ripple-down-rules 0.5.0__py3-none-any.whl → 0.5.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,4 @@
1
- __version__ = "0.5.00"
1
+ __version__ = "0.5.2"
2
2
 
3
3
  import logging
4
4
  logger = logging.Logger("rdr")
@@ -92,7 +92,8 @@ class CallableExpression(SubclassJSONSerializer):
92
92
  """
93
93
  A callable that is constructed from a string statement written by an expert.
94
94
  """
95
- encapsulating_function: str = "def _get_value(case):"
95
+ encapsulating_function_name: str = "_get_value"
96
+ encapsulating_function: str = f"def {encapsulating_function_name}(case):"
96
97
 
97
98
  def __init__(self, user_input: Optional[str] = None,
98
99
  conclusion_type: Optional[Tuple[Type]] = None,
@@ -4,6 +4,7 @@ import ast
4
4
  import json
5
5
  import logging
6
6
  import os
7
+ import uuid
7
8
  from abc import ABC, abstractmethod
8
9
 
9
10
  from typing_extensions import Optional, TYPE_CHECKING, List
@@ -145,7 +146,8 @@ class Expert(ABC):
145
146
  else:
146
147
  imports = ''
147
148
  if func_source is not None:
148
- func_source = encapsulate_user_input(func_source, CallableExpression.encapsulating_function)
149
+ uid = uuid.uuid4().hex
150
+ func_source = encapsulate_user_input(func_source, CallableExpression.encapsulating_function + f'_{uid}')
149
151
  else:
150
152
  func_source = 'pass # No user input provided for this case.\n'
151
153
  f.write(imports + func_source + '\n' + '\n\n\n\'===New Answer===\'\n\n\n')
@@ -185,14 +187,17 @@ class Expert(ABC):
185
187
  """
186
188
  file_path = path + '.py'
187
189
  with open(file_path, "r") as f:
188
- all_answers = f.read().split('\n\n\n\'===New Answer===\'\n\n\n')
189
- for answer in all_answers:
190
+ all_answers = f.read().split('\n\n\n\'===New Answer===\'\n\n\n')[:-1]
191
+ all_function_sources = list(extract_function_source(file_path, []).values())
192
+ all_function_sources_names = list(extract_function_source(file_path, []).keys())
193
+ for i, answer in enumerate(all_answers):
190
194
  answer = answer.strip('\n').strip()
191
195
  if 'def ' not in answer and 'pass' in answer:
192
196
  self.all_expert_answers.append(({}, None))
193
197
  scope = extract_imports(tree=ast.parse(answer))
194
- func_source = list(extract_function_source(file_path, []).values())[0]
195
- self.all_expert_answers.append((scope, func_source))
198
+ function_source = all_function_sources[i].replace(all_function_sources_names[i],
199
+ CallableExpression.encapsulating_function_name)
200
+ self.all_expert_answers.append((scope, function_source))
196
201
 
197
202
 
198
203
  class Human(Expert):
@@ -212,7 +217,7 @@ class Human(Expert):
212
217
  def ask_for_conditions(self, case_query: CaseQuery,
213
218
  last_evaluated_rule: Optional[Rule] = None) \
214
219
  -> CallableExpression:
215
- if not self.use_loaded_answers and self.user_prompt.viewer is None:
220
+ if (not self.use_loaded_answers or len(self.all_expert_answers) == 0) and self.user_prompt.viewer is None:
216
221
  show_current_and_corner_cases(case_query.case, {case_query.attribute_name: case_query.target_value},
217
222
  last_evaluated_rule=last_evaluated_rule)
218
223
  return self._get_conditions(case_query)
ripple_down_rules/rdr.py CHANGED
@@ -191,8 +191,8 @@ class RippleDownRules(SubclassJSONSerializer, ABC):
191
191
  match = is_matching(self.classify, case_query, pred_cat)
192
192
  if not match:
193
193
  print(f"Predicted: {pred_cat} but expected: {target}")
194
- if animate_tree and self.start_rule.size > num_rules:
195
- num_rules = self.start_rule.size
194
