components)
183
+ num_large_connected_components = len(filtered_size_connected_components)
184
+
185
+ # Assign the number of connected components
186
+ annotations_significance_matrix.loc[attribute, "num_connected_components"] = (
187
+ num_connected_components
188
+ )
189
+ # Filter out attributes with more than one connected component
190
+ annotations_significance_matrix.loc[
191
+ annotations_significance_matrix["num_connected_components"] > 1,
192
+ "significant_annotations",
193
+ ] = False
194
+ # Assign the number of large connected components
195
+ annotations_significance_matrix.loc[attribute, "num_large_connected_components"] = (
196
+ num_large_connected_components
197
+ )
198
+ # Assign the size of connected components, ensuring it is always a list
199
+ annotations_significance_matrix.at[attribute, "size_connected_components"] = (
200
+ filtered_size_connected_components.tolist()
201
+ )
202
+
203
+ return annotations_significance_matrix
204
+
205
+
206
+ def get_weighted_description(words_column: pd.Series, scores_column: pd.Series) -> str:
207
+ """Generate a weighted description from words and their corresponding scores,
208
+ using improved weighting logic with normalization, lemmatization, and aggregation.
209
+
210
+ Args:
211
+ words_column (pd.Series): A pandas Series containing strings (phrases) to process.
212
+ scores_column (pd.Series): A pandas Series containing significance scores to weigh the terms.
213
+
214
+ Returns:
215
+ str: A coherent description formed from the most frequent and significant words.
216
+ """
217
+ # Normalize significance scores to [0,1]. If all scores are identical, use 1.
218
+ if scores_column.max() == scores_column.min():
219
+ normalized_scores = pd.Series([1] * len(scores_column), index=scores_column.index)
220
+ else:
221
+ normalized_scores = (scores_column - scores_column.min()) / (
222
+ scores_column.max() - scores_column.min()
223
+ )
224
+
225
+ # Accumulate weighted counts for each token (after cleaning and lemmatization)
226
+ weighted_counts = {}
227
+ for phrase, score in zip(words_column, normalized_scores):
228
+ # Tokenize the phrase
229
+ tokens = word_tokenize(str(phrase))
230
+ # Determine the weight (scale factor; here multiplying normalized score by 10)
231
+ weight = max(1, int((0 if pd.isna(score) else score) * 10))
232
+ for token in tokens:
233
+ # Clean token: lowercase and remove extraneous punctuation (but preserve intra-word hyphens)
234
+ token_clean = re.sub(r"[^\w\-]", "", token).strip()
235
+ if not token_clean:
236
+ continue
237
+ # Skip tokens that are pure numbers
238
+ if token_clean.isdigit():
239
+ continue
240
+ # Skip stopwords
241
+ if token_clean in STOP_WORDS:
242
+ continue
243
+ # Lemmatize the token to merge similar forms
244
+ token_norm = LEMMATIZER.lemmatize(token_clean)
245
+ weighted_counts[token_norm] = weighted_counts.get(token_norm, 0) + weight
246
+
247
+ # Reconstruct a weighted token list by repeating each token by its aggregated count.
248
+ weighted_words = []
249
+ for token, count in weighted_counts.items():
250
+ weighted_words.extend([token] * count)
251
+
252
+ # Combine tokens that match number-word patterns (e.g. "4-alpha") and remove pure numeric tokens.
253
+ combined_tokens = []
254
+ for token in weighted_words:
255
+ if re.match(r"^\d+-\w+", token):
256
+ combined_tokens.append(token)
257
+ elif token.replace(".", "", 1).isdigit():
258
+ continue
259
+ else:
260
+ combined_tokens.append(token)
261
+
262
+ # If the only token is numeric, return a default value.
263
+ if len(combined_tokens) == 1 and combined_tokens[0].isdigit():
264
+ return "N/A"
265
+
266
+ # Simplify the token list to remove near-duplicates based on the Jaccard index.
267
+ simplified_words = _simplify_word_list(combined_tokens)
268
+ # Generate a coherent description from the simplified words.
269
+ description = _generate_coherent_description(simplified_words)
270
+
271
+ return description
272
+
273
+
274
+ def _simplify_word_list(words: List[str], threshold: float = 0.80) -> List[str]:
275
+ """Filter out words that are too similar based on the Jaccard index,
276
+ keeping the word with the higher aggregated count.
277
+
278
+ Args:
279
+ words (List[str]): The list of tokens to be filtered.
280
+ threshold (float, optional): The similarity threshold for the Jaccard index. Defaults to 0.80.
