rgwfuncs 0.0.3__py3-none-any.whl → 0.0.4__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.2
2
2
  Name: rgwfuncs
3
- Version: 0.0.3
3
+ Version: 0.0.4
4
4
  Summary: A functional programming paradigm for mathematical modelling and data science
5
5
  Home-page: https://github.com/ryangerardwilson/rgwfunc
6
6
  Author: Ryan Gerard Wilson
@@ -37,33 +37,29 @@ This library provides a variety of functions for manipulating and analyzing pand
37
37
  ## Installation
38
38
 
39
39
  Install the package using:
40
- ```bash
40
+ bash
41
41
  pip install rgwfuncs
42
- ```
42
+
43
43
 
44
44
  --------------------------------------------------------------------------------
45
45
 
46
46
  ## Basic Usage
47
47
 
48
48
  Import the library:
49
- ```
49
+
50
50
  import rgwfuncs
51
- ```
52
51
 
53
52
  View available function docstrings in alphabetical order:
54
- ```
53
+
55
54
  rgwfuncs.docs()
56
- ```
57
55
 
58
56
  View specific docstrings by providing a filter (comma-separated). For example, to display docstrings about "numeric_clean":
59
- ```
57
+
60
58
  rgwfuncs.docs(method_type_filter='numeric_clean')
61
- ```
62
59
 
63
60
  To display all docstrings, use:
64
- ```
61
+
65
62
  rgwfuncs.docs(method_type_filter='*')
66
- ```
67
63
 
68
64
  --------------------------------------------------------------------------------
69
65
 
@@ -124,14 +120,14 @@ Limit the DataFrame to a specified number of rows.
124
120
  - pd.DataFrame: A new DataFrame limited to the specified number of rows.
125
121
 
126
122
  • Example:
127
- ```
123
+
128
124
  from rgwfuncs import limit_dataframe
129
125
  import pandas as pd
130
126
 
131
127
  df = pd.DataFrame({'A': range(10), 'B': range(10, 20)})
132
128
  df_limited = limit_dataframe(df, 5)
133
129
  print(df_limited)
134
- ```
130
+
135
131
  --------------------------------------------------------------------------------
136
132
 
137
133
  ### 4. `from_raw_data`
@@ -145,7 +141,7 @@ Create a DataFrame from raw data.
145
141
  - pd.DataFrame: A DataFrame created from the raw data.
146
142
 
147
143
  • Example:
148
- ```
144
+
149
145
  from rgwfuncs import from_raw_data
150
146
 
151
147
  headers = ["Name", "Age"]
@@ -157,7 +153,7 @@ Create a DataFrame from raw data.
157
153
 
158
154
  df = from_raw_data(headers, data)
159
155
  print(df)
160
- ```
156
+
161
157
  --------------------------------------------------------------------------------
162
158
 
163
159
  ### 5. `append_rows`
@@ -171,7 +167,7 @@ Append rows to the DataFrame.
171
167
  - pd.DataFrame: A new DataFrame with appended rows.
172
168
 
173
169
  • Example:
174
- ```
170
+
175
171
  from rgwfuncs import append_rows
176
172
  import pandas as pd
177
173
 
@@ -182,7 +178,7 @@ Append rows to the DataFrame.
182
178
  ]
183
179
  df_appended = append_rows(df, new_rows)
184
180
  print(df_appended)
185
- ```
181
+
186
182
  --------------------------------------------------------------------------------
187
183
 
188
184
  ### 6. `append_columns`
@@ -196,14 +192,14 @@ Append new columns to the DataFrame with None values.
196
192
  - pd.DataFrame: A new DataFrame with the new columns appended.
197
193
 
198
194
  • Example:
199
- ```
195
+
200
196
  from rgwfuncs import append_columns
201
197
  import pandas as pd
202
198
 
203
199
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
204
200
  df_new = append_columns(df, ['Salary', 'Department'])
205
201
  print(df_new)
206
- ```
202
+
207
203
  --------------------------------------------------------------------------------
208
204
 