+ if animate_tree and len(self.start_rule.descendants) > num_rules:
195
+ num_rules = len(self.start_rule.descendants)
196
196
  self.update_figures()
197
197
  i += 1
198
198
  all_predictions = [1 if is_matching(self.classify, case_query) else 0 for case_query in case_queries
@@ -241,6 +241,8 @@ class RippleDownRules(SubclassJSONSerializer, ABC):
241
241
  self.case_type = case_query.case_type if self.case_type is None else self.case_type
242
242
  self.case_name = case_query.case_name if self.case_name is None else self.case_name
243
243
 
244
+ expert = expert or Human(answers_save_path=self.save_dir + '/expert_answers' if self.save_dir else None)
245
+
244
246
  if case_query.target is None:
245
247
  case_query_cp = copy(case_query)
246
248
  conclusions = self.classify(case_query_cp.case, modify_case=True)
@@ -186,7 +186,7 @@ def extract_function_source(file_path: str,
186
186
  func_lines = func_lines[1:]
187
187
  line_numbers.append((node.lineno, node.end_lineno))
188
188
  functions_source[node.name] = dedent("\n".join(func_lines)) if join_lines else func_lines
189
- if len(functions_source) >= len(function_names):
189
+ if (len(functions_source) >= len(function_names)) and (not len(function_names) == 0):
190
190
  break
191
191
  if len(functions_source) < len(function_names):
192
192
  raise ValueError(f"Could not find all functions in {file_path}: {function_names} not found,"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: ripple_down_rules
3
- Version: 0.5.0
3
+ Version: 0.5.2
4
4
  Summary: Implements the various versions of Ripple Down Rules (RDR) for knowledge representation and reasoning.
5
5
  Author-email: Abdelrhman Bassiouny <abassiou@uni-bremen.de>
6
6
  License: GNU GENERAL PUBLIC LICENSE
@@ -693,6 +693,7 @@ Requires-Dist: colorama
693
693
  Requires-Dist: pygments
694
694
  Requires-Dist: sqlalchemy
695
695
  Requires-Dist: pandas
696
+ Requires-Dist: pyparsing
696
697
  Provides-Extra: viz
697
698
  Requires-Dist: networkx>=3.1; extra == "viz"
698
699
  Requires-Dist: matplotlib>=3.7.5; extra == "viz"
@@ -724,36 +725,161 @@ For GUI support, also install:
724
725
  sudo apt-get install libxcb-cursor-dev
725
726
  ```
726
727
 
727
- ```bash
728
-
729
728
  ## Example Usage
730
729
 
731
- Fit the SCRDR to the data, then classify one of the data cases to check if its correct,
732
- and render the tree to a file:
730
+ ### Propositional Example
731
+
732
+ By propositional, I mean that each rule conclusion is a propositional logic statement with a constant value.
733
+
734
+ For this example, we will use the [UCI Zoo dataset](https://archive.ics.uci.edu/ml/datasets/zoo) to classify animals
735
+ into their species based on their features. The dataset contains 101 animals with 16 features, and the target is th
736
+ e species of the animal.
737
+
738
+ To install the dataset:
739
+ ```bash
740
+ pip install ucimlrepo
733
741
  ```
734
742
 
735
743
  ```python
744
+ from __future__ import annotations
736
745
  from ripple_down_rules.datastructures.dataclasses import CaseQuery
737
- from ripple_down_rules.rdr import SingleClassRDR
738
- from ripple_down_rules.datasets import load_zoo_dataset
746
+ from ripple_down_rules.datastructures.case import create_cases_from_dataframe
747
+ from ripple_down_rules.rdr import GeneralRDR
739
748
  from ripple_down_rules.utils import render_tree
749
+ from ucimlrepo import fetch_ucirepo
750
+ from enum import Enum
740
751
 
741
- all_cases, targets = load_zoo_dataset()
752
+ class Species(str, Enum):
753
+ """Enum for the species of the animals in the UCI Zoo dataset."""