281
+
282
+ Returns:
283
+ List[str]: A list of filtered words, where similar words are reduced to the most frequent one.
284
+ """
285
+ # Count the occurrences (which reflect the weighted importance)
286
+ word_counts = Counter(words)
287
+ filtered_words = []
288
+ used_words = set()
289
+
290
+ # Iterate through words sorted by descending weighted frequency
291
+ for word in sorted(word_counts, key=lambda w: word_counts[w], reverse=True):
292
+ if word in used_words:
293
+ continue
294
+
295
+ word_set = set(word)
296
+ # Find similar words (including the current word) based on the Jaccard index
297
+ similar_words = [
298
+ other_word
299
+ for other_word in word_counts
300
+ if _calculate_jaccard_index(word_set, set(other_word)) >= threshold
301
+ ]
302
+ # Choose the word with the highest weighted count among the similar group
303
+ similar_words.sort(key=lambda w: word_counts[w], reverse=True)
304
+ best_word = similar_words[0]
305
+ filtered_words.append(best_word)
306
+ used_words.update(similar_words)
307
+
308
+ # Preserve the original order (by frequency) from the filtered set
309
+ final_words = [word for word in words if word in filtered_words]
310
+
311
+ return final_words
312
+
313
+
314
+ def _calculate_jaccard_index(set1: Set[Any], set2: Set[Any]) -> float:
315
+ """Calculate the Jaccard index between two sets.
316
+
317
+ Args:
318
+ set1 (Set[Any]): The first set.
319
+ set2 (Set[Any]): The second set.
320
+
321
+ Returns:
322
+ float: The Jaccard index (intersection over union). Returns 0 if the union is empty.
323
+ """
324
+ intersection = len(set1.intersection(set2))
325
+ union = len(set1.union(set2))
326
+ return intersection / union if union else 0
327
+
328
+
329
+ def _generate_coherent_description(words: List[str]) -> str:
330
+ """Generate a coherent description from a list of words.
331
+
332
+ If there is only one unique entry, return it directly.
333
+ Otherwise, order the words by frequency and join them into a single string.
334
+
335
+ Args:
336
+ words (List[str]): A list of tokens.
337
+
338
+ Returns:
339
+ str: A coherent, space-separated description.
340
+ """
341
+ if not words:
342
+ return "N/A"
343
+
344
+ # If there is only one unique word, return it directly
345
+ unique_words = set(words)
346
+ if len(unique_words) == 1:
347
+ return list(unique_words)[0]
348
+
349
+ # Count weighted occurrences and sort in descending order.
350
+ word_counts = Counter(words)
351
+ most_common_words = [word for word, _ in word_counts.most_common()]
352
+ description = " ".join(most_common_words)
353
+
354
+ return description
risk/annotations/io.py ADDED
@@ -0,0 +1,241 @@
1
+ """
2
+ risk/annotations/io
3
+ ~~~~~~~~~~~~~~~~~~~
4
+ """
5
+
6
+ import json
7
+ from typing import Any, Dict
8
+
9
+ import networkx as nx
10
+ import pandas as pd
11
+
12
+ from risk.annotations.annotations import load_annotations
13
+ from risk.log import log_header, logger, params
14
+
15
+
16
+ class AnnotationsIO:
17
+ """Handles the loading and exporting of annotations in various file formats.
18
+
19
+ The AnnotationsIO class provides methods to load annotations from different file types (JSON, CSV, Excel, etc.)
20
+ and to export parameter data to various formats like JSON, CSV, and text files.
21
+ """
22
+
23
+ def load_json_annotation(
24
+ self, network: nx.Graph, filepath: str, min_nodes_per_term: int = 2
25
+ ) -> Dict[str, Any]:
26
+ """Load annotations from a JSON file and convert them to a DataFrame.
27
+
28
+ Args:
29
+ network (NetworkX graph): The network to which the annotations are related.
30
+ filepath (str): Path to the JSON annotations file.
31
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
32
+ term to be included. Defaults to 2.
33
+
34
+ Returns:
35
+ Dict[str, Any]: A dictionary containing ordered nodes, ordered annotations, and the annotations matrix.