209
205
  ### 7. `update_rows`
@@ -218,14 +214,14 @@ Update specific rows in the DataFrame based on a condition.
218
214
  - pd.DataFrame: A new DataFrame with updated rows.
219
215
 
220
216
  • Example:
221
- ```
217
+
222
218
  from rgwfuncs import update_rows
223
219
  import pandas as pd
224
220
 
225
221
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
226
222
  df_updated = update_rows(df, "Name == 'Alice'", {'Age': 31})
227
223
  print(df_updated)
228
- ```
224
+
229
225
  --------------------------------------------------------------------------------
230
226
 
231
227
  ### 8. `delete_rows`
@@ -239,14 +235,14 @@ Delete rows from the DataFrame based on a condition.
239
235
  - pd.DataFrame: The DataFrame with specified rows deleted.
240
236
 
241
237
  • Example:
242
- ```
238
+
243
239
  from rgwfuncs import delete_rows
244
240
  import pandas as pd
245
241
 
246
242
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25]})
247
243
  df_deleted = delete_rows(df, "Age < 28")
248
244
  print(df_deleted)
249
- ```
245
+
250
246
  --------------------------------------------------------------------------------
251
247
 
252
248
  ### 9. `drop_duplicates`
@@ -259,14 +255,14 @@ Drop duplicate rows in the DataFrame, retaining the first occurrence.
259
255
  - pd.DataFrame: A new DataFrame with duplicates removed.
260
256
 
261
257
  • Example:
262
- ```
258
+
263
259
  from rgwfuncs import drop_duplicates
264
260
  import pandas as pd
265
261
 
266
262
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
267
263
  df_no_dupes = drop_duplicates(df)
268
264
  print(df_no_dupes)
269
- ```
265
+
270
266
  --------------------------------------------------------------------------------
271
267
 
272
268
  ### 10. `drop_duplicates_retain_first`
@@ -280,14 +276,14 @@ Drop duplicate rows based on specified columns, retaining the first occurrence.
280
276
  - pd.DataFrame: A new DataFrame with duplicates removed.
281
277
 
282
278
  • Example:
283
- ```
279
+
284
280
  from rgwfuncs import drop_duplicates_retain_first
285
281
  import pandas as pd
286
282
 
287
283
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
288
284
  df_no_dupes = drop_duplicates_retain_first(df, 'A')
289
285
  print(df_no_dupes)
290
- ```
286
+
291
287
  --------------------------------------------------------------------------------
292
288
 
293
289
  ### 11. `drop_duplicates_retain_last`
@@ -301,14 +297,14 @@ Drop duplicate rows based on specified columns, retaining the last occurrence.
301
297
  - pd.DataFrame: A new DataFrame with duplicates removed.
302
298
 
303
299
  • Example:
304
- ```
300
+
305
301
  from rgwfuncs import drop_duplicates_retain_last
306
302
  import pandas as pd
307
303
 
308
304
  df = pd.DataFrame({'A': [1,1,2,2], 'B': [3,3,4,4]})
309
305
  df_no_dupes = drop_duplicates_retain_last(df, 'A')
310
306
  print(df_no_dupes)
311
- ```
307
+
312
308
 
313
309
  --------------------------------------------------------------------------------
314
310
 
@@ -324,7 +320,7 @@ Load data from a database query into a DataFrame based on a configuration preset
324
320
  - pd.DataFrame: A DataFrame containing the query result.
325
321
 
326
322
  • Example:
327
- ```
323
+
328
324
  from rgwfuncs import load_data_from_query
329
325
 
330
326
  df = load_data_from_query(
@@ -333,7 +329,7 @@ Load data from a database query into a DataFrame based on a configuration preset
333
329
  config_file_name="rgwml.config"
334
330
  )
335
331
  print(df)
336
- ```
332
+
337
333
 
338
334
  --------------------------------------------------------------------------------
339
335
 
