reza-filter 0.2.5__cp311-cp311-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
reza/__init__.py ADDED
@@ -0,0 +1,425 @@
1
+ from __future__ import annotations
2
+
3
+ """
4
+ Reza Filter (minimal, SciPy-like user-facing API)
5
+ ------------------------------------------------
6
+ Goal: users should only need:
7
+
8
+ import reza
9
+
10
+ # SciPy-like (preferred)
11
+ y = reza.filter(x, fs=200, Wn=5, btype="low") # low-pass 5 Hz
12
+ y = reza.filter(x, fs=200, Wn=10, btype="high") # high-pass 10 Hz
13
+ y = reza.filter(x, fs=200, Wn=(5, 10), btype="band") # band-pass 5-10 Hz
14
+
15
+ # Convenience wrappers
16
+ y = reza.low(x, fs=200, fc=5)
17
+ y = reza.high(x, fs=200, fc=10)
18
+ y = reza.band(x, fs=200, f1=5, f2=10)
19
+
20
+ Notes
21
+ -----
22
+ - Reza Filter is applied in the FFT domain as a zero-phase magnitude shaping curve.
23
+ - All shaping parameters are internal. The decay exponent d is auto-selected and cached.
24
+ - For frequency response, use reza.freqz(...). Unlike IIR filters, Reza's response
25
+ depends on the effective FFT length; we choose an internal default automatically
26
+ so users do not need to pass n.
27
+ """
28
+
29
+ import math
30
+ from functools import lru_cache
31
+ import numpy as np
32
+
33
+ # Package version (must match installed distribution metadata)
34
+ try:
35
+ from importlib.metadata import version as _pkg_version # py3.8+
36
+ __version__ = _pkg_version("reza-filter")
37
+ except Exception:
38
+ __version__ = "0.0.0"
39
+
40
+ from . import _fallback
41
+
42
+ try:
43
+ from . import _reza_cpp as _cpp # compiled extension
44
+ _HAS_CPP = True
45
+ except Exception:
46
+ _cpp = None
47
+ _HAS_CPP = False
48
+
49
+ __all__ = [
50
+ # Primary (SciPy-like)
51
+ "filter",
52
+ "freqz",
53
+
54
+ # Convenience wrappers
55
+ "low",
56
+ "high",
57
+ "band",
58
+
59
+ # Backward-compatible aliases
60
+ "lowpass",
61
+ "highpass",
62
+ "bandpass",
63
+ "lp",
64
+ "hp",
65
+ "bp",
66
+
67
+ # Utilities
68
+ "has_cpp",
69
+ "__version__",
70
+ ]
71
+
72
+ # ---------------------------------------------------------------------
73
+ # Internal defaults (NOT part of the public API)
74
+ # ---------------------------------------------------------------------
75
+ _C_DEFAULT = 0.9
76
+ _OFFSET_DEFAULT = 1.0
77
+
78
+ # Dynamic-decay search parameters (kept internal)
79
+ _D_INIT = 10.0
80
+ _D_INC = 5.0
81
+ _D_THRESHOLD = 1e-4
82
+ _D_MAX_ITER = 200
83
+ _D_MAX = 1e6
84
+
85
+ # Freq-response internal defaults (kept internal)
86
+ _FREQZ_MIN_N = 4096
87
+ _FREQZ_MAX_N = 262144
88
+ _FREQZ_MIN_DF_HZ = 0.02 # do not chase absurdly fine grids by default
89
+ _FREQZ_FMIN_FRAC = 1.0 / 100 # aim for ~100 points up to the smallest cutoff
90
+
91
+
92
+ def has_cpp() -> bool:
93
+ return _HAS_CPP
94
+
95
+
96
+ def _move_axis_to_last(x: np.ndarray, axis: int) -> np.ndarray:
97
+ return np.moveaxis(x, axis, -1) if axis != -1 else x
98
+
99
+
100
+ def _move_axis_back(x: np.ndarray, axis: int) -> np.ndarray:
101
+ return np.moveaxis(x, -1, axis) if axis != -1 else x
102
+
103
+
104
+ def _apply_gain_rfft(X: np.ndarray, gain: np.ndarray) -> np.ndarray:
105
+ if _HAS_CPP:
106
+ return _cpp.apply_gain_rfft(X, gain)
107