36
+ """
37
+ filetype = "JSON"
38
+ # Log the loading of the JSON file
39
+ params.log_annotations(
40
+ filetype=filetype, filepath=filepath, min_nodes_per_term=min_nodes_per_term
41
+ )
42
+ self._log_loading(filetype, filepath=filepath)
43
+
44
+ # Load the JSON file into a dictionary
45
+ with open(filepath, "r", encoding="utf-8") as file:
46
+ annotations_input = json.load(file)
47
+
48
+ return load_annotations(network, annotations_input, min_nodes_per_term)
49
+
50
+ def load_excel_annotation(
51
+ self,
52
+ network: nx.Graph,
53
+ filepath: str,
54
+ label_colname: str = "label",
55
+ nodes_colname: str = "nodes",
56
+ sheet_name: str = "Sheet1",
57
+ nodes_delimiter: str = ";",
58
+ min_nodes_per_term: int = 2,
59
+ ) -> Dict[str, Any]:
60
+ """Load annotations from an Excel file and associate them with the network.
61
+
62
+ Args:
63
+ network (nx.Graph): The NetworkX graph to which the annotations are related.
64
+ filepath (str): Path to the Excel annotations file.
65
+ label_colname (str): Name of the column containing the labels (e.g., GO terms).
66
+ nodes_colname (str): Name of the column containing the nodes associated with each label.
67
+ sheet_name (str, optional): The name of the Excel sheet to load (default is 'Sheet1').
68
+ nodes_delimiter (str, optional): Delimiter used to separate multiple nodes within the nodes column (default is ';').
69
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
70
+ term to be included. Defaults to 2.
71
+
72
+ Returns:
73
+ Dict[str, Any]: A dictionary where each label is paired with its respective list of nodes,
74
+ linked to the provided network.
75
+ """
76
+ filetype = "Excel"
77
+ # Log the loading of the Excel file
78
+ params.log_annotations(
79
+ filetype=filetype, filepath=filepath, min_nodes_per_term=min_nodes_per_term
80
+ )
81
+ self._log_loading(filetype, filepath=filepath)
82
+
83
+ # Load the specified sheet from the Excel file
84
+ annotation = pd.read_excel(filepath, sheet_name=sheet_name)
85
+ # Split the nodes column by the specified nodes_delimiter
86
+ annotation[nodes_colname] = annotation[nodes_colname].apply(
87
+ lambda x: x.split(nodes_delimiter)
88
+ )
89
+ # Convert the DataFrame to a dictionary pairing labels with their corresponding nodes
90
+ annotations_input = annotation.set_index(label_colname)[nodes_colname].to_dict()
91
+
92
+ return load_annotations(network, annotations_input, min_nodes_per_term)
93
+
94
+ def load_csv_annotation(
95
+ self,
96
+ network: nx.Graph,
97
+ filepath: str,
98
+ label_colname: str = "label",
99
+ nodes_colname: str = "nodes",
100
+ nodes_delimiter: str = ";",
101
+ min_nodes_per_term: int = 2,
102
+ ) -> Dict[str, Any]:
103
+ """Load annotations from a CSV file and associate them with the network.
104
+
105
+ Args:
106
+ network (nx.Graph): The NetworkX graph to which the annotations are related.
107
+ filepath (str): Path to the CSV annotations file.
108
+ label_colname (str): Name of the column containing the labels (e.g., GO terms).
109
+ nodes_colname (str): Name of the column containing the nodes associated with each label.
110
+ nodes_delimiter (str, optional): Delimiter used to separate multiple nodes within the nodes column (default is ';').
111
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
112
+ term to be included. Defaults to 2.
113
+
114
+ Returns:
115
+ Dict[str, Any]: A dictionary where each label is paired with its respective list of nodes,
116
+ linked to the provided network.
117
+ """
118
+ filetype = "CSV"
119
+ # Log the loading of the CSV file
120
+ params.log_annotations(
121
+ filetype=filetype, filepath=filepath, min_nodes_per_term=min_nodes_per_term
122
+ )
123
+ self._log_loading(filetype, filepath=filepath)
124
+
125
+ # Load the CSV file into a dictionary
126
+ annotations_input = self._load_matrix_file(
127
+ filepath, label_colname, nodes_colname, delimiter=",", nodes_delimiter=nodes_delimiter
128
+ )
129
+
130
+ return load_annotations(network, annotations_input, min_nodes_per_term)
131
+
132
+ def load_tsv_annotation(
133
+ self,
134
+ network: nx.Graph,
135
+ filepath: str,
136
+ label_colname: str = "label",
137
+ nodes_colname: str = "nodes",
138
+ nodes_delimiter: str = ";",
139
+ min_nodes_per_term: int = 2,
140
+ ) -> Dict[str, Any]:
141
+ """Load annotations from a TSV file and associate them with the network.
142
+
143
+ Args:
144
+ network (nx.Graph): The NetworkX graph to which the annotations are related.
145
+ filepath (str): Path to the TSV annotations file.