754
+ mammal = "mammal"
755
+ bird = "bird"
756
+ reptile = "reptile"
757
+ fish = "fish"
758
+ amphibian = "amphibian"
759
+ insect = "insect"
760
+ molusc = "molusc"
761
+
762
+ @classmethod
763
+ def from_str(cls, value: str) -> Species:
764
+ return getattr(cls, value)
742
765
 
743
- scrdr = SingleClassRDR()
766
+ # fetch dataset
767
+ zoo = fetch_ucirepo(id=111)
744
768
 
745
- # Fit the SCRDR to the data
769
+ # data (as pandas dataframes)
770
+ X = zoo.data.features
771
+ y = zoo.data.targets
772
+
773
+ # This is a utility that allows each row to be a Case instance,
774
+ # which simplifies access to column values using dot notation.
775
+ all_cases = create_cases_from_dataframe(X, name="Animal")
776
+
777
+ # The targets are the species of the animals
778
+ category_names = ["mammal", "bird", "reptile", "fish", "amphibian", "insect", "molusc"]
779
+ category_id_to_name = {i + 1: name for i, name in enumerate(category_names)}
780
+ targets = [Species.from_str(category_id_to_name[i]) for i in y.values.flatten()]
781
+
782
+ # Now that we are done with the data preparation, we can create and use the Ripple Down Rules classifier.
783
+ grdr = GeneralRDR()
784
+
785
+ # Fit the GRDR to the data
746
786
  case_queries = [CaseQuery(case, 'species', type(target), True, _target=target)
747
787
  for case, target in zip(all_cases[:10], targets[:10])]
748
- scrdr.fit(case_queries, animate_tree=True)
788
+ grdr.fit(case_queries, animate_tree=True)
749
789
 
750
790
  # Render the tree to a file
751
- render_tree(scrdr.start_rule, use_dot_exporter=True, filename="scrdr")
791
+ render_tree(grdr.start_rules[0], use_dot_exporter=True, filename="species_rdr")
752
792
 
753
- cat = scrdr.classify(all_cases[50])
793
+ # Classify a case
794
+ cat = grdr.classify(all_cases[50])['species']
754
795
  assert cat == targets[50]
755
796
  ```
756
797
 
798
+ ### Relational Example
799
+
800
+ By relational, I mean that each rule conclusion is not a constant value, but is related to the case being classified,
801
+ you can understand it better by the next example.
802
+
803
+ In this example, we will create a simple robot with parts and use Ripple Down Rules to find the contained objects inside
804
+ another object, in this case, a robot. You see, the result of such a rule will vary depending on the robot
805
+ and the parts it has.
806
+
807
+ ```python
808
+ from __future__ import annotations
809
+
810
+ import os.path
811
+ from dataclasses import dataclass, field
812
+
813
+ from typing_extensions import List, Optional
814
+
815
+ from ripple_down_rules.datastructures.dataclasses import CaseQuery
816
+ from ripple_down_rules.rdr import GeneralRDR
817
+
818
+
819
+ @dataclass(unsafe_hash=True)
820
+ class PhysicalObject:
821
+ """
822
+ A physical object is an object that can be contained in a container.
823
+ """
824
+ name: str
825
+ contained_objects: List[PhysicalObject] = field(default_factory=list, hash=False)
826
+
827
+ @dataclass(unsafe_hash=True)
828
+ class Part(PhysicalObject):
829
+ ...
830
+
831
+ @dataclass(unsafe_hash=True)
832
+ class Robot(PhysicalObject):
833
+ parts: List[Part] = field(default_factory=list, hash=False)
834
+
835
+
836
+ part_a = Part(name="A")
837
+ part_b = Part(name="B")
838
+ part_c = Part(name="C")
839
+ robot = Robot("pr2", parts=[part_a])
840
+ part_a.contained_objects = [part_b]
841
+ part_b.contained_objects = [part_c]
842
+
843
+ case_query = CaseQuery(robot, "contained_objects", (PhysicalObject,), False)
844
+
845
+ load = True # Set to True if you want to load an existing model, False if you want to create a new one.