+ return _fallback.apply_gain_rfft(X, gain)
108
+
109
+
110
+ @lru_cache(maxsize=256)
111
+ def _auto_d_lowpass(fs: float, n: int, fc: float) -> float:
112
+ if _HAS_CPP:
113
+ return float(
114
+ _cpp.auto_d_lowpass(
115
+ float(fs), int(n), float(fc),
116
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT),
117
+ float(_D_INIT), float(_D_INC), float(_D_THRESHOLD),
118
+ int(_D_MAX_ITER), float(_D_MAX),
119
+ )
120
+ )
121
+ return float(
122
+ _fallback._auto_d_lowpass(
123
+ float(fs), int(n), float(fc),
124
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT),
125
+ initial_d=float(_D_INIT), d_increment=float(_D_INC),
126
+ threshold=float(_D_THRESHOLD), max_iter=int(_D_MAX_ITER), max_d=float(_D_MAX),
127
+ )
128
+ )
129
+
130
+
131
+ @lru_cache(maxsize=256)
132
+ def _auto_d_highpass(fs: float, n: int, fc: float) -> float:
133
+ if _HAS_CPP:
134
+ return float(
135
+ _cpp.auto_d_highpass(
136
+ float(fs), int(n), float(fc),
137
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT),
138
+ float(_D_INIT), float(_D_INC), float(_D_THRESHOLD),
139
+ int(_D_MAX_ITER), float(_D_MAX),
140
+ )
141
+ )
142
+ return float(
143
+ _fallback._auto_d_highpass(
144
+ float(fs), int(n), float(fc),
145
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT),
146
+ initial_d=float(_D_INIT), d_increment=float(_D_INC),
147
+ threshold=float(_D_THRESHOLD), max_iter=int(_D_MAX_ITER), max_d=float(_D_MAX),
148
+ )
149
+ )
150
+
151
+
152
+ @lru_cache(maxsize=256)
153
+ def _auto_d_bandpass(fs: float, n: int, f1: float, f2: float) -> float:
154
+ if _HAS_CPP:
155
+ return float(
156
+ _cpp.auto_d_bandpass(
157
+ float(fs), int(n), float(f1), float(f2),
158
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT),
159
+ float(_D_INIT), float(_D_INC), float(_D_THRESHOLD),
160
+ int(_D_MAX_ITER), float(_D_MAX),
161
+ )
162
+ )
163
+ return float(
164
+ _fallback._auto_d_bandpass(
165
+ float(fs), int(n), float(f1), float(f2),
166
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT),
167
+ initial_d=float(_D_INIT), d_increment=float(_D_INC),
168
+ threshold=float(_D_THRESHOLD), max_iter=int(_D_MAX_ITER), max_d=float(_D_MAX),
169
+ )
170
+ )
171
+
172
+
173
+ @lru_cache(maxsize=256)
174
+ def _gain_lowpass(fs: float, n: int, fc: float) -> np.ndarray:
175
+ d = _auto_d_lowpass(fs, n, fc)
176
+ if _HAS_CPP:
177
+ g = _cpp.gain_lowpass(float(fs), int(n), float(fc),
178
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT), float(d))
179
+ else:
180
+ g = _fallback.calculate_gain_lowpass(float(fs), int(n), float(fc),
181
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT), d=float(d))
182
+ g = np.ascontiguousarray(np.asarray(g, dtype=np.float64))
183
+ g.setflags(write=False)
184
+ return g
185
+
186
+
187
+ @lru_cache(maxsize=256)
188
+ def _gain_highpass(fs: float, n: int, fc: float) -> np.ndarray:
189
+ d = _auto_d_highpass(fs, n, fc)
190
+ if _HAS_CPP:
191
+ g = _cpp.gain_highpass(float(fs), int(n), float(fc),
192
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT), float(d))
193
+ else:
194
+ g = _fallback.calculate_gain_highpass(float(fs), int(n), float(fc),
195
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT), d=float(d))
196