146
+ label_colname (str): Name of the column containing the labels (e.g., GO terms).
147
+ nodes_colname (str): Name of the column containing the nodes associated with each label.
148
+ nodes_delimiter (str, optional): Delimiter used to separate multiple nodes within the nodes column (default is ';').
149
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
150
+ term to be included. Defaults to 2.
151
+
152
+ Returns:
153
+ Dict[str, Any]: A dictionary where each label is paired with its respective list of nodes,
154
+ linked to the provided network.
155
+ """
156
+ filetype = "TSV"
157
+ # Log the loading of the TSV file
158
+ params.log_annotations(
159
+ filetype=filetype, filepath=filepath, min_nodes_per_term=min_nodes_per_term
160
+ )
161
+ self._log_loading(filetype, filepath=filepath)
162
+
163
+ # Load the TSV file into a dictionary
164
+ annotations_input = self._load_matrix_file(
165
+ filepath, label_colname, nodes_colname, delimiter="\t", nodes_delimiter=nodes_delimiter
166
+ )
167
+
168
+ return load_annotations(network, annotations_input, min_nodes_per_term)
169
+
170
+ def load_dict_annotation(
171
+ self, network: nx.Graph, content: Dict[str, Any], min_nodes_per_term: int = 2
172
+ ) -> Dict[str, Any]:
173
+ """Load annotations from a provided dictionary and convert them to a dictionary annotation.
174
+
175
+ Args:
176
+ network (NetworkX graph): The network to which the annotations are related.
177
+ content (Dict[str, Any]): The annotations dictionary to load.
178
+ min_nodes_per_term (int, optional): The minimum number of network nodes required for each annotation
179
+ term to be included. Defaults to 2.
180
+
181
+ Returns:
182
+ Dict[str, Any]: A dictionary containing ordered nodes, ordered annotations, and the annotations matrix.
183
+
184
+ Raises:
185
+ TypeError: If the content is not a dictionary.
186
+ """
187
+ # Ensure the input content is a dictionary
188
+ if not isinstance(content, dict):
189
+ raise TypeError(
190
+ f"Expected 'content' to be a dictionary, but got {type(content).__name__} instead."
191
+ )
192
+
193
+ filetype = "Dictionary"
194
+ # Log the loading of the annotations from the dictionary
195
+ params.log_annotations(filepath="In-memory dictionary", filetype=filetype)
196
+ self._log_loading(filetype, "In-memory dictionary")
197
+
198
+ # Load the annotations as a dictionary from the provided dictionary
199
+ return load_annotations(network, content, min_nodes_per_term)
200
+
201
+ def _load_matrix_file(
202
+ self,
203
+ filepath: str,
204
+ label_colname: str,
205
+ nodes_colname: str,
206
+ delimiter: str = ",",
207
+ nodes_delimiter: str = ";",
208
+ ) -> Dict[str, Any]:
209
+ """Load annotations from a CSV or TSV file and convert them to a dictionary.
210
+
211
+ Args:
212
+ filepath (str): Path to the annotation file.
213
+ label_colname (str): Name of the column containing the labels (e.g., GO terms).
214
+ nodes_colname (str): Name of the column containing the nodes associated with each label.
215
+ delimiter (str, optional): Delimiter used to separate columns in the file (default is ',').
216
+ nodes_delimiter (str, optional): Delimiter used to separate multiple nodes within the nodes column (default is ';').
217
+
218
+ Returns:
219
+ Dict[str, Any]: A dictionary where each label is paired with its respective list of nodes.
220
+ """
221
+ # Load the CSV or TSV file into a DataFrame
222
+ annotation = pd.read_csv(filepath, delimiter=delimiter)
223
+ # Split the nodes column by the nodes_delimiter to handle multiple nodes per label
224
+ annotation[nodes_colname] = annotation[nodes_colname].apply(
225
+ lambda x: x.split(nodes_delimiter)
226
+ )
227
+ # Create a dictionary pairing labels with their corresponding list of nodes
228
+ label_node_dict = annotation.set_index(label_colname)[nodes_colname].to_dict()
229
+ return label_node_dict
230
+
231
+ def _log_loading(self, filetype: str, filepath: str = "") -> None:
232
+ """Log information about the network file being loaded.
233
+
234
+ Args:
235
+ filetype (str): The type of the file being loaded (e.g., 'Cytoscape').
236
+ filepath (str, optional): The path to the file being loaded.
237
+ """
238
+ log_header("Loading annotations")
239
+ logger.debug(f"Filetype: {filetype}")
240
+ if filepath:
241
+ logger.debug(f"Filepath: {filepath}")