@@ -347,12 +343,12 @@ Load data from a file into a DataFrame based on the file extension.
347
343
  - pd.DataFrame: A DataFrame containing the loaded data.
348
344
 
349
345
  • Example:
350
- ```
346
+
351
347
  from rgwfuncs import load_data_from_path
352
348
 
353
349
  df = load_data_from_path("/absolute/path/to/data.csv")
354
350
  print(df)
355
- ```
351
+
356
352
 
357
353
  --------------------------------------------------------------------------------
358
354
 
@@ -367,12 +363,12 @@ Execute a query on a SQLite database file and return the results as a DataFrame.
367
363
  - pd.DataFrame: A DataFrame containing the query results.
368
364
 
369
365
  • Example:
370
- ```
366
+
371
367
  from rgwfuncs import load_data_from_sqlite_path
372
368
 
373
369
  df = load_data_from_sqlite_path("/path/to/database.db", "SELECT * FROM my_table")
374
370
  print(df)
375
- ```
371
+
376
372
 
377
373
  --------------------------------------------------------------------------------
378
374
 
@@ -384,13 +380,13 @@ Display the first n rows of the DataFrame (prints out in dictionary format).
384
380
  - n (int): Number of rows to display.
385
381
 
386
382
  • Example:
387
- ```
383
+
388
384
  from rgwfuncs import first_n_rows
389
385
  import pandas as pd
390
386
 
391
387
  df = pd.DataFrame({'A': [1,2,3], 'B': [4,5,6]})
392
388
  first_n_rows(df, 2)
393
- ```
389
+
394
390
 
395
391
  --------------------------------------------------------------------------------
396
392
 
@@ -402,13 +398,13 @@ Display the last n rows of the DataFrame (prints out in dictionary format).
402
398
  - n (int): Number of rows to display.
403
399
 
404
400
  • Example:
405
- ```
401
+
406
402
  from rgwfuncs import last_n_rows
407
403
  import pandas as pd
408
404
 
409
405
  df = pd.DataFrame({'A': [1,2,3,4,5], 'B': [6,7,8,9,10]})
410
406
  last_n_rows(df, 2)
411
- ```
407
+
412
408
 
413
409
  --------------------------------------------------------------------------------
414
410
 
@@ -421,13 +417,13 @@ Print the top n unique values for specified columns in the DataFrame.
421
417
  - columns (list): List of columns for which to display top unique values.
422
418
 
423
419
  • Example:
424
- ```
420
+
425
421
  from rgwfuncs import top_n_unique_values
426
422
  import pandas as pd
427
423
 
428
424
  df = pd.DataFrame({'Cities': ['NY', 'LA', 'NY', 'SF', 'LA', 'LA']})
429
425
  top_n_unique_values(df, 2, ['Cities'])
430
- ```
426
+
431
427
 
432
428
  --------------------------------------------------------------------------------
433
429
 
@@ -440,13 +436,13 @@ Print the bottom n unique values for specified columns in the DataFrame.
440
436
  - columns (list)
441
437
 
442
438
  • Example:
443
- ```
439
+
444
440
  from rgwfuncs import bottom_n_unique_values
445
441
  import pandas as pd
446
442
 
447
443
  df = pd.DataFrame({'Cities': ['NY', 'LA', 'NY', 'SF', 'LA', 'LA']})
448
444
  bottom_n_unique_values(df, 1, ['Cities'])
449
- ```
445
+
450
446
 
451
447
  --------------------------------------------------------------------------------
452
448
 
@@ -458,7 +454,7 @@ Print correlation for multiple pairs of columns in the DataFrame.
458
454
  - `column_pairs` (list of tuples): E.g., `[('col1','col2'), ('colA','colB')]`.
459
455
 
460
456
  • Example:
461
- ```
457
+
462
458
  from rgwfuncs import print_correlation
463
459
  import pandas as pd
464
460
 
@@ -471,7 +467,7 @@ Print correlation for multiple pairs of columns in the DataFrame.
471
467
 
472
468
  pairs = [('col1','col2'), ('colA','colB')]
473
469
  print_correlation(df, pairs)
474
- ```
470
+
475
471
 