+ g = np.ascontiguousarray(np.asarray(g, dtype=np.float64))
197
+ g.setflags(write=False)
198
+ return g
199
+
200
+
201
+ @lru_cache(maxsize=256)
202
+ def _gain_bandpass(fs: float, n: int, f1: float, f2: float) -> np.ndarray:
203
+ d = _auto_d_bandpass(fs, n, f1, f2)
204
+ if _HAS_CPP:
205
+ g = _cpp.gain_bandpass(float(fs), int(n), float(f1), float(f2),
206
+ float(_C_DEFAULT), float(_OFFSET_DEFAULT), float(d))
207
+ else:
208
+ g = _fallback.calculate_gain_bandpass(float(fs), int(n), float(f1), float(f2),
209
+ c=float(_C_DEFAULT), offset=float(_OFFSET_DEFAULT), d=float(d))
210
+ g = np.ascontiguousarray(np.asarray(g, dtype=np.float64))
211
+ g.setflags(write=False)
212
+ return g
213
+
214
+
215
+ # ---------------------------------------------------------------------
216
+ # Core filtering (kept stable; used by wrappers)
217
+ # ---------------------------------------------------------------------
218
+ def lowpass(data, fs: float, fc: float, axis: int = -1):
219
+ x = np.asarray(data, dtype=float)
220
+ x_m = _move_axis_to_last(x, axis)
221
+ n = int(x_m.shape[-1])
222
+
223
+ gain = _gain_lowpass(float(fs), n, float(fc))
224
+ X = np.ascontiguousarray(np.fft.rfft(x_m, axis=-1).astype(np.complex128, copy=False))
225
+ Y = _apply_gain_rfft(X, gain)
226
+ y = np.fft.irfft(Y, n=n, axis=-1)
227
+ return _move_axis_back(y, axis)
228
+
229
+
230
+ def highpass(data, fs: float, fc: float, axis: int = -1):
231
+ x = np.asarray(data, dtype=float)
232
+ x_m = _move_axis_to_last(x, axis)
233
+ n = int(x_m.shape[-1])
234
+
235
+ gain = _gain_highpass(float(fs), n, float(fc))
236
+ X = np.ascontiguousarray(np.fft.rfft(x_m, axis=-1).astype(np.complex128, copy=False))
237
+ Y = _apply_gain_rfft(X, gain)
238
+ y = np.fft.irfft(Y, n=n, axis=-1)
239
+ return _move_axis_back(y, axis)
240
+
241
+
242
+ def bandpass(data, fs: float, f1: float, f2: float, axis: int = -1):
243
+ if float(f2) <= float(f1):
244
+ raise ValueError("bandpass requires f2 > f1")
245
+
246
+ x = np.asarray(data, dtype=float)
247
+ x_m = _move_axis_to_last(x, axis)
248
+ n = int(x_m.shape[-1])
249
+
250
+ gain = _gain_bandpass(float(fs), n, float(f1), float(f2))
251
+ X = np.ascontiguousarray(np.fft.rfft(x_m, axis=-1).astype(np.complex128, copy=False))
252
+ Y = _apply_gain_rfft(X, gain)
253
+ y = np.fft.irfft(Y, n=n, axis=-1)
254
+ return _move_axis_back(y, axis=axis)
255
+
256
+
257
+ # ---------------------------------------------------------------------
258
+ # SciPy-like user API (preferred)
259
+ # ---------------------------------------------------------------------
260
+ def _normalize_btype(btype: str | None) -> str:
261
+ if btype is None:
262
+ return "low"
263
+ b = str(btype).strip().lower()
264
+ if b in ("lp", "low", "lowpass", "low-pass"):
265
+ return "low"
266
+ if b in ("hp", "high", "highpass", "high-pass"):
267
+ return "high"
268
+ if b in ("bp", "band", "bandpass", "band-pass"):
269
+ return "band"
270
+ raise ValueError("btype must be one of: 'low', 'high', 'band' (or lowpass/highpass/bandpass aliases)")
271
+
272
+
273
+ def filter(data, fs: float, Wn=None, btype: str = "low", axis: int = -1, *,
274
+ lowcut=None, highcut=None):
275
+ """
276
+ Filter data with a SciPy-like signature.
