returnn 1.20250718.114743__py3-none-any.whl → 1.20250719.212120__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250718.114743
3
+ Version: 1.20250719.212120
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250718.114743'
2
- long_version = '1.20250718.114743+git.c04e0df'
1
+ version = '1.20250719.212120'
2
+ long_version = '1.20250719.212120+git.dd75ba0'
@@ -39,10 +39,10 @@ class DistributedContext:
39
39
  else:
40
40
  import torch.distributed as dist
41
41
 
42
- # when no backend is specified, both gloo and nccl backends will be created
43
- # the gloo backend will be used for collectives with CPU tensors and
44
- # the nccl backend will be used for collectives with CUDA tensors
45
- dist.init_process_group(backend=self._opts.get("backend", None))
42
+ # When no backend is specified, we set gloo for CPU tensors and nccl for CUDA tensors as backend.
43
+ # torch 2.6.0 and onwards require explicitly setting the backends.
44
+ # See https://github.com/rwth-i6/returnn/issues/1724 for discussion.
45
+ dist.init_process_group(backend=self._opts.get("backend", "cpu:gloo,cuda:nccl"))
46
46
  self._rank = dist.get_rank()
47
47
  self._size = dist.get_world_size()
48
48
  os.environ[env_var_name] = repr({"rank": self._rank, "size": self._size})
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250718.114743
3
+ Version: 1.20250719.212120
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=d1Fd9itCGG0hQBiyqxPBAn3dPpXyhQ2OY_eyjB7DbWg,5215
1
+ returnn/PKG-INFO,sha256=kFAM5n3kH99yMVP1SQd0sVbkU2B7US9b0vzffW_Qd1U,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=S-VaIfFo8z7wvGyUvQCclXwgISF0Wp1dVGlEP0AXmes,77
6
+ returnn/_setup_info_generated.py,sha256=rBsXXneRSaGVcWW-gkfggWzjHOl--i-R6QX1-LCZ3r4,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -206,7 +206,7 @@ returnn/tf/util/ken_lm.py,sha256=R60UAoywriuDIeQ2Hk3Vm_waf2Hxxc88ofzEw6X6Sd4,173
206
206
  returnn/tf/util/open_fst.py,sha256=sZRDw4TbxvhGqpGdUJWy1ebvlZm4_RPhygpRw9uLAOQ,11265
207
207
  returnn/torch/README.md,sha256=jzJ2FpOHW02vxN69yKaV97C9LI-hmvjBglKfdZXIDdc,85
208
208
  returnn/torch/__init__.py,sha256=MHEUyNHB20Vy89uKAqZoj6FxJKF1Gq3HW-i6ra1pNcI,24
209
- returnn/torch/distributed.py,sha256=EzLrVTHmTzQMAXjFiVnj5rNmsADQnwaiWxU9aK7f7mw,7485
209
+ returnn/torch/distributed.py,sha256=_lyJR71HIoCHpMi5GztGM7YwrX54Am8zSkjnDkE1Lbk,7524
210
210
  returnn/torch/engine.py,sha256=JSsQZZiVs9TxRyFEJuR3iH-YZb9sRw7TzoIAIqmplZY,78275
211
211
  returnn/torch/updater.py,sha256=skKeIJVNVJ9OAQonL61azdOZ3MhDF1JXBALPfWpQgWY,28239
212
212
  returnn/torch/data/__init__.py,sha256=6cLNEi8KoGI12PF6akN7mI_mtjlx-0hcQAfMYoExwik,132
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250718.114743.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250718.114743.dist-info/METADATA,sha256=d1Fd9itCGG0hQBiyqxPBAn3dPpXyhQ2OY_eyjB7DbWg,5215
258
- returnn-1.20250718.114743.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250718.114743.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250718.114743.dist-info/RECORD,,
256
+ returnn-1.20250719.212120.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250719.212120.dist-info/METADATA,sha256=kFAM5n3kH99yMVP1SQd0sVbkU2B7US9b0vzffW_Qd1U,5215
258
+ returnn-1.20250719.212120.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250719.212120.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250719.212120.dist-info/RECORD,,