returnn 1.20250708.165746__py3-none-any.whl → 1.20250717.120243__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250708.165746
3
+ Version: 1.20250717.120243
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250708.165746'
2
- long_version = '1.20250708.165746+git.eff9959'
1
+ version = '1.20250717.120243'
2
+ long_version = '1.20250717.120243+git.c980de6'
@@ -174,17 +174,21 @@ class DistributeFilesDataset(CachedDataset2):
174
174
 
175
175
  self.distrib_shard_files = distrib_shard_files
176
176
  if distrib_shard_files:
177
- assert self._num_shards == 1 and self._shard_index == 0, ( # ensure defaults are set
178
- f"{self}: Cannot use both dataset-sharding via properties _num_shards and _shard index "
179
- f"and {self.__class__.__name__}'s own sharding implementation based on the trainings rank and size."
180
- )
181
177
  if _distrib_info:
182
- # If we're in a child process `_get_rank_and_size()` no longer works,
178
+ # We're in a child process.
179
+ # `_get_rank_and_size()` no longer works,
183
180
  # so we pass the info about the shards via a pickled property.
184
181
  # See also Dataset.__reduce__.
185
- self._shard_index = _distrib_info["_shard_index"]
186
- self._num_shards = _distrib_info["_num_shards"]
182
+ # _num_shards and _shard_index are already set, so just check.
183
+ assert (
184
+ self._shard_index == _distrib_info["_shard_index"]
185
+ and self._num_shards == _distrib_info["_num_shards"]
186
+ )
187
187
  else:
188
+ assert self._num_shards == 1 and self._shard_index == 0, ( # ensure defaults are set
189
+ f"{self}: Cannot use both dataset-sharding via properties _num_shards and _shard index "
190
+ f"and {self.__class__.__name__}'s own sharding implementation based on the trainings rank and size."
191
+ )
188
192
  self._shard_index, self._num_shards = _get_rank_and_size()
189
193
  assert 0 <= self._shard_index < self._num_shards
190
194
 
@@ -524,6 +528,8 @@ def _get_rank_and_size() -> Tuple[int, int]:
524
528
 
525
529
  ctx = returnn.tf.horovod.get_ctx(config=config)
526
530
  return ctx.rank(), ctx.size()
531
+ elif config.typed_value("__debug_dummy_distributed_rank_and_size") is not None:
532
+ return config.typed_value("__debug_dummy_distributed_rank_and_size")
527
533
  else:
528
534
  return 0, 1
529
535
 
@@ -26,10 +26,10 @@ def specaugment(
26
26
  """
27
27
  SpecAugment, https://arxiv.org/abs/1904.08779
28
28
  """
29
- if not feature_dim:
29
+ if feature_dim is None:
30
30
  assert x.feature_dim
31
31
  feature_dim = x.feature_dim
32
- if not max_consecutive_feature_dims:
32
+ if max_consecutive_feature_dims is None:
33
33
  max_consecutive_feature_dims = feature_dim.dimension // 5
34
34
  if global_train_step_dependent:
35
35
  with rf.set_default_device_ctx("cpu"):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250708.165746
3
+ Version: 1.20250717.120243
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=gFz3WCtUJq8MCZeykNbFyHQVIFyQnwVcQkfRsDeC0X0,5215
1
+ returnn/PKG-INFO,sha256=GxZbYJvbUiJoMvMKBm2i5UDgmCZf7Fm7NtO_L36oMa0,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=QIOgjEYWfaIUKGZdpx_bvAWra8S_SM7m87LEcq2Lcp0,77
6
+ returnn/_setup_info_generated.py,sha256=Wgz5eZ1DzRRaKRkPpQq_p-a3XZcZGMjQE4uNaLXtzNs,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -17,7 +17,7 @@ returnn/datasets/basic.py,sha256=S7MoFnQfgjeuZsBnaPrpQWlMUmH68HlUnjX7k881PD0,723
17
17
  returnn/datasets/bundle_file.py,sha256=KQNrS1MSf-4_idlK0c0KFwON-f5sEK0sWU15WpoMYpE,2380
18
18
  returnn/datasets/cached.py,sha256=RyefRjSDdp-HveK-2vLy2C6BIHcpqQ_lNvUKlIa4QAI,25412
19
19
  returnn/datasets/cached2.py,sha256=_6pza3IG68JexaExhj1ld3fP6pE7T-G804driJ9Z_qo,12141
20
- returnn/datasets/distrib_files.py,sha256=9-3pJaF8Ws1Cs4AlelFCODz6b5YiaTsrD7tMCB76PDY,29865
20
+ returnn/datasets/distrib_files.py,sha256=SJ2YkZEZmG9lu3MLTwSMyVNfsXzRHqbLNjUn9IDwVJM,30194
21
21
  returnn/datasets/generating.py,sha256=9U_w6URIrv-Rb-hDbPOzYW9qYXzJbw32N6G268IKyoM,99833
22
22
  returnn/datasets/hdf.py,sha256=v5sjBenURR9Z-g7AQ9tsL84yDSye5RtbLpym3M6HSDE,67833
23
23
  returnn/datasets/lm.py,sha256=ycHdGHxT4QshBM9LPktLDaaQRTLO5zQyueCK5KMNR_4,100022
@@ -129,7 +129,7 @@ returnn/frontend/_native/tensor_ops.cpp,sha256=bA4Gf-q8cVENL441r1IYVd44EcUsV-eEL
129
129
  returnn/frontend/_native/tensor_ops.hpp,sha256=dDqvUejRNHjItnmOP5aHyAQbAmXmXoDVXSe3tveEU8A,3732
130
130
  returnn/frontend/audio/__init__.py,sha256=8mahwucBje8qHKw0bOvoySlvvD0rFKxviSvcAHSjiJY,67
131
131
  returnn/frontend/audio/mel.py,sha256=LNzC9aWWgLqua34bwxA--M9shtLlePfwLQ-HpvP2o54,7884
132
- returnn/frontend/audio/specaugment.py,sha256=w7YPEJ6zhCaG5AAaDd-HxsKwa_2vA7wFqHrEjxiUVPI,5841
132
+ returnn/frontend/audio/specaugment.py,sha256=_GQ1ZypeDa81zigvMXnaA-52vnkR6-cs7ctW_uE8vlM,5849
133
133
  returnn/frontend/conversions/__init__.py,sha256=7plsDxWVYhASa-3qmqbdzSI34A9ujUH2iMkL3eRD0TI,84
134
134
  returnn/frontend/conversions/espnet_e_branchformer.py,sha256=Mmp3G6nySy0CqeHa-um-RAuUSnFH1DKNjBbqQB_Pomo,9018
135
135
  returnn/frontend/conversions/hf_llama.py,sha256=1WQOhQyUWwkAznaRqK2zpThP8XZbaomkaE8qMG_bZPY,9662
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250708.165746.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250708.165746.dist-info/METADATA,sha256=gFz3WCtUJq8MCZeykNbFyHQVIFyQnwVcQkfRsDeC0X0,5215
258
- returnn-1.20250708.165746.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250708.165746.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250708.165746.dist-info/RECORD,,
256
+ returnn-1.20250717.120243.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250717.120243.dist-info/METADATA,sha256=GxZbYJvbUiJoMvMKBm2i5UDgmCZf7Fm7NtO_L36oMa0,5215
258
+ returnn-1.20250717.120243.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250717.120243.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250717.120243.dist-info/RECORD,,