277
+
278
+ Preferred:
279
+ reza.filter(x, fs, Wn, btype="low|high|band")
280
+
281
+ Backward compatibility:
282
+ reza.filter(x, fs, lowcut=..., highcut=...)
283
+ """
284
+ # Legacy path (lowcut/highcut)
285
+ if Wn is None:
286
+ if lowcut is None and highcut is None:
287
+ raise ValueError("Provide Wn=... (preferred) or at least one of lowcut/highcut (legacy).")
288
+ if lowcut is not None and highcut is not None:
289
+ return bandpass(data, fs, lowcut, highcut, axis=axis)
290
+ if highcut is not None:
291
+ return lowpass(data, fs, highcut, axis=axis)
292
+ return highpass(data, fs, lowcut, axis=axis)
293
+
294
+ bt = _normalize_btype(btype)
295
+
296
+ if bt in ("low", "high") and isinstance(Wn, (tuple, list, np.ndarray)):
297
+ raise ValueError("For btype='low' or 'high', Wn must be a scalar cutoff (Hz).")
298
+ if bt == "band" and not isinstance(Wn, (tuple, list, np.ndarray)):
299
+ raise ValueError("For btype='band', Wn must be a (low, high) tuple in Hz.")
300
+
301
+ if bt == "low":
302
+ return lowpass(data, fs, float(Wn), axis=axis)
303
+ if bt == "high":
304
+ return highpass(data, fs, float(Wn), axis=axis)
305
+
306
+ # band
307
+ f1, f2 = float(Wn[0]), float(Wn[1])
308
+ return bandpass(data, fs, f1, f2, axis=axis)
309
+
310
+
311
+ # Convenience wrappers
312
+ def low(data, fs: float, fc: float, axis: int = -1):
313
+ return lowpass(data, fs, fc, axis=axis)
314
+
315
+
316
+ def high(data, fs: float, fc: float, axis: int = -1):
317
+ return highpass(data, fs, fc, axis=axis)
318
+
319
+
320
+ def band(data, fs: float, f1: float, f2: float, axis: int = -1):
321
+ return bandpass(data, fs, f1, f2, axis=axis)
322
+
323
+
324
+ # Backward-compatible short aliases
325
+ def lp(data, fs: float, fc: float, axis: int = -1):
326
+ return lowpass(data, fs, fc, axis=axis)
327
+
328
+
329
+ def hp(data, fs: float, fc: float, axis: int = -1):
330
+ return highpass(data, fs, fc, axis=axis)
331
+
332
+
333
+ def bp(data, fs: float, f1: float, f2: float, axis: int = -1):
334
+ return bandpass(data, fs, f1, f2, axis=axis)
335
+
336
+
337
+ # Optional capitalized aliases (do not advertise; harmless compatibility)
338
+ Low = low
339
+ High = high
340
+ Band = band
341
+
342
+
343
+ # ---------------------------------------------------------------------
344
+ # Frequency response (SciPy-like; no user-supplied n)
345
+ # ---------------------------------------------------------------------
346
+ def _next_pow2(n: int) -> int:
347
+ if n <= 1:
348
+ return 1
349
+ return 1 << int(math.ceil(math.log2(n)))
350
+
351
+
352
+ def _default_n_for_freqz(fs: float, Wn, btype: str) -> int:
353
+ fs = float(fs)
354
+
355
+ # Determine smallest relevant cutoff (Hz)
356
+ if btype == "band":
357
+ fmin = min(float(Wn[0]), float(Wn[1]))
358
+ else:
359
+ fmin = float(Wn)
360
+
361
+ fmin = max(fmin, 1e-6)
362
+
363
+ # Target frequency resolution
364
+ target_df = max(_FREQZ_MIN_DF_HZ, _FREQZ_FMIN_FRAC * fmin)
365
+
366
+ n = int(math.ceil(fs / target_df))
367
+ n = _next_pow2(max(_FREQZ_MIN_N, n))
368
+ n = int(min(_FREQZ_MAX_N, n))
369
+ return n
370
+
371
+
372
+ def freqz(*args, fs: float, worN: int = 2048, Wn=None, btype: str = "low",
373
+ fc: float = None, f1: float = None, f2: float = None):
374
+ """
375
+ SciPy-like frequency response for Reza filter.
