rgwfuncs 0.0.27__py3-none-any.whl → 0.0.29__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- rgwfuncs/__init__.py +1 -1
- rgwfuncs/algebra_lib.py +44 -22
- {rgwfuncs-0.0.27.dist-info → rgwfuncs-0.0.29.dist-info}/METADATA +64 -62
- rgwfuncs-0.0.29.dist-info/RECORD +11 -0
- rgwfuncs-0.0.27.dist-info/RECORD +0 -11
- {rgwfuncs-0.0.27.dist-info → rgwfuncs-0.0.29.dist-info}/LICENSE +0 -0
- {rgwfuncs-0.0.27.dist-info → rgwfuncs-0.0.29.dist-info}/WHEEL +0 -0
- {rgwfuncs-0.0.27.dist-info → rgwfuncs-0.0.29.dist-info}/entry_points.txt +0 -0
- {rgwfuncs-0.0.27.dist-info → rgwfuncs-0.0.29.dist-info}/top_level.txt +0 -0
rgwfuncs/__init__.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1
1
|
# This file is automatically generated
|
2
2
|
# Dynamically importing functions from modules
|
3
3
|
|
4
|
-
from .algebra_lib import
|
4
|
+
from .algebra_lib import compute_constant_expression, compute_matrix_expression, compute_ordered_series_expression, get_prime_factors_latex, simplify_polynomial_expression, solve_homogeneous_polynomial_expression
|
5
5
|
from .df_lib import append_columns, append_percentile_classification_column, append_ranged_classification_column, append_ranged_date_classification_column, append_rows, append_xgb_labels, append_xgb_logistic_regression_predictions, append_xgb_regression_predictions, bag_union_join, bottom_n_unique_values, cascade_sort, delete_rows, drop_duplicates, drop_duplicates_retain_first, drop_duplicates_retain_last, filter_dataframe, filter_indian_mobiles, first_n_rows, from_raw_data, insert_dataframe_in_sqlite_database, last_n_rows, left_join, limit_dataframe, load_data_from_path, load_data_from_query, load_data_from_sqlite_path, mask_against_dataframe, mask_against_dataframe_converse, numeric_clean, order_columns, print_correlation, print_dataframe, print_memory_usage, print_n_frequency_cascading, print_n_frequency_linear, rename_columns, retain_columns, right_join, send_data_to_email, send_data_to_slack, send_dataframe_via_telegram, sync_dataframe_to_sqlite_database, top_n_unique_values, union_join, update_rows
|
6
6
|
from .docs_lib import docs
|
7
7
|
from .str_lib import send_telegram_message
|
rgwfuncs/algebra_lib.py
CHANGED
@@ -7,17 +7,18 @@ from sympy.parsing.sympy_parser import parse_expr
|
|
7
7
|
from typing import Tuple, List, Dict, Optional
|
8
8
|
|
9
9
|
|
10
|
-
def
|
10
|
+
def compute_constant_expression(expression: str) -> float:
|
11
11
|
"""
|
12
|
-
Computes the numerical result of a given
|
12
|
+
Computes the numerical result of a given expression, which can evaluate to a constant,
|
13
|
+
represented as a float.
|
13
14
|
|
14
|
-
Evaluates an
|
15
|
+
Evaluates an constant expression provided as a string and returns the computed result.
|
15
16
|
Supports various arithmetic operations, including addition, subtraction, multiplication,
|
16
17
|
division, and modulo, as well as mathematical functions from the math module.
|
17
18
|
|
18
19
|
Parameters:
|
19
|
-
expression (str): The
|
20
|
-
of arithmetic operations and
|
20
|
+
expression (str): The constant expression to compute. This should be a string consisting
|
21
|
+
of arithmetic operations and Python's math module functions.
|
21
22
|
|
22
23
|
Returns:
|
23
24
|
float: The evaluated numerical result of the expression.
|
@@ -36,18 +37,29 @@ def compute_algebraic_expression(expression: str) -> float:
|
|
36
37
|
raise ValueError(f"Error computing expression: {e}")
|
37
38
|
|
38
39
|
|
39
|
-
def
|
40
|
+
def simplify_polynomial_expression(
|
41
|
+
expression: str,
|
42
|
+
subs: Optional[Dict[str, float]] = None
|
43
|
+
) -> str:
|
40
44
|
"""
|
41
|
-
Simplifies an algebraic expression and returns it in LaTeX format.