476
472
  --------------------------------------------------------------------------------
477
473
 
@@ -482,13 +478,13 @@ Print the memory usage of the DataFrame in megabytes.
482
478
  - df (pd.DataFrame)
483
479
 
484
480
  • Example:
485
- ```
481
+
486
482
  from rgwfuncs import print_memory_usage
487
483
  import pandas as pd
488
484
 
489
485
  df = pd.DataFrame({'A': range(1000)})
490
486
  print_memory_usage(df)
491
- ```
487
+
492
488
 
493
489
  --------------------------------------------------------------------------------
494
490
 
@@ -503,7 +499,7 @@ Return a new DataFrame filtered by a given query expression.
503
499
  - pd.DataFrame
504
500
 
505
501
  • Example:
506
- ```
502
+
507
503
  from rgwfuncs import filter_dataframe
508
504
  import pandas as pd
509
505
 
@@ -514,7 +510,7 @@ Return a new DataFrame filtered by a given query expression.
514
510
 
515
511
  df_filtered = filter_dataframe(df, "Age > 23")
516
512
  print(df_filtered)
517
- ```
513
+
518
514
 
519
515
  --------------------------------------------------------------------------------
520
516
 
@@ -529,14 +525,14 @@ Filter and return rows containing valid Indian mobile numbers in the specified c
529
525
  - pd.DataFrame
530
526
 
531
527
  • Example:
532
- ```
528
+
533
529
  from rgwfuncs import filter_indian_mobiles
534
530
  import pandas as pd
535
531
 
536
532
  df = pd.DataFrame({'Phone': ['9876543210', '12345', '7000012345']})
537
533
  df_indian = filter_indian_mobiles(df, 'Phone')
538
534
  print(df_indian)
539
- ```
535
+
540
536
 
541
537
  --------------------------------------------------------------------------------
542
538
 
@@ -548,13 +544,13 @@ Print the entire DataFrame and its column types. Optionally print a source path.
548
544
  - source (str, optional)
549
545
 
550
546
  • Example:
551
- ```
547
+
552
548
  from rgwfuncs import print_dataframe
553
549
  import pandas as pd
554
550
 
555
551
  df = pd.DataFrame({'Name': ['Alice'], 'Age': [30]})
556
552
  print_dataframe(df, source='SampleData.csv')
557
- ```
553
+
558
554
 
559
555
  --------------------------------------------------------------------------------
560
556
 
@@ -569,7 +565,7 @@ Send a DataFrame via Telegram using a specified bot configuration.
569
565
  - `remove_after_send` (bool)
570
566
 
571
567
  • Example:
572
- ```
568
+
573
569
  from rgwfuncs import send_dataframe_via_telegram
574
570
 
575
571
  # Suppose your bot config is in "rgwml.config" under [TelegramBots] section
@@ -581,7 +577,7 @@ Send a DataFrame via Telegram using a specified bot configuration.
581
577
  as_file=True,
582
578
  remove_after_send=True
583
579
  )
584
- ```
580
+
585
581
 
586
582
  --------------------------------------------------------------------------------
587
583
 
@@ -598,7 +594,7 @@ Send an email with an optional DataFrame attachment using the Gmail API via a sp
598
594
  - `remove_after_send` (bool)
599
595
 
600
596
  • Example:
601
- ```
597
+
602
598
  from rgwfuncs import send_data_to_email
603
599
 
604
600
  df = ... # Some DataFrame
@@ -611,7 +607,7 @@ Send an email with an optional DataFrame attachment using the Gmail API via a sp
611
607
  as_file=True,
612
608
  remove_after_send=True
613
609
  )
614
- ```
610
+
615
611
 
616
612
  --------------------------------------------------------------------------------
617
613
 
@@ -626,7 +622,7 @@ Send a DataFrame or message to Slack using a specified bot configuration.
626
622
  - `remove_after_send` (bool)
627
623
 
