rgwfuncs 0.0.48__py3-none-any.whl → 0.0.51__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rgwfuncs/algebra_lib.py +71 -80
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/METADATA +30 -30
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/RECORD +7 -7
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/LICENSE +0 -0
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/WHEEL +0 -0
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/entry_points.txt +0 -0
- {rgwfuncs-0.0.48.dist-info → rgwfuncs-0.0.51.dist-info}/top_level.txt +0 -0
rgwfuncs/algebra_lib.py
CHANGED
@@ -1,7 +1,6 @@
|
|
1
1
|
import re
|
2
2
|
import math
|
3
3
|
import ast
|
4
|
-
# import numpy as np
|
5
4
|
from sympy import symbols, latex, simplify, solve, diff, Expr, factor, cancel, Eq
|
6
5
|
from sympy.core.sympify import SympifyError
|
7
6
|
from sympy.core import S
|
@@ -412,69 +411,6 @@ def factor_polynomial_expression(
|
|
412
411
|
return latex_result
|
413
412
|
|
414
413
|
|
415
|
-
def cancel_polynomial_expression(
|
416
|
-
expression: str,
|
417
|
-
subs: Optional[Dict[str, float]] = None
|
418
|
-
) -> str:
|
419
|
-
"""
|
420
|
-
Cancels common factors within a polynomial expression and converts it to LaTeX format.
|
421
|
-
|
422
|
-
This function parses an algebraic expression given in Python syntax, cancels any common factors,
|
423
|
-
and converts the resulting simplified expression into a LaTeX formatted string. The function can
|
424
|
-
also handle optional substitutions of variables before performing the cancellation.
|
425
|
-
|
426
|
-
Parameters:
|
427
|
-
expression (str): The algebraic expression to simplify and convert to LaTeX.
|
428
|
-
It should be a valid expression formatted using Python syntax.
|
429
|
-
subs (Optional[Dict[str, float]]): An optional dictionary where the keys are variable names in the
|
430
|
-
expression, and the values are the corresponding numbers to substitute
|
431
|
-
into the expression before simplification.
|
432
|
-
|
433
|
-
Returns:
|
434
|
-
str: The LaTeX formatted string of the simplified expression. If the expression involves
|
435
|
-
indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
436
|
-
|
437
|
-
Raises:
|
438
|
-
ValueError: If the expression cannot be parsed due to syntax errors or if operations result in
|
439
|
-
undefined behavior, such as division by zero.
|
440
|
-
|
441
|
-
"""
|
442
|
-
transformations = standard_transformations + (implicit_multiplication_application,)
|
443
|
-
|
444
|
-
def parse_and_cancel_expression(expr_str: str, sym_vars: Dict[str, symbols]) -> symbols:
|
445
|
-
try:
|
446
|
-
expr = parse_expr(expr_str, local_dict=sym_vars, transformations=transformations)
|
447
|
-
if subs:
|
448
|
-
if not isinstance(subs, dict):
|
449
|
-
raise ValueError(f"Substitutions must be a dictionary. Received: {subs}")
|
450
|
-
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
451
|
-
expr = expr.subs(subs_symbols)
|
452
|
-
|
453
|
-
canceled_expr = cancel(expr)
|
454
|
-
|
455
|
-
# Check for NaN or indeterminate forms
|
456
|
-
if canceled_expr.has(S.NaN) or canceled_expr.has(S.Infinity) or canceled_expr.has(S.ComplexInfinity):
|
457
|
-
return "Undefined result. This could be a division by zero error."
