rgwfuncs 0.0.42__py3-none-any.whl → 0.0.47__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rgwfuncs/__init__.py +1 -1
- rgwfuncs/algebra_lib.py +135 -18
- rgwfuncs/df_lib.py +1 -3
- {rgwfuncs-0.0.42.dist-info → rgwfuncs-0.0.47.dist-info}/METADATA +59 -3
- rgwfuncs-0.0.47.dist-info/RECORD +12 -0
- rgwfuncs-0.0.42.dist-info/RECORD +0 -12
- {rgwfuncs-0.0.42.dist-info → rgwfuncs-0.0.47.dist-info}/LICENSE +0 -0
- {rgwfuncs-0.0.42.dist-info → rgwfuncs-0.0.47.dist-info}/WHEEL +0 -0
- {rgwfuncs-0.0.42.dist-info → rgwfuncs-0.0.47.dist-info}/entry_points.txt +0 -0
- {rgwfuncs-0.0.42.dist-info → rgwfuncs-0.0.47.dist-info}/top_level.txt +0 -0
rgwfuncs/__init__.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
# This file is automatically generated
|
2
2
|
# Dynamically importing functions from modules
|
3
3
|
|
4
|
-
from .algebra_lib import compute_constant_expression, compute_constant_expression_involving_matrices, compute_constant_expression_involving_ordered_series, compute_prime_factors, expand_polynomial_expression, python_polynomial_expression_to_latex, simplify_polynomial_expression, solve_homogeneous_polynomial_expression
|
4
|
+
from .algebra_lib import cancel_polynomial_expression, compute_constant_expression, compute_constant_expression_involving_matrices, compute_constant_expression_involving_ordered_series, compute_prime_factors, expand_polynomial_expression, factor_polynomial_expression, python_polynomial_expression_to_latex, simplify_polynomial_expression, solve_homogeneous_polynomial_expression
|
5
5
|
from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, insert_dataframe_in_sqlite_database, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, sync_dataframe_to_sqlite_database, top_n_unique_values, union_join, update_rows
|
6
6
|
from .docs_lib import docs
|
7
7
|
from .interactive_shell_lib import interactive_shell
|
rgwfuncs/algebra_lib.py
CHANGED
@@ -2,7 +2,9 @@ import re
|
|
2
2
|
import math
|
3
3
|
import ast
|
4
4
|
# import numpy as np
|
5
|
-
from sympy import symbols, latex, simplify, solve, diff, Expr
|
5
|
+
from sympy import symbols, latex, simplify, solve, diff, Expr, factor, cancel, Eq
|
6
|
+
from sympy.core.sympify import SympifyError
|
7
|
+
from sympy.core import S
|
6
8
|
from sympy.parsing.sympy_parser import parse_expr
|
7
9
|
from sympy import __all__ as sympy_functions
|
8
10
|
from sympy.parsing.sympy_parser import (standard_transformations, implicit_multiplication_application)
|
@@ -320,6 +322,7 @@ def python_polynomial_expression_to_latex(
|
|
320
322
|
latex_result = latex(expr)
|
321
323
|
return latex_result
|
322
324
|
|
325
|
+
|
323
326
|
def expand_polynomial_expression(
|
324
327
|
expression: str,
|
325
328
|
subs: Optional[Dict[str, float]] = None
|
@@ -327,15 +330,15 @@ def expand_polynomial_expression(
|
|
327
330
|
"""
|
328
331
|
Expands a polynomial expression written in Python syntax and converts it to LaTeX format.
|
329
332
|
|
330
|
-
This function takes an algebraic expression written in Python syntax,
|
331
|
-
applies polynomial expansion, and converts the expanded expression
|
333
|
+
This function takes an algebraic expression written in Python syntax,
|
334
|
+
applies polynomial expansion, and converts the expanded expression
|
332
335
|
to a LaTeX formatted string. The expression should be compatible with sympy.