846
+ if load and os.path.exists('./part_containment_rdr'):
847
+ grdr = GeneralRDR.load('./', model_name='part_containment_rdr')
848
+ grdr.ask_always = False # Set to True if you want to always ask the expert for a target value.
849
+ else:
850
+ grdr = GeneralRDR(save_dir='./', model_name='part_containment_rdr')
851
+
852
+ grdr.fit_case(case_query)
853
+
854
+ print(grdr.classify(robot)['contained_objects'])
855
+ assert grdr.classify(robot)['contained_objects'] == {part_b}
856
+ ```
857
+
858
+ When prompted to write a rule, I wrote the following inside the template function that the Ripple Down Rules created
859
+ for me, this function takes a `case` object as input:
860
+
861
+ ```python
862
+ contained_objects = []
863
+ for part in case.parts:
864
+ contained_objects.extend(part.contained_objects)
865
+ return contained_objects
866
+ ```
867
+
868
+ And then when asked for conditions, I wrote the following inside the template function that the Ripple Down Rules
869
+ created:
870
+
871
+ ```python
872
+ return len(case.parts) > 0
873
+ ```
874
+
875
+ This means that the rule will only be applied if the robot has parts.
876
+
877
+ If you notice, the result only contains part B, while one could say that part C is also contained in the robot, but,
878
+ the rule we wrote only returns the contained objects of the parts of the robot. To get part C, we would have to
879
+ add another rule that says that the contained objects of my contained objects are also contained in me, you can
880
+ try that yourself and see if it works!
881
+
882
+
757
883
  ## To Cite:
758
884
 
759
885
  ```bib
@@ -761,6 +887,6 @@ assert cat == targets[50]
761
887
  author = {Bassiouny, Abdelrhman},
762
888
  title = {Ripple-Down-Rules},
763
889
  url = {https://github.com/AbdelrhmanBassiouny/ripple_down_rules},
764
- version = {0.4.1},
890
+ version = {0.5.2},
765
891
  }
766
892
  ```
@@ -1,15 +1,14 @@
1
- ripple_down_rules/__init__.py,sha256=FQAv_KtUXVoz9VCR37DEoK0MC84rKZnIRUy-4pQ95sE,100
2
- ripple_down_rules/datasets.py,sha256=fJbZ7V-UUYTu5XVVpFinTbuzN3YePCnUB01L3AyZVM8,6837
3
- ripple_down_rules/experts.py,sha256=9Vc3vx0uhDPy3YlNjwKuWJLl_A-kubRPUU6bMvQhaAg,13237
1
+ ripple_down_rules/__init__.py,sha256=K8GayszN_Ydn9s_OsfTRq83trUr2_x64cQwQX9gwF-E,99
2
+ ripple_down_rules/experts.py,sha256=tjCq_T_d2qc_DhyBlxfqoT3oHk6-HmKFZFqGZAdXUb0,13660
4
3
  ripple_down_rules/failures.py,sha256=E6ajDUsw3Blom8eVLbA7d_Qnov2conhtZ0UmpQ9ZtSE,302
5
4
  ripple_down_rules/helpers.py,sha256=TvTJU0BA3dPcAyzvZFvAu7jZqsp8Lu0HAAwvuizlGjg,2018
6
- ripple_down_rules/rdr.py,sha256=E1OiiZClQyAfGjL64ID-MWYFO4-h8iUAX-Vm9qrOoeQ,48727
5
+ ripple_down_rules/rdr.py,sha256=FJYuRXgpUYSSK1pYrp2yeXb_ZZ2xjPED31tzxofokL4,48865
7
6
  ripple_down_rules/rdr_decorators.py,sha256=pYCKLgMKgQ6x_252WQtF2t4ZNjWPBxnaWtJ6TpGdcc0,7820
8
7
  ripple_down_rules/rules.py,sha256=TPNVMqW9T-_46BS4WemrspLg5uG8kP6tsPvWWBAzJxg,17515
9
8