|
458
|
-
|
459
|
-
return canceled_expr
|
460
|
-
|
461
|
-
except (SyntaxError, ValueError, TypeError, AttributeError, ZeroDivisionError, SympifyError) as e:
|
462
|
-
return f"Error: {str(e)}"
|
463
|
-
|
464
|
-
variable_names = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
465
|
-
sym_vars = {var: symbols(var) for var in variable_names}
|
466
|
-
|
467
|
-
expr = parse_and_cancel_expression(expression, sym_vars)
|
468
|
-
|
469
|
-
# If the expression is already a string (i.e., "Undefined" or error message), return it directly
|
470
|
-
if isinstance(expr, str):
|
471
|
-
return expr
|
472
|
-
|
473
|
-
# Otherwise, convert to LaTeX as usual
|
474
|
-
latex_result = latex(expr)
|
475
|
-
return latex_result
|
476
|
-
|
477
|
-
|
478
414
|
def simplify_polynomial_expression(
|
479
415
|
expression: str,
|
480
416
|
subs: Optional[Dict[str, float]] = None
|
@@ -650,6 +586,69 @@ def simplify_polynomial_expression(
|
|
650
586
|
raise ValueError(f"Error simplifying expression: {e}")
|
651
587
|
|
652
588
|
|
589
|
+
def cancel_polynomial_expression(
|
590
|
+
expression: str,
|
591
|
+
subs: Optional[Dict[str, float]] = None
|
592
|
+
) -> str:
|
593
|
+
"""
|
594
|
+
Cancels common factors within a polynomial expression and converts it to LaTeX format.
|
595
|
+
|
596
|
+
This function parses an algebraic expression given in Python syntax, cancels any common factors,
|
597
|
+
and converts the resulting simplified expression into a LaTeX formatted string. The function can
|
598
|
+
also handle optional substitutions of variables before performing the cancellation.
|
599
|
+
|
600
|
+
Parameters:
|
601
|
+
expression (str): The algebraic expression to simplify and convert to LaTeX.
|
602
|
+
It should be a valid expression formatted using Python syntax.
|
603
|
+
subs (Optional[Dict[str, float]]): An optional dictionary where the keys are variable names in the
|
604
|
+
expression, and the values are the corresponding numbers to substitute
|
605
|
+
into the expression before simplification.
|
606
|
+
|
607
|
+
Returns:
|
608
|
+
str: The LaTeX formatted string of the simplified expression. If the expression involves
|
609
|
+
indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
610
|
+
|
611
|
+
Raises:
|
612
|
+
ValueError: If the expression cannot be parsed due to syntax errors or if operations result in
|
613
|
+
undefined behavior, such as division by zero.
|
614
|
+
|
615
|
+
"""
|
616
|
+
transformations = standard_transformations + (implicit_multiplication_application,)
|
617
|
+
|
618
|
+
def parse_and_cancel_expression(expr_str: str, sym_vars: Dict[str, symbols]) -> symbols:
|
619
|
+
try:
|
620
|
+
expr = parse_expr(expr_str, local_dict=sym_vars, transformations=transformations)
|
621
|
+
if subs:
|
622
|
+
if not isinstance(subs, dict):
|
623
|
+
raise ValueError(f"Substitutions must be a dictionary. Received: {subs}")
|
624
|
+
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
625
|
+
expr = expr.subs(subs_symbols)
|
626
|
+
|
627
|
+
canceled_expr = cancel(expr)
|
628
|
+
|
629
|
+
# Check for NaN or indeterminate forms
|
630
|
+
if canceled_expr.has(S.NaN) or canceled_expr.has(S.Infinity) or canceled_expr.has(S.ComplexInfinity):
|
631
|
+
return "Undefined result. This could be a division by zero error."
|
632
|
+
|
633
|
+
return canceled_expr
|
634
|
+
|
635
|
+
except (SyntaxError, ValueError, TypeError, AttributeError, ZeroDivisionError, SympifyError) as e:
|
636
|
+
return f"Error: {str(e)}"
|
637
|
+
|
638
|
+
variable_names = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
639
|
+
sym_vars = {var: symbols(var) for var in variable_names}
|
640
|
+
|
641
|
+
expr = parse_and_cancel_expression(expression, sym_vars)
|
642
|
+
|
643
|
+
# If the expression is already a string (i.e., "Undefined" or error message), return it directly
|
644
|
+
if isinstance(expr, str):
|
645
|
+
return expr
|
646
|
+
|
647
|
+
# Otherwise, convert to LaTeX as usual
|
648
|
+
latex_result = latex(expr)
|
649
|
+
return latex_result
|
650
|
+
|
651
|
+
|
653
652
|
def solve_homogeneous_polynomial_expression(