628
624
  • Example:
629
- ```
625
+
630
626
  from rgwfuncs import send_data_to_slack
631
627
 
632
628
  df = ... # Some DataFrame
@@ -637,7 +633,7 @@ Send a DataFrame or message to Slack using a specified bot configuration.
637
633
  as_file=True,
638
634
  remove_after_send=True
639
635
  )
640
- ```
636
+
641
637
 
642
638
  --------------------------------------------------------------------------------
643
639
 
@@ -652,14 +648,14 @@ Reorder the columns of a DataFrame based on a string input.
652
648
  - pd.DataFrame
653
649
 
654
650
  • Example:
655
- ```
651
+
656
652
  from rgwfuncs import order_columns
657
653
  import pandas as pd
658
654
 
659
655
  df = pd.DataFrame({'Name': ['Alice', 'Bob'], 'Age': [30, 25], 'Salary': [1000, 1200]})
660
656
  df_reordered = order_columns(df, 'Salary,Name,Age')
661
657
  print(df_reordered)
662
- ```
658
+
663
659
 
664
660
  --------------------------------------------------------------------------------
665
661
 
@@ -676,14 +672,14 @@ Append a ranged classification column to the DataFrame.
676
672
  - pd.DataFrame
677
673
 
678
674
  • Example:
679
- ```
675
+
680
676
  from rgwfuncs import append_ranged_classification_column
681
677
  import pandas as pd
682
678
 
683
679
  df = pd.DataFrame({'Scores': [5, 12, 25]})
684
680
  df_classified = append_ranged_classification_column(df, '0-10,11-20,21-30', 'Scores', 'ScoreRange')
685
681
  print(df_classified)
686
- ```
682
+
687
683
 
688
684
  --------------------------------------------------------------------------------
689
685
 
@@ -700,14 +696,14 @@ Append a percentile classification column to the DataFrame.
700
696
  - pd.DataFrame
701
697
 
702
698
  • Example:
703
- ```
699
+
704
700
  from rgwfuncs import append_percentile_classification_column
705
701
  import pandas as pd
706
702
 
707
703
  df = pd.DataFrame({'Values': [10, 20, 30, 40, 50]})
708
704
  df_classified = append_percentile_classification_column(df, '25,50,75', 'Values', 'ValuePercentile')
709
705
  print(df_classified)
710
- ```
706
+
711
707
 
712
708
  --------------------------------------------------------------------------------
713
709
 
@@ -724,7 +720,7 @@ Append a ranged date classification column to the DataFrame.
724
720
  - pd.DataFrame
725
721
 
726
722
  • Example:
727
- ```
723
+
728
724
  from rgwfuncs import append_ranged_date_classification_column
729
725
  import pandas as pd
730
726
 
@@ -736,7 +732,7 @@ Append a ranged date classification column to the DataFrame.
736
732
  'DateRange'
737
733
  )
738
734
  print(df_classified)
739
- ```
735
+
740
736
 
741
737
  --------------------------------------------------------------------------------
742
738
 
@@ -751,14 +747,14 @@ Rename columns in the DataFrame.
751
747
  - pd.DataFrame
752
748
 
753
749
  • Example:
754
- ```
750
+
755
751
  from rgwfuncs import rename_columns
756
752
  import pandas as pd
757
753
 
758
754
  df = pd.DataFrame({'OldName': [1,2,3]})
759
755
  df_renamed = rename_columns(df, {'OldName': 'NewName'})
760
756
  print(df_renamed)
761
- ```
757
+
762
758
 
763
759
  --------------------------------------------------------------------------------
764
760
 
@@ -773,7 +769,7 @@ Cascade sort the DataFrame by specified columns and order.
773
769
  - pd.DataFrame
774
770
 