|
333
336
|
|
334
337
|
Parameters:
|
335
|
-
expression (str): The algebraic expression to expand and convert to LaTeX.
|
338
|
+
expression (str): The algebraic expression to expand and convert to LaTeX.
|
336
339
|
The expression should be written using Python syntax.
|
337
|
-
subs (Optional[Dict[str, float]]): An optional dictionary of substitutions
|
338
|
-
to apply to variables in the expression
|
340
|
+
subs (Optional[Dict[str, float]]): An optional dictionary of substitutions
|
341
|
+
to apply to variables in the expression
|
339
342
|
before expansion.
|
340
343
|
|
341
344
|
Returns:
|
@@ -345,15 +348,18 @@ def expand_polynomial_expression(
|
|
345
348
|
ValueError: If the expression cannot be parsed due to syntax errors.
|
346
349
|
"""
|
347
350
|
transformations = standard_transformations + (implicit_multiplication_application,)
|
348
|
-
|
351
|
+
|
349
352
|
def parse_and_expand_expression(expr_str: str, sym_vars: Dict[str, symbols]) -> symbols:
|
350
353
|
try:
|
351
354
|
expr = parse_expr(expr_str, local_dict=sym_vars, transformations=transformations)
|
352
355
|
if subs:
|
356
|
+
# Ensure that subs is a dictionary
|
357
|
+
if not isinstance(subs, dict):
|
358
|
+
raise ValueError(f"Substitutions must be a dictionary. Received: {subs}")
|
353
359
|
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
354
360
|
expr = expr.subs(subs_symbols)
|
355
361
|
return expr.expand()
|
356
|
-
except (SyntaxError, ValueError, TypeError) as e:
|
362
|
+
except (SyntaxError, ValueError, TypeError, AttributeError) as e:
|
357
363
|
raise ValueError(f"Error parsing expression: {expr_str}. Error: {e}")
|
358
364
|
|
359
365
|
variable_names = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
@@ -364,6 +370,110 @@ def expand_polynomial_expression(
|
|
364
370
|
return latex_result
|
365
371
|
|
366
372
|
|
373
|
+
def factor_polynomial_expression(
|
374
|
+
expression: str,
|
375
|
+
subs: Optional[Dict[str, float]] = None
|
376
|
+
) -> str:
|
377
|
+
"""
|
378
|
+
Factors a polynomial expression written in Python syntax and converts it to LaTeX format.
|
379
|
+
|
380
|
+
This function accepts an algebraic expression in Python syntax, performs polynomial factoring,
|
381
|
+
and translates the factored expression into a LaTeX formatted string.
|
382
|
+
|
383
|
+
Parameters:
|
384
|
+
expression (str): The algebraic expression to factor and convert to LaTeX.
|
385
|
+
subs (Optional[Dict[str, float]]): An optional dictionary of substitutions to apply before factoring.
|
386
|
+
|
387
|
+
Returns:
|
388
|
+
str: The LaTeX formatted string of the factored expression.
|
389
|
+
|
390
|
+
Raises:
|
391
|
+
ValueError: If the expression cannot be parsed due to syntax errors.
|
392
|
+
"""
|
393
|
+
transformations = standard_transformations + (implicit_multiplication_application,)
|
394
|
+
|
395
|
+
def parse_and_factor_expression(expr_str: str, sym_vars: Dict[str, symbols]) -> symbols:
|
396
|
+
try:
|
397
|
+
expr = parse_expr(expr_str, local_dict=sym_vars, transformations=transformations)
|
398
|
+
if subs:
|
399
|
+
if not isinstance(subs, dict):
|
400
|
+
raise ValueError(f"Substitutions must be a dictionary. Received: {subs}")
|
401
|
+
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
402
|
+
expr = expr.subs(subs_symbols)
|
403
|
+
return factor(expr)
|
404
|
+
except (SyntaxError, ValueError, TypeError, AttributeError) as e:
|
405
|
+
raise ValueError(f"Error parsing expression: {expr_str}. Error: {e}")
|
406
|
+
|
407
|
+
variable_names = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
408
|
+
sym_vars = {var: symbols(var) for var in variable_names}
|
409
|
+
|
410
|
+
expr = parse_and_factor_expression(expression, sym_vars)
|
411
|
+
latex_result = latex(expr)
|
412
|
+
return latex_result
|
413
|
+
|
414
|
+
|
415
|
+
def cancel_polynomial_expression(
|
416
|
+
expression: str,
|
417
|
+
subs: Optional[Dict[str, float]] = None
|
418
|
+
) -> str:
|
419
|
+
"""
|
420
|
+
Cancels common factors within a polynomial expression and converts it to LaTeX format.