|
45
|
+
Simplifies an algebraic expression in polynomial form and returns it in LaTeX format.
|
42
46
|
|
43
|
-
Takes an algebraic expression written in Python syntax and simplifies it.
|
44
|
-
returned as a LaTeX formatted string, suitable for academic or professional
|
47
|
+
Takes an algebraic expression, in polynomial form, written in Python syntax and simplifies it.
|
48
|
+
The result is returned as a LaTeX formatted string, suitable for academic or professional
|
49
|
+
documentation.
|
45
50
|
|
46
51
|
Parameters:
|
47
|
-
expression (str): The algebraic expression to simplify.
|
52
|
+
expression (str): The algebraic expression, in polynomial form, to simplify. For instance,
|
53
|
+
the expression `np.diff(8*x**30)` is a polynomial, whereas np.diff([2,5,9,11)
|
54
|
+
is not a polynomial.
|
55
|
+
subs (Optional[Dict[str, float]]): An optional dictionary of substitutions for variables
|
56
|
+
in the expression.
|
48
57
|
|
49
58
|
Returns:
|
50
59
|
str: The simplified expression represented as a LaTeX string.
|
60
|
+
|
61
|
+
Raises:
|
62
|
+
ValueError: If the expression cannot be simplified due to errors in expression or parameters.
|
51
63
|
"""
|
52
64
|
|
53
65
|
def recursive_parse_function_call(
|
@@ -178,13 +190,18 @@ def simplify_algebraic_expression(expression: str) -> str:
|
|
178
190
|
# print("Level 2 processed_expression:", processed_expression)
|
179
191
|
|
180
192
|
try:
|
181
|
-
|
182
|
-
'[') and processed_expression.endswith(']'):
|
183
|
-
return processed_expression
|
184
|
-
|
193
|
+
# Parse the expression
|
185
194
|
expr = parse_expr(processed_expression, local_dict=sym_vars)
|
195
|
+
|
196
|
+
# Apply substitutions if provided
|
197
|
+
if subs:
|
198
|
+
subs_symbols = {symbols(k): v for k, v in subs.items()}
|
199
|
+
expr = expr.subs(subs_symbols)
|
200
|
+
|
201
|
+
# Simplify the expression
|
186
202
|
final_result = simplify(expr)
|
187
203
|
|
204
|
+
# Convert the result to LaTeX format
|
188
205
|
if final_result.free_symbols:
|
189
206
|
latex_result = latex(final_result)
|
190
207
|
return latex_result
|
@@ -195,16 +212,21 @@ def simplify_algebraic_expression(expression: str) -> str:
|
|
195
212
|
raise ValueError(f"Error simplifying expression: {e}")
|
196
213
|
|
197
214
|
|
198
|
-
def
|
199
|
-
|
215
|
+
def solve_homogeneous_polynomial_expression(
|
216
|
+
expression: str,
|
217
|
+
variable: str,
|
218
|
+
subs: Optional[Dict[str, float]] = None
|
219
|
+
) -> str:
|
200
220
|
"""
|
201
|
-
Solves
|
221
|
+
Solves a homogeneous polynomial expression for a specified variable and returns solutions
|
222
|
+
in LaTeX format.
|
202
223
|
|
203
|
-
|
204
|
-
|
224
|
+
Assumes that the expression is homoegeneous (i.e. equal to zero), and solves for a
|
225
|
+
designated variable. May optionally include substitutions for other variables in the
|
226
|
+
equation. The solutions are provided as a LaTeX formatted string.
|
205
227
|
|
206
228
|
Parameters:
|
207
|
-
expression (str): The
|
229
|
+
expression (str): The homogeneous polynomial expression to solve.
|
208
230
|
variable (str): The variable to solve the equation for.
|
209
231
|
subs (Optional[Dict[str, float]]): An optional dictionary of substitutions for variables
|
210
232
|
in the equation.
|
@@ -243,7 +265,7 @@ def solve_algebraic_expression(
|
|
243
265
|
raise ValueError(f"Error solving the expression: {e}")
|
244
266
|
|
245
267
|
|
246
|
-
def
|
268
|
+
def compute_matrix_expression(expression: str) -> str:
|
247
269
|
"""
|
248
270
|
Computes the result of a matrix-like operation on 1D or 2D list inputs and returns it as a LaTeX string.
