returnn 1.20250904.193235__py3-none-any.whl → 1.20250905.121049__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250904.193235
3
+ Version: 1.20250905.121049
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250904.193235'
2
- long_version = '1.20250904.193235+git.fd139c1'
1
+ version = '1.20250905.121049'
2
+ long_version = '1.20250905.121049+git.c688197'
@@ -346,6 +346,7 @@ def _masked_scatter_merge_dims(
346
346
  merged_dim_map: Dict[Dim, Dim],
347
347
  ) -> T:
348
348
  if isinstance(s, Dim):
349
+ assert isinstance(backup, Dim)
349
350
  # This is slightly more complex than in the _masked_select case:
350
351
  # We need to merge the s and backup depending on the mask.
351
352
  if s in reverse_dim_map:
@@ -2670,7 +2670,9 @@ def _get_merged_dim_kind(dim_tags: Sequence[Dim]) -> Entity:
2670
2670
 
2671
2671
 
2672
2672
  def _representative_tag(terms: Sequence[Dim]) -> Optional[Dim]:
2673
- # Also see _OpLinearTerm.representative_tag().
2673
+ if any(not term_.auto_generated for term_ in terms):
2674
+ # Always prefer non-auto-generated.
2675
+ terms = [term_ for term_ in terms if not term_.auto_generated]
2674
2676
  # First find any dynamic.
2675
2677
  for term_ in terms:
2676
2678
  if term_.is_dynamic_seq_length():
@@ -1641,6 +1641,8 @@ class TorchBackend(Backend[torch.Tensor]):
1641
1641
  name=f"random_{distribution}", dims=dims, dtype=dtype, sparse_dim=sparse_dim, feature_dim=feature_dim
1642
1642
  )
1643
1643
  out.raw_tensor = torch.empty(shape, dtype=dtype_, device=device or rf.get_default_device())
1644
+ if out.raw_tensor.device.type == "meta":
1645
+ return out # nothing more to do
1644
1646
  assert explicit_state is None # not implemented otherwise
1645
1647
  generator = None # using the global default from PT
1646
1648
  assert isinstance(static, bool)
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250904.193235
3
+ Version: 1.20250905.121049
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=2HgY8fQVMwpsGQO9ktllUlg9llb2zQ5d2bSTDaESAdc,5215
1
+ returnn/PKG-INFO,sha256=exoFKcHlpnAFR6Zn17dQ1af9gLMAadE4mti1xpB5NcE,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=OckTBoODrtHjpQAtlqunG_9pFpX0DFDa1o7fSZtGL2g,77
6
+ returnn/_setup_info_generated.py,sha256=eWk7cF3MxKPOI9qxe8MBHtRMSf1iGKQztzBLY4hdIKE,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -104,7 +104,7 @@ returnn/frontend/loss.py,sha256=uSvou2MPd13JiLAg_OIQ3AyyLvD3RHjMEVgFEN0gKqU,7440
104
104
  returnn/frontend/math_.py,sha256=A_RkZ5lH2uXMchfPIH3itraWtMNNCVckQHHpf7aIIZQ,17295
105
105
  returnn/frontend/matmul.py,sha256=xkueyxzSDz8MsYaWxPSjmV2Yy-tcaiOQDXbFt1IQM2A,1944
106
106
  returnn/frontend/module.py,sha256=219rh5mE0CD0-NdxXLsKyhv3BNtOI9jSyiI1Rb8MOyU,10700
107
- returnn/frontend/nested.py,sha256=6Nbe3pPIuSziI33Pi_qis0vwHjuVUNXDmedqfzIBfOU,15125
107
+ returnn/frontend/nested.py,sha256=UV5XoP2ZjGbmXKqshPnYLbsR128jmXrmRhsbv3WeFAA,15164