  ripple_down_rules/start-code-server.sh,sha256=otClk7VmDgBOX2TS_cjws6K0UwvgAUJhoA0ugkPCLqQ,949
10
- ripple_down_rules/utils.py,sha256=uS38KcFceRMzT_470DCL1M0LzETdP5RLwE7cCmfo7eI,51086
9
+ ripple_down_rules/utils.py,sha256=cv40XBj-tp11aRYcAPhPtkrYatMvAKk_1d5P7PB1-tw,51123
11
10
  ripple_down_rules/datastructures/__init__.py,sha256=V2aNgf5C96Y5-IGghra3n9uiefpoIm_QdT7cc_C8cxQ,111
12
- ripple_down_rules/datastructures/callable_expression.py,sha256=3EucsD3jWzekhjyzL2y0dyUsucd-aqC9glmgPL0Ubb4,12425
11
+ ripple_down_rules/datastructures/callable_expression.py,sha256=D2KD1RdShzxYZPAERgywZ5ZPE4ar8WmMtXINqvYo_Tc,12497
13
12
  ripple_down_rules/datastructures/case.py,sha256=r8kjL9xP_wk84ThXusspgPMrAoed2bGQmKi54fzhmH8,15258
14
13
  ripple_down_rules/datastructures/dataclasses.py,sha256=PuD-7zWqWT2p4FnGvnihHvZlZKg9A1ctnFgVYf2cs-8,8554
15
14
  ripple_down_rules/datastructures/enums.py,sha256=ce7tqS0otfSTNAOwsnXlhsvIn4iW_Y_N3TNebF3YoZs,5700
@@ -19,8 +18,8 @@ ripple_down_rules/user_interface/ipython_custom_shell.py,sha256=24MIFwqnAhC6ofOb
19
18
  ripple_down_rules/user_interface/object_diagram.py,sha256=tsB6iuLNEbHxp5lR2WjyejjWbnAX_nHF9xS8jNPOQVk,4548
20
19
  ripple_down_rules/user_interface/prompt.py,sha256=AkkltdDIaioN43lkRKDPKSjJcmdSSGZDMYz7AL7X9lE,8082
21
20
  ripple_down_rules/user_interface/template_file_creator.py,sha256=ycCbddy_BJP8d0Q2Sj21UzamhGtqGZuK_e73VTJqznY,13766
22
- ripple_down_rules-0.5.0.dist-info/licenses/LICENSE,sha256=ixuiBLtpoK3iv89l7ylKkg9rs2GzF9ukPH7ynZYzK5s,35148
23
- ripple_down_rules-0.5.0.dist-info/METADATA,sha256=LYiepkd0xlfYVqVMdVrKZNbMJuxybqBheA2b0_CgGsY,43306
24
- ripple_down_rules-0.5.0.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
25
- ripple_down_rules-0.5.0.dist-info/top_level.txt,sha256=VeoLhEhyK46M1OHwoPbCQLI1EifLjChqGzhQ6WEUqeM,18
26
- ripple_down_rules-0.5.0.dist-info/RECORD,,
21
+ ripple_down_rules-0.5.2.dist-info/licenses/LICENSE,sha256=ixuiBLtpoK3iv89l7ylKkg9rs2GzF9ukPH7ynZYzK5s,35148
22
+ ripple_down_rules-0.5.2.dist-info/METADATA,sha256=O3NmfxnYkTpT9dNAkJ3nOEsG-oau7PMotx37fFSwnqQ,47688
23
+ ripple_down_rules-0.5.2.dist-info/WHEEL,sha256=zaaOINJESkSfm_4HQVc5ssNzHCPXhJm0kEUakpsEHaU,91
24
+ ripple_down_rules-0.5.2.dist-info/top_level.txt,sha256=VeoLhEhyK46M1OHwoPbCQLI1EifLjChqGzhQ6WEUqeM,18
25
+ ripple_down_rules-0.5.2.dist-info/RECORD,,
@@ -1,222 +0,0 @@
1
- from __future__ import annotations
2
-
3
- import os
4
- import pickle
5
- from dataclasses import dataclass, field
6
-
7
- import sqlalchemy
8
- from sqlalchemy import ForeignKey
9
- from sqlalchemy.orm import MappedAsDataclass, Mapped, mapped_column, relationship, MappedColumn
10
- from typing_extensions import Tuple, List, Set, Optional, Self
11
- from ucimlrepo import fetch_ucirepo
12
-
13
- from .datastructures.case import Case, create_cases_from_dataframe
14
- from .datastructures.enums import Category
15
- from .rdr_decorators import RDRDecorator
16
-
17
-
18
- def load_cached_dataset(cache_file):
19
- """Loads the dataset from cache if it exists."""