|
249
271
|
|
@@ -333,7 +355,7 @@ def compute_matrix_operation(expression: str) -> str:
|
|
333
355
|
return f"Error computing matrix operation: {e}"
|
334
356
|
|
335
357
|
|
336
|
-
def
|
358
|
+
def compute_ordered_series_expression(expression: str) -> str:
|
337
359
|
"""
|
338
360
|
Computes the result of operations on ordered series expressed as 1D lists, including discrete difference (ddd),
|
339
361
|
and returns it as a string.
|
@@ -1,6 +1,6 @@
|
|
1
1
|
Metadata-Version: 2.2
|
2
2
|
Name: rgwfuncs
|
3
|
-
Version: 0.0.
|
3
|
+
Version: 0.0.29
|
4
4
|
Summary: A functional programming paradigm for mathematical modelling and data science
|
5
5
|
Home-page: https://github.com/ryangerardwilson/rgwfunc
|
6
6
|
Author: Ryan Gerard Wilson
|
@@ -154,91 +154,97 @@ Print a list of available function names in alphabetical order. If a filter is p
|
|
154
154
|
|
155
155
|
This section provides comprehensive functions for handling algebraic expressions, performing tasks such as computation, simplification, solving equations, and prime factorization, all outputted in LaTeX format.
|
156
156
|
|
157
|
-
### 1. `
|
157
|
+
### 1. `compute_constant_expression`
|
158
158
|
|
159
|
-
Evaluates
|
159
|
+
Computes the numerical result of a given expression, which can evaluate to a constant, represented as a float. Evaluates an constant expression provided as a string and returns the computed result. Supports various arithmetic operations, including addition, subtraction, multiplication, division, and modulo, as well as mathematical functions from the math module.
|
160
160
|
|
161
|
-
|
162
|
-
- `expression` (str):
|
161
|
+
• Parameters:
|
162
|
+
- `expression` (str): The constant expression to compute. This should be a string consisting of arithmetic operations and Python's math module functions.
|
163
163
|
|
164
|
-
|
164
|
+
• Returns:
|
165
165
|
- `float`: The computed numerical result.
|
166
166
|
|
167
|
-
|
167
|
+
• Example:
|
168
168
|
|
169
|
-
from rgwfuncs import
|
170
|
-
result1 =
|
169
|
+
from rgwfuncs import compute_constant_expression
|
170
|
+
result1 = compute_constant_expression("2 + 2")
|
171
171
|
print(result1) # Output: 4.0
|
172
172
|
|
173
|
-
result2 =
|
173
|
+
result2 = compute_constant_expression("10 % 3")
|
174
174
|
print(result2) # Output: 1.0
|
175
175
|
|
176
|
-
result3 =
|
176
|
+
result3 = compute_constant_expression("math.gcd(36, 60) * math.sin(math.radians(45)) * 10000")
|
177
177
|
print(result3) # Output: 84852.8137423857
|
178
178
|
|
179
|
-
These examples illustrate the ability to handle basic arithmetic, the modulo operator, and functions utilizing the Python math module.
|
180
|
-
|
181
179
|
--------------------------------------------------------------------------------
|
182
180
|
|
183
|
-
### 2. `
|
181
|
+
### 2. `simplify_polynomial_expression`
|
184
182
|
|
185
|
-
Simplifies
|
183
|
+
Simplifies an algebraic expression in polynomial form and returns it in LaTeX format. Takes an algebraic expression, in polynomial form, written in Python syntax and simplifies it. The result is returned as a LaTeX formatted string, suitable for academic or professional documentation.
|
186
184
|
|
187
|
-
|
188
|
-
- `expression` (str):
|
185
|
+
• Parameters:
|
186
|
+
- `expression` (str): The algebraic expression, in polynomial form, to simplify. For instance, the expression 'np.diff(8*x**30) where as 'np.diff([2,5,9,11)' is not a polynomial.
|
187
|
+
- `subs` (Optional[Dict[str, float]]): An optional dictionary of substitutions where keys are variable names and values are the numbers to substitute them with.
|
189
188
|
|
190
|
-
|
191
|
-
- `str`:
|
189
|
+
• Returns:
|
190
|
+
- `str`: The simplified expression formatted as a LaTeX string.
