rf-funcitons-py 0.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
rafpy/__init__.py ADDED
@@ -0,0 +1 @@
1
+ from .logic import id_signal_candidates
rafpy/logic.py ADDED
@@ -0,0 +1,73 @@
1
+ def id_signal_candidates(fig_num, observed, current_fs, filter_range=None, show_graph=True):
2
+ #identifies potential true frequencies and highlights the one within the analog filter range
3
+ #filter_range: tuple (f_min, f_max)
4
+
5
+ candidates =[]
6
+ f_nyquist = fs /2
7
+
8
+ #logic for finding frequency within filter range
9
+ match = None
10
+ nyquist_zone = None
11
+ if filter_range:
12
+ f_min, f_max = filter_range
13
+ num_candidates = int(np.ceil(f_max / current_fs))
14
+ else:
15
+ num_candidates = 5
16
+
17
+
18
+
19
+ for N in range(num_candidates+1):
20
+ f_possible_1 = N*current_fs + observed
21
+ f_possible_2 = N*current_fs - observed
22
+ if f_possible_1 > 0: candidates.append(f_possible_1)
23
+ if f_possible_2 > 0: candidates.append(f_possible_2)
24
+ #plt.figure(figsize=(12, 6))
25
+ unique_candidates = sorted(list(set(candidates)))
26
+
27
+ if filter_range:
28
+ for f in unique_candidates:
29
+ if f_min <= f <= f_max:
30
+ match = f
31
+ nyquist_zone = int(np.ceil(f/(current_fs/2)))
32
+ break
33
+
34
+ if show_graph:
35
+ fig, ax = plt.subplots(figsize=(12, 5))
36
+ plt.subplots_adjust(bottom=0.3)
37
+
38
+ #plots all candidates
39
+ markerline, stemlines, baseline = ax.stem(unique_candidates, np.ones(len(unique_candidates)))
40
+ plt.setp(markerline, color='red', marker='D', markersize=6, alpha=0.5)
41
+ plt.setp(stemlines, color='red', linestyle='--', alpha = 0.3)
42
+
43
+ #highlight filter range
44
+ if filter_range:
45
+ ax.axvspan(filter_range[0], filter_range[1], color='orange', alpha=0.15, label='Filter Passband')
46
+ #highlight frequency
47
+ if match:
48
+ ax.stem([match], [1], linefmt='r-', markerfmt='rD', basefmt=' ')
49
+ ax.annotate(f'MATCH: {match} Hz\nZone {nyquist_zone}', xy=(match, 1), xytext=(match, 1.4), arrowprops=dict(facecolor='green', shrink=0.05), ha='center', fontweight='bold', color='green')
50
+ if observed:
51
+ ax.stem([observed], [1], linefmt='r-', markerfmt='rD', basefmt=' ')
52
+ ax.annotate(f'OBSERVED: {observed} Hz', xy=(observed, 1), xytext=(observed, 1.3), arrowprops=dict(facecolor='blue', shrink=0.05), ha='center', fontweight='bold', color='blue')
53
+ #ax.annotate('Observed\n(Alias)', xy=(observed, 1), xytext=(observed, 1.3),
54
+ #arrowprops=dict(facecolor='black', shrink=0.05), ha='center')
55
+ ax.set_yticks([])
56
+ ax.set_title(f"Fig {fig_num}. Signal Identification (Observed: {observed} Hz | $f_s$: {current_fs} Hz | Bandpass {np.min(filter_range)}-{np.max(filter_range)} Hz)", fontweight='bold')
57
+ ax.set_xlabel("Frequency (Hz)", fontweight='bold')
58
+ ax.set_ylim(0, 1.6)
59
+ desc = (
60
+ f"""Fig {fig_num}. You saw a signal at {observed} Hz with a sampling rate of {current_fs} Hz. If you used a bandpass filter then the highlighted frequency is the original frequency considering any aliasing observed and which Nyquist zone it resides in. If you did not use a bandpass filter, then this lists the possible frequencies associated with the sampled signal, which can be filtered manually using known physics of your source."""
61
+ )
62
+ wrapped_desc = textwrap.fill(desc, width=90)
63
+ plt.figtext(0.5, 0.05, wrapped_desc, ha='center', fontsize=10,
64
+ bbox=dict(boxstyle="round,pad=0.3", fc="#f0f0f0", ec="black", alpha=0.5))
65
+ plt.legend(loc='upper right')
66
+ print("-" * 30)
67
+ print(f"ANALYSIS FOR {observed} Hz (Fs = {current_fs} Hz)")
68
+ print(f"Potential Frequencies: {unique_candidates}")
69
+ if match:
70
+ print(f"IDENTIFIED SIGNAL: {match} Hz (Nyquist Zone {nyquist_zone})")
71
+ print("-" * 30)
72
+ plt.show()
73
+ return {"all_candidates": unique_candidates, "identified_f": match, "nyquist_zone":nyquist_zone}, match
@@ -0,0 +1,10 @@
1
+ Metadata-Version: 2.4
2
+ Name: rf_funcitons_py
3
+ Version: 0.1.0
4
+ Summary: First package from a notebook
5
+ Author-email: Avery Books <abooks104@gmail.com>
6
+ Requires-Python: >3.8
7
+ Description-Content-Type: text/markdown
8
+
9
+ #My First Package
10
+ This package contains my alias source signal identification function
@@ -0,0 +1,6 @@
1
+ rafpy/__init__.py,sha256=YJ7WwLTtUPL2cl7hNS_I75dwn4MiCSuXmjbPVYw0c60,39
2
+ rafpy/logic.py,sha256=OQKlZ-AGGbQu1u-yBSdLdUJrrTVUWcYV897HBbMVJ-s,3966
3
+ rf_funcitons_py-0.1.0.dist-info/METADATA,sha256=ygy2KIe3bJPRDcTwMWUCl9itozjc-Zr9wcZyH9cIFR4,306
4
+ rf_funcitons_py-0.1.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
5
+ rf_funcitons_py-0.1.0.dist-info/top_level.txt,sha256=4q_MXcdbMykJYGFjd_1IVwHk_V3unZSegNAYAUumMnw,6
6
+ rf_funcitons_py-0.1.0.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: setuptools (80.10.2)
3
+ Root-Is-Purelib: true
4
+ Tag: py3-none-any
5
+
@@ -0,0 +1 @@
1
+ rafpy