|
654
653
|
expression: str,
|
655
654
|
variable: str,
|
@@ -677,36 +676,28 @@ def solve_homogeneous_polynomial_expression(
|
|
677
676
|
"""
|
678
677
|
|
679
678
|
try:
|
680
|
-
|
681
|
-
print("681", variable)
|
682
|
-
print("682", subs)
|
683
|
-
|
679
|
+
# Handle symbols
|
684
680
|
variable_symbols = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
685
681
|
sym_vars = {var: symbols(var) for var in variable_symbols}
|
686
682
|
|
683
|
+
# Parse the expression
|
687
684
|
expr = parse_expr(expression, local_dict=sym_vars)
|
688
|
-
print("Parsed expression:", expr)
|
689
685
|
|
686
|
+
# Apply substitutions
|
690
687
|
if subs:
|
691
688
|
expr = expr.subs({symbols(k): v for k, v in subs.items()})
|
692
|
-
print("Expression after substitution:", expr)
|
693
689
|
|
690
|
+
# Solve the equation
|
694
691
|
var_symbol = symbols(variable)
|
695
|
-
|
696
692
|
eq = Eq(expr, 0)
|
697
|
-
print("Equation to solve:", eq)
|
698
|
-
|
699
693
|
solutions = solve(eq, var_symbol)
|
700
694
|
|
701
|
-
|
702
|
-
|
703
|
-
result = r"\left[" + ", ".join(latex_solutions) + r"\right]"
|
704
|
-
else:
|
705
|
-
result = r"\left[\right]"
|
695
|
+
# Convert solutions to LaTeX strings with handling for exact representations
|
696
|
+
latex_solutions = [latex(sol) for sol in solutions]
|
706
697
|
|
707
|
-
|
698
|
+
result = r"\left[" + ", ".join(latex_solutions) + r"\right]"
|
699
|
+
print("693", result)
|
708
700
|
return result
|
709
701
|
|
710
702
|
except Exception as e:
|
711
703
|
raise ValueError(f"Error solving the expression: {e}")
|
712
|
-
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.51
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -430,35 +430,7 @@ Factors a polynomial expression written in Python syntax and converts it into a
|
|
430
430
|
|
431
431
|
--------------------------------------------------------------------------------
|
432
432
|
|
433
|
-
### 8. `
|
434
|
-
|
435
|
-
Cancels common factors within a polynomial expression written in Python syntax and converts it to a LaTeX formatted string. This function parses an algebraic expression, cancels common factors using SymPy, and translates the reduced expression into a LaTeX representation. It can also accommodate optional substitutions to be made prior to simplification.
|
436
|
-
|
437
|
-
- Parameters:
|
438
|
-
- `expression` (str): The algebraic expression to simplify and convert to LaTeX. This string should be formatted using Python syntax.
|
439
|
-
- `subs` (Optional[Dict[str, float]]): An optional dictionary of substitutions where the keys are variable names in the expression, and the values are the numbers to substitute.
|
440
|
-
|
441
|
-
- Returns:
|
442
|
-
- `str`: The LaTeX formatted string of the simplified expression. If the expression involves indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
443
|
-
|
444
|
-
- Raises:
|
445
|
-
- `ValueError`: If the expression cannot be parsed due to syntax errors or involves undefined operations, such as division by zero.
|
446
|
-
|
447
|
-
- Example:
|
448
|
-
|
449
|
-
from rgwfuncs import cancel_polynomial_expression
|
450
|
-
|
451
|
-
# Cancel common factors within a polynomial expression
|
452
|
-
latex_result1 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)")
|
453
|
-
print(latex_result1) # Output: "x + 2"
|
454
|
-
|
455
|
-
# Cancel with substituted values
|
456
|
-
latex_result2 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)", {"x": 2})
|
457
|
-
print(latex_result2) # Output: "Undefined result. This could be a division by zero error."
|
458
|
-
|
459
|
-
--------------------------------------------------------------------------------
|
460
|
-
|
461
|
-
### 9. `simplify_polynomial_expression`
|
433
|
+
### 8. `simplify_polynomial_expression`
|
462
434
|
|
463
435
|
Simplifies an algebraic expression in polynomial form and returns it in LaTeX format. Takes an algebraic expression, in polynomial form, written in Python syntax and simplifies it. The result is returned as a LaTeX formatted string, suitable for academic or professional documentation.