|
192
191
|
|
193
|
-
|
192
|
+
• Example Usage:
|
193
|
+
|
194
|
+
from rgwfuncs import simplify_polynomial_expression
|
194
195
|
|
195
|
-
|
196
|
-
simplified_expr1 =
|
196
|
+
# Example 1: Simplifying a polynomial expression without substitutions
|
197
|
+
simplified_expr1 = simplify_polynomial_expression("2*x + 3*x")
|
197
198
|
print(simplified_expr1) # Output: "5 x"
|
198
199
|
|
199
|
-
|
200
|
-
|
200
|
+
# Example 2: Simplifying a complex expression involving derivatives
|
201
|
+
simplified_expr2 = simplify_polynomial_expression("(np.diff(3*x**8)) / (np.diff(8*x**30) * 11*y**3)")
|
202
|
+
print(simplified_expr2) # Output: r"\frac{1}{110 x^{22} y^{3}}"
|
203
|
+
|
204
|
+
# Example 3: Simplifying with substitutions
|
205
|
+
simplified_expr3 = simplify_polynomial_expression("x**2 + y**2", subs={"x": 3, "y": 4})
|
206
|
+
print(simplified_expr3) # Output: "25"
|
201
207
|
|
202
|
-
|
208
|
+
# Example 4: Simplifying with partial substitution
|
209
|
+
simplified_expr4 = simplify_polynomial_expression("a*b + b", subs={"b": 2})
|
210
|
+
print(simplified_expr4) # Output: "2 a + 2"
|
203
211
|
|
204
212
|
--------------------------------------------------------------------------------
|
205
213
|
|
206
|
-
### 3. `
|
214
|
+
### 3. `solve_homogeneous_polynomial_expression`
|
207
215
|
|
208
|
-
Solves equations for specified variables, with optional substitutions, returning LaTeX-formatted solutions.
|
216
|
+
Solves a homogeneous polynomial expression for a specified variable and returns solutions in LaTeX format. Assumes that the expression is homoegeneous (i.e. equal to zero), and solves for a designated variable. May optionally include substitutions for other variables in the equation. The solutions are provided as a LaTeX formatted string. The method solves equations for specified variables, with optional substitutions, returning LaTeX-formatted solutions.
|
209
217
|
|
210
|
-
|
211
|
-
- `expression` (str): A string of the
|
218
|
+
• Parameters:
|
219
|
+
- `expression` (str): A string of the homogeneous polynomial expression to solve.
|
212
220
|
- `variable` (str): The variable to solve for.
|
213
221
|
- `subs` (Optional[Dict[str, float]]): Substitutions for variables.
|
214
222
|
|
215
|
-
|
223
|
+
• Returns:
|
216
224
|
- `str`: Solutions formatted in LaTeX.
|
217
225
|
|
218
|
-
|
226
|
+
• Example:
|
219
227
|
|
220
|
-
from rgwfuncs import
|
221
|
-
solutions1 =
|
228
|
+
from rgwfuncs import solve_homogeneous_polynomial_expression
|
229
|
+
solutions1 = solve_homogeneous_polynomial_expression("a*x**2 + b*x + c", "x", {"a": 3, "b": 7, "c": 5})
|
222
230
|
print(solutions1) # Output: "\left[-7/6 - sqrt(11)*I/6, -7/6 + sqrt(11)*I/6\right]"
|
223
231
|
|
224
|
-
solutions2 =
|
232
|
+
solutions2 = solve_homogeneous_polynomial_expression("x**2 - 4", "x")
|
225
233
|
print(solutions2) # Output: "\left[-2, 2\right]"
|
226
234
|
|
227
|
-
Here, we solve both a quadratic equation with complex solutions and a simpler polynomial equation.
|
228
|
-
|
229
235
|
--------------------------------------------------------------------------------
|
230
236
|
|
231
237
|
### 4. `get_prime_factors_latex`
|
232
238
|
|
233
239
|
Computes prime factors of a number and presents them in LaTeX format.
|
234
240
|
|
235
|
-
|
241
|
+
• Parameters:
|
236
242
|
- `n` (int): The integer to factorize.
|
237
243
|
|
238
|
-
|
244
|
+
• Returns:
|
239
245
|
- `str`: Prime factorization in LaTeX.
|
240
246
|
|
241
|
-
|
247
|
+
• Example:
|
242
248
|
|
243
249
|
from rgwfuncs import get_prime_factors_latex
|
244
250
|
factors1 = get_prime_factors_latex(100)
|
@@ -252,64 +258,60 @@ Computes prime factors of a number and presents them in LaTeX format.
