rgwfuncs 0.0.8__py3-none-any.whl → 0.0.9__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rgwfuncs/__init__.py CHANGED
@@ -1,4 +1,4 @@
1
1
  # This file is automatically generated
2
2
  # Dynamically importing functions from modules
3
3
 
4
- from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, docs, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, top_n_unique_values, union_join, update_rows
4
+ from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, docs, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, sync_dataframe_to_sqlite_database, top_n_unique_values, union_join, update_rows
rgwfuncs/df_lib.py CHANGED
@@ -1686,3 +1686,60 @@ def right_join(df1: pd.DataFrame, df2: pd.DataFrame, left_on: str, right_on: str
1686
1686
  A new DataFrame as the result of a right join.
1687
1687
  """
1688
1688
  return df1.merge(df2, how='right', left_on=left_on, right_on=right_on)
1689
+
1690
+ def sync_dataframe_to_sqlite_database(db_path: str, tablename: str, df: pd.DataFrame) -> None:
1691
+ """
1692
+ Processes and saves a DataFrame to an SQLite database, adding a timestamp column
1693
+ and replacing the existing table if needed. Creates the table if it does not exist.
1694
+
1695
+ Parameters:
1696
+ - db_path (str): Path to the SQLite database file.
1697
+ - tablename (str): The name of the table in the database.
1698
+ - df (pd.DataFrame): The DataFrame to be processed and saved.
1699
+ """
1700
+ # Step 1: Add a timestamp column to the dataframe
1701
+ df['rgwfuncs_sync_timestamp'] = datetime.now().strftime('%Y-%m-%d %H:%M:%S')
1702
+
1703
+ # Define a simple mapping from pandas dtypes to SQLite types
1704
+ dtype_mapping = {
1705
+ 'int64': 'INTEGER',
1706
+ 'float64': 'REAL',
1707
+ 'object': 'TEXT',
1708
+ 'datetime64[ns]': 'TEXT', # Dates are stored as text in SQLite
1709
+ 'bool': 'INTEGER', # SQLite does not have a separate Boolean storage class
1710
+ }
1711
+
1712
+ # Helper function to map pandas dtype to SQLite type
1713
+ def map_dtype(dtype):
1714
+ return dtype_mapping.get(str(dtype), 'TEXT')
1715
+
1716
+ # Step 2: Save df in SQLite3 db as '{tablename}_new'
1717
+ with sqlite3.connect(db_path) as conn:
1718
+ new_table_name = f"{tablename}_new"
1719
+
1720
+ # Check if the new table already exists, create if not
1721
+ cursor = conn.cursor()
1722
+ cursor.execute(f"PRAGMA table_info({new_table_name})")
1723
+ if cursor.fetchall() == []: # Table does not exist
1724
+ # Create a table using the DataFrame's column names and types
1725
+ columns_with_types = ', '.join(
1726
+ f'"{col}" {map_dtype(dtype)}' for col, dtype in zip(df.columns, df.dtypes)
1727
+ )
1728
+ create_table_query = f'CREATE TABLE "{new_table_name}" ({columns_with_types})'
1729
+ conn.execute(create_table_query)
1730
+
1731
+ # Insert data into the new table
1732
+ df.to_sql(new_table_name, conn, if_exists='replace', index=False)
1733
+
1734
+ # Step 3: If '{tablename}_new' is not empty, delete table '{tablename}' (if it exists), and rename '{tablename}_new' to '{tablename}'
1735
+ # Check if the new table is not empty
1736
+ cursor.execute(f"SELECT COUNT(*) FROM {new_table_name}")
1737
+ count = cursor.fetchone()[0]
1738
+
1739
+ if count > 0:
1740
+ # Drop the old table if it exists
1741
+ conn.execute(f"DROP TABLE IF EXISTS {tablename}")
1742
+ # Rename the new table to the old table name
1743
+ conn.execute(f"ALTER TABLE {new_table_name} RENAME TO {tablename}")
1744
+
1745
+
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rgwfuncs
3
- Version: 0.0.8
3
+ Version: 0.0.9
4
4
  Summary: A functional programming paradigm for mathematical modelling and data science
5
5
  Home-page: https://github.com/ryangerardwilson/rgwfunc
6
6
  Author: Ryan Gerard Wilson
@@ -1151,6 +1151,30 @@ Perform a right join on two DataFrames.
1151
1151
 
1152
1152
  --------------------------------------------------------------------------------
1153
1153
 
1154
+ ### 45. `sync_dataframe_to_sqlite_database`
1155
+ Processes and saves a DataFrame to an SQLite database, adding a timestamp column and replacing the existing table if needed. Creates the table if it does not exist.
1156
+
1157
+ • Parameters:
1158
+ - `db_path` (str): Path to the SQLite database file.
1159
+ - `tablename` (str): The name of the table in the database.
1160
+ - `df` (pd.DataFrame): The DataFrame to be processed and saved.
1161
+
1162
+ • Returns:
1163
+ - None
1164
+
1165
+ • Example:
1166
+
1167
+ from rgwfuncs import sync_dataframe_to_sqlite_database
1168
+ import pandas as pd
1169
+
1170
+ df = pd.DataFrame({'ID': [1, 2, 3], 'Value': [10, 20, 30]})
1171
+ db_path = 'my_database.db'
1172
+ tablename = 'my_table'
1173
+
1174
+ sync_dataframe_to_sqlite_database(db_path, tablename, df)
1175
+
1176
+ --------------------------------------------------------------------------------
1177
+
1154
1178
  ## Additional Info
1155
1179
 
1156
1180
  For more information, refer to each function’s docstring by calling:
@@ -0,0 +1,8 @@
1
+ rgwfuncs/__init__.py,sha256=BP8Nh8ivyCCz8Ga-21JW3NWInJFOElKoIfRuioJRWbA,1076
2
+ rgwfuncs/df_lib.py,sha256=3PYfu_zs8HfL56C9Sb41jzoyaG9Oc7x5MZQYvo1zy6M,62930
3
+ rgwfuncs-0.0.9.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
4
+ rgwfuncs-0.0.9.dist-info/METADATA,sha256=tJiGspLMJbt78FGyyvf3w10ZbWCn17PJ4070wUsH1ew,32058
5
+ rgwfuncs-0.0.9.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
+ rgwfuncs-0.0.9.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
7
+ rgwfuncs-0.0.9.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
8
+ rgwfuncs-0.0.9.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- rgwfuncs/__init__.py,sha256=o4BBYVERWwAx8dknJ03yVCHqV9o8D1qrRgFeJrtpDWg,1041
2
- rgwfuncs/df_lib.py,sha256=b_Xz4BnLAx2BFLj5bjzbVt5TcxOWN4oyHuCBnTZIKgs,60443
3
- rgwfuncs-0.0.8.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
4
- rgwfuncs-0.0.8.dist-info/METADATA,sha256=Ls5PvyV-OPQtxRzRdphYseP9dWIC8l0JE_NeVgYnSWQ,31259
5
- rgwfuncs-0.0.8.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- rgwfuncs-0.0.8.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
7
- rgwfuncs-0.0.8.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
8
- rgwfuncs-0.0.8.dist-info/RECORD,,