|
464
436
|
|
@@ -491,6 +463,34 @@ Simplifies an algebraic expression in polynomial form and returns it in LaTeX fo
|
|
491
463
|
|
492
464
|
--------------------------------------------------------------------------------
|
493
465
|
|
466
|
+
### 9. `cancel_polynomial_expression`
|
467
|
+
|
468
|
+
Cancels common factors within a polynomial expression written in Python syntax and converts it to a LaTeX formatted string. This function parses an algebraic expression, cancels common factors using SymPy, and translates the reduced expression into a LaTeX representation. It can also accommodate optional substitutions to be made prior to simplification.
|
469
|
+
|
470
|
+
- Parameters:
|
471
|
+
- `expression` (str): The algebraic expression to simplify and convert to LaTeX. This string should be formatted using Python syntax.
|
472
|
+
- `subs` (Optional[Dict[str, float]]): An optional dictionary of substitutions where the keys are variable names in the expression, and the values are the numbers to substitute.
|
473
|
+
|
474
|
+
- Returns:
|
475
|
+
- `str`: The LaTeX formatted string of the simplified expression. If the expression involves indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
476
|
+
|
477
|
+
- Raises:
|
478
|
+
- `ValueError`: If the expression cannot be parsed due to syntax errors or involves undefined operations, such as division by zero.
|
479
|
+
|
480
|
+
- Example:
|
481
|
+
|
482
|
+
from rgwfuncs import cancel_polynomial_expression
|
483
|
+
|
484
|
+
# Cancel common factors within a polynomial expression
|
485
|
+
latex_result1 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)")
|
486
|
+
print(latex_result1) # Output: "x + 2"
|
487
|
+
|
488
|
+
# Cancel with substituted values
|
489
|
+
latex_result2 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)", {"x": 2})
|
490
|
+
print(latex_result2) # Output: "Undefined result. This could be a division by zero error."
|
491
|
+
|
492
|
+
--------------------------------------------------------------------------------
|
493
|
+
|
494
494
|
### 10. `solve_homogeneous_polynomial_expression`
|
495
495
|
|
496
496
|
Solves a homogeneous polynomial expression for a specified variable and returns solutions in LaTeX format. Assumes that the expression is homoegeneous (i.e. equal to zero), and solves for a designated variable. May optionally include substitutions for other variables in the equation. The solutions are provided as a LaTeX formatted string. The method solves equations for specified variables, with optional substitutions, returning LaTeX-formatted solutions.
|
@@ -1,12 +1,12 @@
|
|
1
1
|
rgwfuncs/__init__.py,sha256=vs8xv3IVx7KGpPxEXrIePD3gb_QI1XTXpD_n9817foA,1610
|
2
|
-
rgwfuncs/algebra_lib.py,sha256=
|
2
|
+
rgwfuncs/algebra_lib.py,sha256=sLQUxXG4mNNO55XclTgIrwVrg5LbwELOFsiSAm_9G20,28212
|
3
3
|
rgwfuncs/df_lib.py,sha256=qqRQdakheLy8wMZRBfHwKyIp8DmdZIWfAiLKWgq03QU,68977
|
4
4
|
rgwfuncs/docs_lib.py,sha256=y3wSAOPO3qsA4HZ7xAtW8HimM8w-c8hjcEzMRLJ96ao,1960
|
5
5
|
rgwfuncs/interactive_shell_lib.py,sha256=A7EWsYxAfDev_N0-2GjRvAtp0bAwBPHIczXb8Gu9fzI,1107
|
6
6
|
rgwfuncs/str_lib.py,sha256=rtAdRlnSJIu3JhI-tA_A0wCiPK2m-zn5RoGpBxv_g-4,2228
|
7
|
-
rgwfuncs-0.0.
|
8
|
-
rgwfuncs-0.0.
|
9
|
-
rgwfuncs-0.0.
|
10
|
-
rgwfuncs-0.0.
|
11
|
-
rgwfuncs-0.0.
|
12
|
-
rgwfuncs-0.0.
|
7
|
+
rgwfuncs-0.0.51.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
8
|
+
rgwfuncs-0.0.51.dist-info/METADATA,sha256=Q-t10jPxJYG_orABThvIy6q1-WQvwOYwe_3TNLuLYRw,55152
|
9
|
+
rgwfuncs-0.0.51.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
10
|
+
rgwfuncs-0.0.51.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
|
11
|
+
rgwfuncs-0.0.51.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
|
12
|
+
rgwfuncs-0.0.51.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|