775
771
  • Example:
776
- ```
772
+
777
773
  from rgwfuncs import cascade_sort
778
774
  import pandas as pd
779
775
 
@@ -784,7 +780,7 @@ Cascade sort the DataFrame by specified columns and order.
784
780
 
785
781
  sorted_df = cascade_sort(df, ["Name::ASC", "Age::DESC"])
786
782
  print(sorted_df)
787
- ```
783
+
788
784
 
789
785
  --------------------------------------------------------------------------------
790
786
 
@@ -799,14 +795,14 @@ Append XGB training labels (TRAIN, VALIDATE, TEST) based on a ratio string.
799
795
  - pd.DataFrame
800
796
 
801
797
  • Example:
802
- ```
798
+
803
799
  from rgwfuncs import append_xgb_labels
804
800
  import pandas as pd
805
801
 
806
802
  df = pd.DataFrame({'A': range(10)})
807
803
  df_labeled = append_xgb_labels(df, "7:2:1")
808
804
  print(df_labeled)
809
- ```
805
+
810
806
 
811
807
  --------------------------------------------------------------------------------
812
808
 
@@ -825,7 +821,7 @@ Append XGB regression predictions to the DataFrame. Requires an `XGB_TYPE` colum
825
821
  - pd.DataFrame
826
822
 
827
823
  • Example:
828
- ```
824
+
829
825
  from rgwfuncs import append_xgb_regression_predictions
830
826
  import pandas as pd
831
827
 
@@ -838,7 +834,7 @@ Append XGB regression predictions to the DataFrame. Requires an `XGB_TYPE` colum
838
834
 
839
835
  df_pred = append_xgb_regression_predictions(df, 'Target', 'Feature1,Feature2', 'PredictedTarget')
840
836
  print(df_pred)
841
- ```
837
+
842
838
 
843
839
  --------------------------------------------------------------------------------
844
840
 
@@ -857,7 +853,7 @@ Append XGB logistic regression predictions to the DataFrame. Requires an `XGB_TY
857
853
  - pd.DataFrame
858
854
 
859
855
  • Example:
860
- ```
856
+
861
857
  from rgwfuncs import append_xgb_logistic_regression_predictions
862
858
  import pandas as pd
863
859
 
@@ -870,7 +866,7 @@ Append XGB logistic regression predictions to the DataFrame. Requires an `XGB_TY
870
866
 
871
867
  df_pred = append_xgb_logistic_regression_predictions(df, 'Target', 'Feature1,Feature2', 'PredictedTarget')
872
868
  print(df_pred)
873
- ```
869
+
874
870
 
875
871
  --------------------------------------------------------------------------------
876
872
 
@@ -884,13 +880,13 @@ Print the cascading frequency of top n values for specified columns.
884
880
  - `order_by` (str): `ASC`, `DESC`, `FREQ_ASC`, `FREQ_DESC`.
885
881
 
886
882
  • Example:
887
- ```
883
+
888
884
  from rgwfuncs import print_n_frequency_cascading
889
885
  import pandas as pd
890
886
 
891
887
  df = pd.DataFrame({'City': ['NY','LA','NY','SF','LA','LA']})
892
888
  print_n_frequency_cascading(df, 2, 'City', 'FREQ_DESC')
893
- ```
889
+
894
890
 
895
891
  --------------------------------------------------------------------------------
896
892
 
@@ -904,13 +900,13 @@ Print the linear frequency of top n values for specified columns.
904
900
  - `order_by` (str)
905
901
 
906
902
  • Example:
907
- ```
903
+
908
904
  from rgwfuncs import print_n_frequency_linear
909
905
  import pandas as pd
910
906
 
911
907
  df = pd.DataFrame({'City': ['NY','LA','NY','SF','LA','LA']})
912
908
  print_n_frequency_linear(df, 2, 'City', 'FREQ_DESC')
913
- ```
909
+
914
910
 
915
911
  --------------------------------------------------------------------------------
916
912
 
@@ -925,14 +921,14 @@ Retain specified columns in the DataFrame and drop the others.
925
921
  - pd.DataFrame
926
922
 