|
|
252
258
|
|
253
259
|
--------------------------------------------------------------------------------
|
254
260
|
|
255
|
-
### 5. `
|
261
|
+
### 5. `compute_matrix_expression`
|
256
262
|
|
257
|
-
Computes the results of 1D or 2D matrix operations and formats them as LaTeX strings.
|
263
|
+
Computes the results of expressions containing 1D or 2D matrix operations and formats them as LaTeX strings.
|
258
264
|
|
259
|
-
|
265
|
+
• Parameters:
|
260
266
|
- `expression` (str): A string representing a sequence of matrix operations involving either 1D or 2D lists. Supported operations include addition (`+`), subtraction (`-`), multiplication (`*`), and division (`/`).
|
261
267
|
|
262
|
-
|
268
|
+
• Returns:
|
263
269
|
- `str`: The LaTeX-formatted string representation of the computed matrix, or an error message if the operations cannot be performed due to dimensional mismatches.
|
264
270
|
|
265
|
-
|
271
|
+
• Example:
|
266
272
|
|
267
|
-
from rgwfuncs import
|
273
|
+
from rgwfuncs import compute_matrix_expression
|
268
274
|
|
269
275
|
# Example with addition of 2D matrices
|
270
|
-
result =
|
276
|
+
result = compute_matrix_expression("[[2, 6, 9], [1, 3, 5]] + [[1, 2, 3], [4, 5, 6]]")
|
271
277
|
print(result) # Output: \begin{bmatrix}3 & 8 & 12\\5 & 8 & 11\end{bmatrix}
|
272
278
|
|
273
279
|
# Example of mixed operations with 1D matrices treated as 2D
|
274
|
-
result =
|
280
|
+
result = compute_matrix_expression("[3, 6, 9] + [1, 2, 3] - [2, 2, 2]")
|
275
281
|
print(result) # Output: \begin{bmatrix}2 & 6 & 10\end{bmatrix}
|
276
282
|
|
277
283
|
# Example with dimension mismatch
|
278
|
-
result =
|
284
|
+
result = compute_matrix_expression("[[4, 3, 51]] + [[1, 1]]")
|
279
285
|
print(result) # Output: Operations between matrices must involve matrices of the same dimension
|
280
286
|
|
281
|
-
This function performs elementwise operations on both 1D and 2D matrices represented as Python lists and formats the result as a LaTeX string. It handles operations sequentially from left to right and gracefully handles dimension mismatches by returning a meaningful message. It utilizes Python's `ast.literal_eval` for safe and robust parsing.
|
282
|
-
|
283
287
|
--------------------------------------------------------------------------------
|
284
288
|
|
285
|
-
### 6. `
|
289
|
+
### 6. `compute_ordered_series_expression`
|
286
290
|
|
287
|
-
Computes the result of operations on ordered series expressed as 1D lists
|
291
|
+
Computes the result of expressions containing operations on ordered series expressed as 1D lists. The syntax of the expression supports the discrete difference operator via the `ddd()` method.
|
288
292
|
|
289
|
-
|
290
|
-
- `expression` (str): A series operation expression. Supports operations such as "+", "-", "*", "/", and `ddd` for discrete differences.
|
293
|
+
• Parameters:
|
294
|
+
- `expression` (str): A series operation expression. Supports operations such as "+", "-", "*", "/", and `ddd()` for discrete differences.
|
291
295
|
|
292
|
-
|
296
|
+
• Returns:
|
293
297
|
- `str`: The string representation of the resultant series after performing operations, or an error message if series lengths do not match.
|
294
298
|
|
295
|
-
|
299
|
+
• Example:
|
296
300
|
|
297
|
-
from rgwfuncs import
|
301
|
+
from rgwfuncs import compute_ordered_series_expression
|
298
302
|
|
299
303
|
# Example with addition and discrete differences
|
300
|
-
result =
|
304
|
+
result = compute_ordered_series_expression("ddd([2, 6, 9, 60]) + ddd([78, 79, 80])")
|
301
305
|
print(result) # Output: [4, 3, 51] + [1, 1]
|
302
306
|
|
303
307
|
# Example with elementwise subtraction
|
304
|
-
result =
|
308
|
+
result = compute_ordered_series_expression("[10, 15, 21] - [5, 5, 5]")
|
305
309
|
print(result) # Output: [5, 10, 16]
|
306
310
|
|
307
311
|
# Example with length mismatch
|
308
|
-
result =
|
312
|
+
result = compute_ordered_series_expression("[4, 3, 51] + [1, 1]")
|
309
313
|
print(result) # Output: Operations between ordered series must involve series of equal length
|
310
314
|
|
311
|
-
This function first applies the discrete difference operator to any series where applicable, then evaluates arithmetic operations between series. It returns a string representation of the result or an error message if the series lengths do not match. The function is robust, directly parsing and evaluating given series expressions with safety checks in place.