|
421
|
+
|
422
|
+
This function parses an algebraic expression given in Python syntax, cancels any common factors,
|
423
|
+
and converts the resulting simplified expression into a LaTeX formatted string. The function can
|
424
|
+
also handle optional substitutions of variables before performing the cancellation.
|
425
|
+
|
426
|
+
Parameters:
|
427
|
+
expression (str): The algebraic expression to simplify and convert to LaTeX.
|
428
|
+
It should be a valid expression formatted using Python syntax.
|
429
|
+
subs (Optional[Dict[str, float]]): An optional dictionary where the keys are variable names in the
|
430
|
+
expression, and the values are the corresponding numbers to substitute
|
431
|
+
into the expression before simplification.
|
432
|
+
|
433
|
+
Returns:
|
434
|
+
str: The LaTeX formatted string of the simplified expression. If the expression involves
|
435
|
+
indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
436
|
+
|
437
|
+
Raises:
|
438
|
+
ValueError: If the expression cannot be parsed due to syntax errors or if operations result in
|
439
|
+
undefined behavior, such as division by zero.
|
440
|
+
|
441
|
+
"""
|
442
|
+
transformations = standard_transformations + (implicit_multiplication_application,)
|
443
|
+
|
444
|
+
def parse_and_cancel_expression(expr_str: str, sym_vars: Dict[str, symbols]) -> symbols:
|
445
|
+
try:
|
446
|
+
expr = parse_expr(expr_str, local_dict=sym_vars, transformations=transformations)
|
447
|
+
if subs:
|
448
|
+
if not isinstance(subs, dict):
|
449
|
+
raise ValueError(f"Substitutions must be a dictionary. Received: {subs}")
|
450
|
+
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
451
|
+
expr = expr.subs(subs_symbols)
|
452
|
+
|
453
|
+
canceled_expr = cancel(expr)
|
454
|
+
|
455
|
+
# Check for NaN or indeterminate forms
|
456
|
+
if canceled_expr.has(S.NaN) or canceled_expr.has(S.Infinity) or canceled_expr.has(S.ComplexInfinity):
|
457
|
+
return "Undefined result. This could be a division by zero error."
|
458
|
+
|
459
|
+
return canceled_expr
|
460
|
+
|
461
|
+
except (SyntaxError, ValueError, TypeError, AttributeError, ZeroDivisionError, SympifyError) as e:
|
462
|
+
return f"Error: {str(e)}"
|
463
|
+
|
464
|
+
variable_names = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
465
|
+
sym_vars = {var: symbols(var) for var in variable_names}
|
466
|
+
|
467
|
+
expr = parse_and_cancel_expression(expression, sym_vars)
|
468
|
+
|
469
|
+
# If the expression is already a string (i.e., "Undefined" or error message), return it directly
|
470
|
+
if isinstance(expr, str):
|
471
|
+
return expr
|
472
|
+
|
473
|
+
# Otherwise, convert to LaTeX as usual
|
474
|
+
latex_result = latex(expr)
|
475
|
+
return latex_result
|
476
|
+
|
367
477
|
|
368
478
|
def simplify_polynomial_expression(
|
369
479
|
expression: str,
|
@@ -566,28 +676,35 @@ def solve_homogeneous_polynomial_expression(
|
|
566
676
|
ValueError: If the equation cannot be solved due to errors in expression or parameters.