376
+
377
+ Preferred:
378
+ w_hz, H = reza.freqz(fs=200, Wn=5, btype="low", worN=2048)
379
+
380
+ Backward compatibility:
381
+ reza.freqz("lp", fs=..., fc=...)
382
+ reza.freqz("hp", fs=..., fc=...)
383
+ reza.freqz("bp", fs=..., f1=..., f2=...)
384
+ """
385
+ # Accept legacy positional "kind"
386
+ if len(args) >= 1 and isinstance(args[0], str):
387
+ btype = args[0]
388
+
389
+ bt = _normalize_btype(btype)
390
+
391
+ # Normalize cutoffs: prefer Wn, but accept legacy fc/f1/f2
392
+ if Wn is None:
393
+ if bt in ("low", "high"):
394
+ if fc is None:
395
+ raise ValueError("freqz requires Wn=... (preferred) or fc=... (legacy) for low/high.")
396
+ Wn = float(fc)
397
+ else:
398
+ if f1 is None or f2 is None:
399
+ raise ValueError("freqz requires Wn=(f1,f2) (preferred) or f1=... and f2=... (legacy) for band.")
400
+ Wn = (float(f1), float(f2))
401
+
402
+ fs = float(fs)
403
+ worN = int(worN)
404
+ if worN < 16:
405
+ worN = 16
406
+
407
+ n = _default_n_for_freqz(fs, Wn, bt)
408
+
409
+ imp = np.zeros(n, dtype=float)
410
+ imp[0] = 1.0
411
+
412
+ if bt == "low":
413
+ h = low(imp, fs=fs, fc=float(Wn))
414
+ elif bt == "high":
415
+ h = high(imp, fs=fs, fc=float(Wn))
416
+ else:
417
+ h = band(imp, fs=fs, f1=float(Wn[0]), f2=float(Wn[1]))
418
+
419
+ H_full = np.fft.rfft(h)
420
+ f_full = np.fft.rfftfreq(n, d=1.0 / fs)
421
+
422
+ w = np.linspace(0.0, fs / 2.0, worN, endpoint=True)
423
+ Hr = np.interp(w, f_full, H_full.real)
424
+ Hi = np.interp(w, f_full, H_full.imag)
425
+ return w, Hr + 1j * Hi
reza/_fallback.py ADDED
@@ -0,0 +1,91 @@
1
+ from __future__ import annotations
2
+ import numpy as np
3
+
4
+ def _gain_lowpass(freqs, fc, c, offset, d):
5
+ return np.where(freqs <= fc, 1.0, np.exp(-c * ((freqs - fc) + offset) ** d))
6
+
7
+ def _gain_highpass(freqs, fc, c, offset, d):
8
+ return np.where(freqs >= fc, 1.0, np.exp(-c * ((fc - freqs) + offset) ** d))
9
+
10
+ def _gain_bandpass(freqs, fc_low, fc_high, c, offset, d):
11
+ return _gain_highpass(freqs, fc_low, c, offset, d) * _gain_lowpass(freqs, fc_high, c, offset, d)
12
+
13
+ def _auto_d(mode, freqs, *, fc=None, fc_low=None, fc_high=None,
14
+ c=0.9, offset=1.0,
15
+ initial_d=10.0, d_increment=5.0, threshold=1e-4, max_iter=200, max_d=1e6):
16
+ d = float(initial_d)
17
+ last_sharp = 0.0
18
+ for _ in range(int(max_iter)):
19
+ if d > max_d:
20
+ break
21
+
22
+ if mode == "lowpass":
23
+ g = _gain_lowpass(freqs, fc, c, offset, d)
24
+ idx = int(np.searchsorted(freqs, fc))
25
+ idx = max(1, min(idx, len(g) - 2))
26
+ sharp = abs(g[idx] - g[idx + 1])
27
+ elif mode == "highpass":
28
+ g = _gain_highpass(freqs, fc, c, offset, d)
29
+ idx = int(np.searchsorted(freqs, fc))
30
+ idx = max(1, min(idx, len(g) - 2))