|
312
|
-
|
313
315
|
--------------------------------------------------------------------------------
|
314
316
|
|
315
317
|
## String Based Functions
|
@@ -0,0 +1,11 @@
|
|
1
|
+
rgwfuncs/__init__.py,sha256=DdRwXNEo_bN8R3WOWhysKmuHMNiyC6dpBj0GWP4HR0E,1390
|
2
|
+
rgwfuncs/algebra_lib.py,sha256=h3gGCcu6BOo1yTwprxx4pyaFO6MTYqKeiiJIruDcMhg,19037
|
3
|
+
rgwfuncs/df_lib.py,sha256=G_H3PXNVeseX2YLjkkrmO9eXA_7r29swUZlbPBDZjXA,66612
|
4
|
+
rgwfuncs/docs_lib.py,sha256=y3wSAOPO3qsA4HZ7xAtW8HimM8w-c8hjcEzMRLJ96ao,1960
|
5
|
+
rgwfuncs/str_lib.py,sha256=rtAdRlnSJIu3JhI-tA_A0wCiPK2m-zn5RoGpBxv_g-4,2228
|
6
|
+
rgwfuncs-0.0.29.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
7
|
+
rgwfuncs-0.0.29.dist-info/METADATA,sha256=hAU47MpLVyGntoeVhv1bqgeAM3KJnhgJKKDZzmK76mk,42739
|
8
|
+
rgwfuncs-0.0.29.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
9
|
+
rgwfuncs-0.0.29.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
|
10
|
+
rgwfuncs-0.0.29.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
|
11
|
+
rgwfuncs-0.0.29.dist-info/RECORD,,
|
rgwfuncs-0.0.27.dist-info/RECORD
DELETED
@@ -1,11 +0,0 @@
|
|
1
|
-
rgwfuncs/__init__.py,sha256=6QXVaHomLh1AIbC-b-edLf-GS1oEqRT-JffHPNIKowA,1375
|
2
|
-
rgwfuncs/algebra_lib.py,sha256=VZS0d-sUGJvfHv00HmgD1htxBGbugsKkKuUKsJbLPkI,18205
|
3
|
-
rgwfuncs/df_lib.py,sha256=G_H3PXNVeseX2YLjkkrmO9eXA_7r29swUZlbPBDZjXA,66612
|
4
|
-
rgwfuncs/docs_lib.py,sha256=y3wSAOPO3qsA4HZ7xAtW8HimM8w-c8hjcEzMRLJ96ao,1960
|
5
|
-
rgwfuncs/str_lib.py,sha256=rtAdRlnSJIu3JhI-tA_A0wCiPK2m-zn5RoGpBxv_g-4,2228
|
6
|
-
rgwfuncs-0.0.27.dist-info/LICENSE,sha256=7EI8xVBu6h_7_JlVw-yPhhOZlpY9hP8wal7kHtqKT_E,1074
|
7
|
-
rgwfuncs-0.0.27.dist-info/METADATA,sha256=NSNgM-VFveOpzvmosZgjg7kSC9KovbyXspCTXCdMdrU,41874
|
8
|
-
rgwfuncs-0.0.27.dist-info/WHEEL,sha256=In9FTNxeP60KnTkGw7wk6mJPYd_dQSjEZmXdBdMCI-8,91
|
9
|
-
rgwfuncs-0.0.27.dist-info/entry_points.txt,sha256=j-c5IOPIQ0252EaOV6j6STio56sbXl2C4ym_fQ0lXx0,43
|
10
|
-
rgwfuncs-0.0.27.dist-info/top_level.txt,sha256=aGuVIzWsKiV1f2gCb6mynx0zx5ma0B1EwPGFKVEMTi4,9
|
11
|
-
rgwfuncs-0.0.27.dist-info/RECORD,,
|
File without changes
|
File without changes
|
File without changes
|
File without changes
|