|
567
677
|
"""
|
568
678
|
|
679
|
+
print("679", expression)
|
680
|
+
print("681", variable)
|
681
|
+
print("682", subs)
|
569
682
|
try:
|
570
683
|
# Create symbols for the variables in the expression
|
571
684
|
variable_symbols = set(re.findall(r'\b[a-zA-Z]\w*\b', expression))
|
572
685
|
sym_vars = {var: symbols(var) for var in variable_symbols}
|
573
686
|
|
574
|
-
# Parse the expression
|
687
|
+
# Parse the expression
|
575
688
|
expr = parse_expr(expression, local_dict=sym_vars)
|
576
|
-
var_symbol = symbols(variable)
|
577
|
-
solutions = solve(expr, var_symbol)
|
578
689
|
|
579
|
-
#
|
690
|
+
# If substitutions are provided, apply them
|
580
691
|
if subs:
|
581
|
-
|
582
|
-
|
692
|
+
expr = expr.subs({symbols(k): v for k, v in subs.items()})
|
693
|
+
|
694
|
+
# Ensure the variable is treated as a symbol for solving
|
695
|
+
var_symbol = symbols(variable)
|
696
|
+
|
697
|
+
# Solve for the variable
|
698
|
+
eq = Eq(expr, 0)
|
699
|
+
solutions = solve(eq, var_symbol)
|
583
700
|
|
584
701
|
# Convert solutions to LaTeX strings if possible
|
585
|
-
latex_solutions = [
|
586
|
-
latex(
|
587
|
-
simplify(sol)) if sol.free_symbols else str(sol) for sol in solutions]
|
702
|
+
latex_solutions = [latex(simplify(sol)) for sol in solutions]
|
588
703
|
result = r"\left[" + ", ".join(latex_solutions) + r"\right]"
|
589
|
-
|
704
|
+
|
705
|
+
print("704", result)
|
590
706
|
return result
|
591
707
|
|
592
708
|
except Exception as e:
|
593
709
|
raise ValueError(f"Error solving the expression: {e}")
|
710
|
+
|
rgwfuncs/df_lib.py
CHANGED
@@ -400,7 +400,6 @@ def load_data_from_query(db_preset_name: str, query: str) -> pd.DataFrame:
|
|
400
400
|
|
401
401
|
return pd.DataFrame(rows, columns=columns)
|
402
402
|
|
403
|
-
|
404
403
|
def query_athena(db_preset: Dict[str, Any], query: str) -> pd.DataFrame:
|
405
404
|
|
406
405
|
def execute_athena_query(athena_client, query: str, database: str, output_bucket: str) -> str:
|
@@ -434,11 +433,10 @@ def load_data_from_query(db_preset_name: str, query: str) -> pd.DataFrame:
|
|
434
433
|
data = [[col.get("VarCharValue", None) for col in row["Data"]] for row in rows[1:]]
|
435
434
|
return pd.DataFrame(data, columns=columns)
|
436
435
|
|
437
|
-
|
438
436
|
aws_region = db_preset['aws_region']
|
439
437
|
database = db_preset['database']
|
440
438
|
output_bucket = db_preset['output_bucket']
|
441
|
-
|
439
|
+
|
442
440
|
athena_client = boto3.client(
|
443
441
|
'athena',
|
444
442
|
region_name=aws_region,
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.47
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -402,7 +402,63 @@ Expands a polynomial expression written in Python syntax and converts it into a
|
|
402
402
|
|
403
403
|
--------------------------------------------------------------------------------
|
404
404
|
|
405
|
-
###
|
405
|
+
### 7. `factor_polynomial_expression`
|
406
|
+
|
407
|
+
Factors a polynomial expression written in Python syntax and converts it into a LaTeX formatted string. This function parses an algebraic expression, performs polynomial factoring using SymPy, and converts the factored expression into a LaTeX representation, ideal for academic or professional use. Optional substitutions can be made before factoring.