31
+ sharp = abs(g[idx] - g[idx - 1])
32
+ else:
33
+ g = _gain_bandpass(freqs, fc_low, fc_high, c, offset, d)
34
+ i1 = int(np.searchsorted(freqs, fc_low))
35
+ i2 = int(np.searchsorted(freqs, fc_high))
36
+ i1 = max(1, min(i1, len(g) - 2))
37
+ i2 = max(1, min(i2, len(g) - 2))
38
+ sharp = (abs(g[i1] - g[i1 - 1]) + abs(g[i2] - g[i2 + 1])) / 2.0
39
+
40
+ if abs(sharp - last_sharp) > threshold:
41
+ last_sharp = sharp
42
+ d += d_increment
43
+ else:
44
+ break
45
+
46
+ return float(d)
47
+
48
+ def lowpass(data, fs, fc, *, axis=-1, c=0.9, offset=1.0, d=None,
49
+ initial_d=10.0, d_increment=5.0, threshold=1e-4, max_iter=200, max_d=1e6):
50
+ x = np.asarray(data, dtype=float)
51
+ x_m = np.moveaxis(x, axis, -1)
52
+ n = x_m.shape[-1]
53
+ freqs = np.fft.rfftfreq(n, d=1.0 / fs)
54
+
55
+ if d is None:
56
+ d = _auto_d("lowpass", freqs, fc=fc, c=c, offset=offset,
57
+ initial_d=initial_d, d_increment=d_increment, threshold=threshold, max_iter=max_iter, max_d=max_d)
58
+ gain = _gain_lowpass(freqs, fc, c, offset, d)
59
+ Y = np.fft.rfft(x_m, axis=-1) * gain
60
+ y = np.fft.irfft(Y, n=n, axis=-1)
61
+ return np.moveaxis(y, -1, axis)
62
+
63
+ def highpass(data, fs, fc, *, axis=-1, c=0.9, offset=1.0, d=None,
64
+ initial_d=10.0, d_increment=5.0, threshold=1e-4, max_iter=200, max_d=1e6):
65
+ x = np.asarray(data, dtype=float)
66
+ x_m = np.moveaxis(x, axis, -1)
67
+ n = x_m.shape[-1]
68
+ freqs = np.fft.rfftfreq(n, d=1.0 / fs)
69
+
70
+ if d is None:
71
+ d = _auto_d("highpass", freqs, fc=fc, c=c, offset=offset,
72
+ initial_d=initial_d, d_increment=d_increment, threshold=threshold, max_iter=max_iter, max_d=max_d)
73
+ gain = _gain_highpass(freqs, fc, c, offset, d)
74
+ Y = np.fft.rfft(x_m, axis=-1) * gain
75
+ y = np.fft.irfft(Y, n=n, axis=-1)
76
+ return np.moveaxis(y, -1, axis)
77
+
78
+ def bandpass(data, fs, fc_low, fc_high, *, axis=-1, c=0.9, offset=1.0, d=None,
79
+ initial_d=10.0, d_increment=5.0, threshold=1e-4, max_iter=200, max_d=1e6):
80
+ x = np.asarray(data, dtype=float)
81
+ x_m = np.moveaxis(x, axis, -1)
82
+ n = x_m.shape[-1]
83
+ freqs = np.fft.rfftfreq(n, d=1.0 / fs)
84
+
85
+ if d is None:
86
+ d = _auto_d("bandpass", freqs, fc_low=fc_low, fc_high=fc_high, c=c, offset=offset,
87
+ initial_d=initial_d, d_increment=d_increment, threshold=threshold, max_iter=max_iter, max_d=max_d)
88
+ gain = _gain_bandpass(freqs, fc_low, fc_high, c, offset, d)
89
+ Y = np.fft.rfft(x_m, axis=-1) * gain
90
+ y = np.fft.irfft(Y, n=n, axis=-1)
91
+ return np.moveaxis(y, -1, axis)
Binary file
@@ -0,0 +1,51 @@
1
+ Metadata-Version: 2.1
2
+ Name: reza-filter
3
+ Version: 0.2.5
4
+ Summary: Reza exponential-window frequency-domain filter (NumPy FFT + C++/pybind11 acceleration).