20
- dataset = {}
21
- if '.pkl' not in cache_file:
22
- cache_file += ".pkl"
23
- for key in ["features", "targets", "ids"]:
24
- part_file = cache_file.replace(".pkl", f"_{key}.pkl")
25
- if not os.path.exists(part_file):
26
- return None
27
- with open(part_file, "rb") as f:
28
- dataset[key] = pickle.load(f)
29
- return dataset
30
-
31
-
32
- def save_dataset_to_cache(dataset, cache_file):
33
- """Saves only essential parts of the dataset to cache."""
34
- dataset_to_cache = {
35
- "features": dataset.data.features,
36
- "targets": dataset.data.targets,
37
- "ids": dataset.data.ids,
38
- }
39
-
40
- for key, value in dataset_to_cache.items():
41
- with open(cache_file.replace(".pkl", f"_{key}.pkl"), "wb") as f:
42
- pickle.dump(dataset_to_cache[key], f)
43
- print("Dataset cached successfully.")
44
-
45
-
46
- def get_dataset(dataset_id, cache_file: Optional[str] = None):
47
- """Fetches dataset from cache or downloads it if not available."""
48
- if cache_file is not None:
49
- if not cache_file.endswith(".pkl"):
50
- cache_file += ".pkl"
51
- dataset = load_cached_dataset(cache_file) if cache_file else None
52
- if dataset is None:
53
- print("Downloading dataset...")
54
- dataset = fetch_ucirepo(id=dataset_id)
55
-
56
- # Check if dataset is valid before caching
57
- if dataset is None or not hasattr(dataset, "data"):
58
- print("Error: Failed to fetch dataset.")
59
- return None
60
-
61
- if cache_file:
62
- save_dataset_to_cache(dataset, cache_file)
63
-
64
- dataset = {
65
- "features": dataset.data.features,
66
- "targets": dataset.data.targets,
67
- "ids": dataset.data.ids,
68
- }
69
-
70
- return dataset
71
-
72
-
73
- def load_zoo_dataset(cache_file: Optional[str] = None) -> Tuple[List[Case], List[Species]]:
74
- """
75
- Load the zoo dataset.
76
-
77
- :param cache_file: the cache file to store the dataset or load it from.
78
- :return: all cases and targets.
79
- """
80
- # fetch dataset
81
- zoo = get_dataset(111, cache_file)
82
-
83
- # data (as pandas dataframes)
84
- X = zoo['features']
85
- y = zoo['targets']
86
- # get ids as list of strings
87
- ids = zoo['ids'].values.flatten()
88
- all_cases = create_cases_from_dataframe(X, name="Animal")
89
-
90
- category_names = ["mammal", "bird", "reptile", "fish", "amphibian", "insect", "molusc"]
91
- category_id_to_name = {i + 1: name for i, name in enumerate(category_names)}
92
- # targets = [getattr(SpeciesCol, category_id_to_name[i]) for i in y.values.flatten()]
93
- targets = [Species.from_str(category_id_to_name[i]) for i in y.values.flatten()]
94
- return all_cases, targets
95
-
96
-
97
- class Species(Category):
98
- mammal = "mammal"
99
- bird = "bird"
100
- reptile = "reptile"
101
- fish = "fish"
102
- amphibian = "amphibian"
103
- insect = "insect"
104
- molusc = "molusc"
105
-
106
-
107
- class Habitat(Category):
108
- """
109
- A habitat category is a category that represents the habitat of an animal.
110
- """
111
- land = "land"
112
- water = "water"
113
- air = "air"
114
-
115
-
116
- class PhysicalObject:
117
- """
118
- A physical object is an object that can be contained in a container.