|
408
|
+
|
409
|
+
- Parameters:
|
410
|
+
- `expression` (str): The polynomial expression to factor and convert to LaTeX. This should be a valid expression formatted using Python syntax.
|
411
|
+
- `subs` (Optional[Dict[str, float]]): An optional dictionary of substitutions. The keys are variable names in the expression, and the values are numbers that replace these variables.
|
412
|
+
|
413
|
+
- Returns:
|
414
|
+
- `str`: The LaTeX formatted string representing the factored expression.
|
415
|
+
|
416
|
+
- Raises:
|
417
|
+
- `ValueError`: If the expression cannot be parsed due to syntax errors.
|
418
|
+
|
419
|
+
- Example:
|
420
|
+
|
421
|
+
from rgwfuncs import factor_polynomial_expression
|
422
|
+
|
423
|
+
# Factor a polynomial expression and convert to LaTeX
|
424
|
+
latex_result1 = factor_polynomial_expression("x**2 - 4")
|
425
|
+
print(latex_result1) # Output: "\left(x - 2\right) \left(x + 2\right)"
|
426
|
+
|
427
|
+
# Factor with substituted values
|
428
|
+
latex_result2 = factor_polynomial_expression("x**2 - y**2", {"y": 3})
|
429
|
+
print(latex_result2) # Output: "\left(x - 3\right) \left(x + 3\right)"
|
430
|
+
|
431
|
+
--------------------------------------------------------------------------------
|
432
|
+
|
433
|
+
### 8. `cancel_polynomial_expression`
|
434
|
+
|
435
|
+
Cancels common factors within a polynomial expression written in Python syntax and converts it to a LaTeX formatted string. This function parses an algebraic expression, cancels common factors using SymPy, and translates the reduced expression into a LaTeX representation. It can also accommodate optional substitutions to be made prior to simplification.
|
436
|
+
|
437
|
+
- Parameters:
|
438
|
+
- `expression` (str): The algebraic expression to simplify and convert to LaTeX. This string should be formatted using Python syntax.
|
439
|
+
- `subs` (Optional[Dict[str, float]]): An optional dictionary of substitutions where the keys are variable names in the expression, and the values are the numbers to substitute.
|
440
|
+
|
441
|
+
- Returns:
|
442
|
+
- `str`: The LaTeX formatted string of the simplified expression. If the expression involves indeterminate forms due to operations like division by zero, a descriptive error message is returned instead.
|
443
|
+
|
444
|
+
- Raises:
|
445
|
+
- `ValueError`: If the expression cannot be parsed due to syntax errors or involves undefined operations, such as division by zero.
|
446
|
+
|
447
|
+
- Example:
|
448
|
+
|
449
|
+
from rgwfuncs import cancel_polynomial_expression
|
450
|
+
|
451
|
+
# Cancel common factors within a polynomial expression
|
452
|
+
latex_result1 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)")
|
453
|
+
print(latex_result1) # Output: "x + 2"
|
454
|
+
|
455
|
+
# Cancel with substituted values
|
456
|
+
latex_result2 = cancel_polynomial_expression("(x**2 - 4) / (x - 2)", {"x": 2})
|
457
|
+
print(latex_result2) # Output: "Undefined result. This could be a division by zero error."
|
458
|
+
|
459
|
+
--------------------------------------------------------------------------------
|
460
|
+
|
461
|
+
### 9. `simplify_polynomial_expression`
|
406
462
|
|
407
463
|
Simplifies an algebraic expression in polynomial form and returns it in LaTeX format. Takes an algebraic expression, in polynomial form, written in Python syntax and simplifies it. The result is returned as a LaTeX formatted string, suitable for academic or professional documentation.