108
108
  returnn/frontend/normalization.py,sha256=NrIIaZ3c2yf-WH2R9lPaL2TAq4IcNQc4OE5kFYdoihw,14139
109
109
  returnn/frontend/parameter.py,sha256=zvrkhSYC1c_O9kVwgHvOtOnWNurl5J28lkS0i1LQpWU,10627
110
110
  returnn/frontend/parametrizations.py,sha256=ptNgBw5IiPXVpB3QGse7AGAhdXp8X1rCqYUl2Mae8aI,2876
@@ -154,7 +154,7 @@ returnn/sprint/extern_interface.py,sha256=l-v1X-Yg0UpTFe7Y3c4FwWOqpSNuv9Oy5EzqlK
154
154
  returnn/sprint/interface.py,sha256=1j5SB0V8hSW8A5song9ciZtcBnZoKKfNipk9ezOIMuA,36491
155
155
  returnn/tensor/README.md,sha256=X6BqcRLrPLPnwF9yR69uqIFrMnNluj9pBkOPHwNgzuo,501
156
156
  returnn/tensor/__init__.py,sha256=on6j5PEOQpck50UcsR4nJzJSDmoVy34z1Oq4efv6Ax0,154
157
- returnn/tensor/_dim_extra.py,sha256=D1lDB-zjF1tPhBQFApbui2AlyARdTx0hIFKRhTtk4T4,116033
157
+ returnn/tensor/_dim_extra.py,sha256=N9qkz-1WZZY0XbpFjLg4aaNie3NfadvmanHcTOFoKeg,116154
158
158
  returnn/tensor/_tensor_extra.py,sha256=gbSl6HMtn8WFYloanew_RaNNwx3eCpnKv3UfCkntJiQ,164923
159
159
  returnn/tensor/_tensor_mixin_base.py,sha256=H5z86I0NejxrSgMH1c5oXQzBqS6L9HpvP4y7oegBaSc,643
160
160
  returnn/tensor/_tensor_op_overloads.py,sha256=HklwuTBjy7mH_665VKaCUdu-oC3aa7Uz1ZQiCz4jeZc,5448
@@ -216,7 +216,7 @@ returnn/torch/data/queued_data_iter.py,sha256=PoOsGHdHVZjTmcyfq_ZOw--P6hyfTdmAWI
216
216
  returnn/torch/data/returnn_dataset_wrapper.py,sha256=2CaDapzrlqahANuq-nyVAtv5ENHuM8A7okORwYJDisg,8006
217
217
  returnn/torch/data/tensor_utils.py,sha256=-Teqi--LLbt6q_5mDRdoHZHmPgSdC83W706ukif_YiU,1284
218
218
  returnn/torch/frontend/__init__.py,sha256=AA48HZnC17ASuKA0EWy8loZ-Bib_yUtqF4T1wYvjst4,62
219
- returnn/torch/frontend/_backend.py,sha256=XeiXlfGK8hy4wmMbVhQCTY7o4FFZ6TZb5cO2FgKl2zw,103244
219
+ returnn/torch/frontend/_backend.py,sha256=Iq7FS9N8o7ADw_Nw36ij_AqT4rwvtjz6A7A3Ry1oA90,103338
220
220
  returnn/torch/frontend/_rand.py,sha256=1JgIkV2XmpgJD86zXZ-NCAe-QuoP2swr6NaS1oz3Qa8,1830
221
221
  returnn/torch/frontend/bridge.py,sha256=c_mVBCBo29sjm8Bhxarv00szwGPgxjwoIqAHOmceGQw,7842
222
222
  returnn/torch/frontend/raw_ops.py,sha256=lF0h-KtYYsdaaqQADylVZp9qzPskOOXA4MfmYDyx5IU,296
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250904.193235.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250904.193235.dist-info/METADATA,sha256=2HgY8fQVMwpsGQO9ktllUlg9llb2zQ5d2bSTDaESAdc,5215
258
- returnn-1.20250904.193235.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250904.193235.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250904.193235.dist-info/RECORD,,
256
+ returnn-1.20250905.121049.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250905.121049.dist-info/METADATA,sha256=exoFKcHlpnAFR6Zn17dQ1af9gLMAadE4mti1xpB5NcE,5215
258
+ returnn-1.20250905.121049.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250905.121049.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250905.121049.dist-info/RECORD,,