119
- """
120
- _rdr_json_dir: str = os.path.join(os.path.dirname(__file__), "../../test/test_results")
121
- """
122
- The directory where the RDR serialized JSON files are stored.
123
- """
124
- _rdr_python_dir: str = os.path.join(os.path.dirname(__file__), "../../test/test_generated_rdrs")
125
- """
126
- The directory where the RDR generated Python files are stored.
127
- """
128
- _is_a_robot_rdr: RDRDecorator = RDRDecorator(_rdr_json_dir, (bool,), True,
129
- python_dir=_rdr_python_dir)
130
- """
131
- The RDR decorator that is used to determine if the object is a robot or not.
132
- """
133
- _select_parts_rdr: RDRDecorator = RDRDecorator(_rdr_json_dir, (Self,), False,
134
- python_dir=_rdr_python_dir)
135
- """
136
- The RDR decorator that is used to determine if the object is a robot or not.
137
- """
138
-
139
- def __init__(self, name: str, contained_objects: Optional[List[PhysicalObject]] = None):
140
- self.name: str = name
141
- self._contained_objects: List[PhysicalObject] = contained_objects or []
142
-
143
- @property
144
- def contained_objects(self) -> List[PhysicalObject]:
145
- return self._contained_objects
146
-
147
- @contained_objects.setter
148
- def contained_objects(self, value: List[PhysicalObject]):
149
- self._contained_objects = value
150
-
151
- @_is_a_robot_rdr.decorator
152
- def is_a_robot(self) -> bool:
153
- pass
154
-
155
- @_select_parts_rdr.decorator
156
- def select_objects_that_are_parts_of_robot(self, objects: List[PhysicalObject], robot: Robot) -> List[PhysicalObject]:
157
- pass
158
-
159
- def __str__(self):
160
- return self.name
161
-
162
- def __repr__(self):
163
- return self.name
164
-
165
-
166
- class Part(PhysicalObject):
167
- ...
168
-
169
-
170
- class Robot(PhysicalObject):
171
-
172
- def __init__(self, name: str, parts: Optional[List[Part]] = None):
173
- super().__init__(name)
174
- self.parts: List[Part] = parts if parts else []
175
-
176
-
177
- class Base(sqlalchemy.orm.DeclarativeBase):
178
- pass
179
-
180
-
181
- class HabitatTable(MappedAsDataclass, Base):
182
- __tablename__ = "Habitat"
183
-
184
- id: Mapped[int] = mapped_column(init=False, primary_key=True, autoincrement=True)
185
- habitat: Mapped[Habitat]
186
- animal_id: MappedColumn = mapped_column(ForeignKey("Animal.id"), init=False)
187
-
188
- def __hash__(self):
189
- return hash(self.habitat)
190
-
191
- def __str__(self):
192
- return f"{HabitatTable.__name__}({Habitat.__name__}.{self.habitat.name})"
193
-
194
- def __repr__(self):
195
- return self.__str__()
196
-
197
-
198
- class MappedAnimal(MappedAsDataclass, Base):
199
- __tablename__ = "Animal"
200
-
201
- id: Mapped[int] = mapped_column(init=False, primary_key=True, autoincrement=True)
202
- name: Mapped[str]
203
- hair: Mapped[bool]
204
- feathers: Mapped[bool]
205
- eggs: Mapped[bool]
206
- milk: Mapped[bool]
207
- airborne: Mapped[bool]
208
- aquatic: Mapped[bool]
209
- predator: Mapped[bool]
210
- toothed: Mapped[bool]
211
- backbone: Mapped[bool]
212
- breathes: Mapped[bool]
213
- venomous: Mapped[bool]
214
- fins: Mapped[bool]
215
- legs: Mapped[int]
216
- tail: Mapped[bool]
217
- domestic: Mapped[bool]
218
- catsize: Mapped[bool]
219
- species: Mapped[Species] = mapped_column(nullable=True)
220
-
221
- habitats: Mapped[Set[HabitatTable]] = relationship(default_factory=set)
222
-