927
923
  • Example:
928
- ```
924
+
929
925
  from rgwfuncs import retain_columns
930
926
  import pandas as pd
931
927
 
932
928
  df = pd.DataFrame({'A': [1,2], 'B': [3,4], 'C': [5,6]})
933
929
  df_reduced = retain_columns(df, ['A','C'])
934
930
  print(df_reduced)
935
- ```
931
+
936
932
 
937
933
  --------------------------------------------------------------------------------
938
934
 
@@ -948,7 +944,7 @@ Retain only rows with common column values between two DataFrames.
948
944
  - pd.DataFrame
949
945
 
950
946
  • Example:
951
- ```
947
+
952
948
  from rgwfuncs import mask_against_dataframe
953
949
  import pandas as pd
954
950
 
@@ -957,7 +953,7 @@ Retain only rows with common column values between two DataFrames.
957
953
 
958
954
  df_masked = mask_against_dataframe(df1, df2, 'ID')
959
955
  print(df_masked)
960
- ```
956
+
961
957
 
962
958
  --------------------------------------------------------------------------------
963
959
 
@@ -973,7 +969,7 @@ Retain only rows with uncommon column values between two DataFrames.
973
969
  - pd.DataFrame
974
970
 
975
971
  • Example:
976
- ```
972
+
977
973
  from rgwfuncs import mask_against_dataframe_converse
978
974
  import pandas as pd
979
975
 
@@ -982,20 +978,20 @@ Retain only rows with uncommon column values between two DataFrames.
982
978
 
983
979
  df_uncommon = mask_against_dataframe_converse(df1, df2, 'ID')
984
980
  print(df_uncommon)
985
- ```
981
+
986
982
 
987
983
  --------------------------------------------------------------------------------
988
984
 
989
985
  ## Additional Info
990
986
 
991
987
  For more information, refer to each function’s docstring by calling:
992
- ```
993
- rgwfuncs.docs(method_type_filter='function_name')
994
- ```
988
+
989
+ rgwfuncs.docs(method_type_filter='function_name')
990
+
995
991
  or display all docstrings with:
996
- ```python
997
- rgwfuncs.docs(method_type_filter='*')
998
- ```
992
+
993
+ rgwfuncs.docs(method_type_filter='*')
994
+
999
995
 
1000
996
  --------------------------------------------------------------------------------
1001
997
 
@@ -0,0 +1,8 @@
1
+ rgwfuncs/__init__.py,sha256=8suLAGE7rHBY9e2ViUJuRCUyiam4PO7bjNq_l59dW8Q,24
2
+ rgwfuncs/df_lib.py,sha256=vkPOg0acDUwEYbyELNZ4OTJ9cHu9MbZaC4quN8XWtQY,63202
3
+ rgwfuncs-0.0.4.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
4
+ rgwfuncs-0.0.4.dist-info/METADATA,sha256=FYC3hXPd-Zhyx-CcAX7MwCXaMKAehfMF9ac9Gy5RZ4w,26561
5
+ rgwfuncs-0.0.4.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
+ rgwfuncs-0.0.4.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
7
+ rgwfuncs-0.0.4.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
8
+ rgwfuncs-0.0.4.dist-info/RECORD,,
@@ -1,8 +0,0 @@
1
- rgwfuncs/__init__.py,sha256=8suLAGE7rHBY9e2ViUJuRCUyiam4PO7bjNq_l59dW8Q,24
2
- rgwfuncs/df_lib.py,sha256=vkPOg0acDUwEYbyELNZ4OTJ9cHu9MbZaC4quN8XWtQY,63202
3
- rgwfuncs-0.0.3.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
4
- rgwfuncs-0.0.3.dist-info/METADATA,sha256=Ay0Wq8YsjTBh2Sl1jrf8UZh9vACtBxpL4OWWqn6HUwg,26862
5
- rgwfuncs-0.0.3.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
6
- rgwfuncs-0.0.3.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
7
- rgwfuncs-0.0.3.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
8
- rgwfuncs-0.0.3.dist-info/RECORD,,