5
+ Keywords: signal-processing,filter,EEG,IMU,gait,biomechanics
6
+ Author: Reza Pousti
7
+ License: MIT
8
+ Project-URL: Homepage, https://github.com/Rezapousti/Reza-Filter
9
+ Project-URL: Source, https://github.com/Rezapousti/Reza-Filter
10
+ Project-URL: Issues, https://github.com/Rezapousti/Reza-Filter/issues
11
+ Requires-Python: >=3.9
12
+ Requires-Dist: numpy<2.0,>=1.21
13
+ Description-Content-Type: text/markdown
14
+
15
+ # Reza Filter (C++-accelerated) — Python package
16
+
17
+ **Goal:** users do:
18
+
19
+ ```python
20
+ import reza
21
+ y = reza.bandpass(x, fs=100.0, fc_low=0.5, fc_high=5.0)
22
+ ```
23
+
24
+ ## What is accelerated in C++
25
+ - Gain template generation (low/high/band)
26
+ - Auto-`d` selection via edge-sharpness convergence
27
+ - rFFT-domain complex multiply (X * gain)
28
+
29
+ FFT/iFFT uses NumPy.
30
+
31
+ ## Install
32
+ ```bash
33
+ pip install reza-filter
34
+ ```
35
+
36
+ ## Local dev install
37
+ ```bash
38
+ python -m pip install -U pip
39
+ python -m pip install -e .
40
+ python -c "import reza; print('has_cpp=', reza.has_cpp()); print(reza.__version__)"
41
+ ```
42
+
43
+ ## Build wheels
44
+ Use GitHub Actions + cibuildwheel: see `.github/workflows/wheels.yml`.
45
+
46
+ ## Publish to PyPI
47
+ ```bash
48
+ python -m pip install -U build twine
49
+ python -m build
50
+ python -m twine upload dist/*
51
+ ```
@@ -0,0 +1,7 @@
1
+ reza/__init__.py,sha256=VOnZpQHYKmbZnjCL1PP7gefNQmMqX6EvGbuY-0UnOzU,14135
2
+ reza/_fallback.py,sha256=6tc4eMEqYayM8be_hghNCaMpXgAuuVFpBsHFpReZNEk,3875
3
+ reza/_reza_cpp.cp311-win_amd64.pyd,sha256=KdVrJGtAPnkJCjMrgZ5QJogPMCJKsqORwnl5PBiBf28,164864
4
+ reza_filter-0.2.5.dist-info/METADATA,sha256=lch3QV93-2o-y295o5HEUe837m--1FNUmrZ51lxEyuM,1311
5
+ reza_filter-0.2.5.dist-info/WHEEL,sha256=oXhHG6ewLm-FNdEna2zwgy-K0KEl4claZ1ztR4VTx0I,106
6
+ reza_filter-0.2.5.dist-info/licenses/LICENSE,sha256=i771wlL-pW0u4zJuU3vAUcK4Dcq_yjKhpyS5N2xKffc,1089
7
+ reza_filter-0.2.5.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: scikit-build-core 0.11.6
3
+ Root-Is-Purelib: false
4
+ Tag: cp311-cp311-win_amd64
5
+
@@ -0,0 +1,21 @@
1
+ MIT License
2
+
3
+ Copyright (c) 2026 Reza Pousti
4
+
5
+ Permission is hereby granted, free of charge, to any person obtaining a copy
6
+ of this software and associated documentation files (the "Software"), to deal
7
+ in the Software without restriction, including without limitation the rights
8
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9
+ copies of the Software, and to permit persons to whom the Software is
10
+ furnished to do so, subject to the following conditions:
11
+
12
+ The above copyright notice and this permission notice shall be included in all
13
+ copies or substantial portions of the Software.
14
+
15
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21
+ SOFTWARE.