|
408
464
|
|
@@ -435,7 +491,7 @@ Simplifies an algebraic expression in polynomial form and returns it in LaTeX fo
|
|
435
491
|
|
436
492
|
--------------------------------------------------------------------------------
|
437
493
|
|
438
|
-
###
|
494
|
+
### 10. `solve_homogeneous_polynomial_expression`
|
439
495
|
|
440
496
|
Solves a homogeneous polynomial expression for a specified variable and returns solutions in LaTeX format. Assumes that the expression is homoegeneous (i.e. equal to zero), and solves for a designated variable. May optionally include substitutions for other variables in the equation. The solutions are provided as a LaTeX formatted string. The method solves equations for specified variables, with optional substitutions, returning LaTeX-formatted solutions.
|
441
497
|
|
@@ -0,0 +1,12 @@
|
|
1
|
+
rgwfuncs/__init__.py,sha256=vs8xv3IVx7KGpPxEXrIePD3gb_QI1XTXpD_n9817foA,1610
|
2
|
+
rgwfuncs/algebra_lib.py,sha256=9nnpF0dk3_EuLRlhACUXMQCg2uFbIAy6Fbk1CCssL_c,28423
|
3
|
+
rgwfuncs/df_lib.py,sha256=qqRQdakheLy8wMZRBfHwKyIp8DmdZIWfAiLKWgq03QU,68977
|
4
|
+
rgwfuncs/docs_lib.py,sha256=y3wSAOPO3qsA4HZ7xAtW8HimM8w-c8hjcEzMRLJ96ao,1960
|
5
|
+
rgwfuncs/interactive_shell_lib.py,sha256=A7EWsYxAfDev_N0-2GjRvAtp0bAwBPHIczXb8Gu9fzI,1107
|
6
|
+
rgwfuncs/str_lib.py,sha256=rtAdRlnSJIu3JhI-tA_A0wCiPK2m-zn5RoGpBxv_g-4,2228
|
7
|
+
rgwfuncs-0.0.47.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
8
|
+
rgwfuncs-0.0.47.dist-info/METADATA,sha256=thxImUJuWvB1GTzLs1bCTt6jOOqhXYUehUs8uJLGd0w,55152
|
9
|
+
rgwfuncs-0.0.47.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
10
|
+
rgwfuncs-0.0.47.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
|
11
|
+
rgwfuncs-0.0.47.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
|
12
|
+
rgwfuncs-0.0.47.dist-info/RECORD,,
|
rgwfuncs-0.0.42.dist-info/RECORD
DELETED
@@ -1,12 +0,0 @@
|
|
1
|
-
rgwfuncs/__init__.py,sha256=j1SH_GGf9EPXWvhKd_RWDMUI8GXvJGniq4whdmC-tRk,1550
|
2
|
-
rgwfuncs/algebra_lib.py,sha256=OWltGhJqlP7mS0VszjeSICKQZjNlCrLjWVlaKwrb4Og,23435
|
3
|
-
rgwfuncs/df_lib.py,sha256=b6uMBbj7JrTUusbBGSlGI6jJ37yCN5lb6Oiq-C9oGzg,68987
|
4
|
-
rgwfuncs/docs_lib.py,sha256=y3wSAOPO3qsA4HZ7xAtW8HimM8w-c8hjcEzMRLJ96ao,1960
|
5
|
-
rgwfuncs/interactive_shell_lib.py,sha256=A7EWsYxAfDev_N0-2GjRvAtp0bAwBPHIczXb8Gu9fzI,1107
|
6
|
-
rgwfuncs/str_lib.py,sha256=rtAdRlnSJIu3JhI-tA_A0wCiPK2m-zn5RoGpBxv_g-4,2228
|
7
|
-
rgwfuncs-0.0.42.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
8
|
-
rgwfuncs-0.0.42.dist-info/METADATA,sha256=xxKivycP7sQ5oLN65i5CIzl3H_yAMTf7HgO9uLUM_Vk,52072
|
9
|
-
rgwfuncs-0.0.42.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
10
|
-
rgwfuncs-0.0.42.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
|
11
|
-
rgwfuncs-0.0.42.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
|
12
|
-
rgwfuncs-0.0.42.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|