returnn 1.20250703.183400__py3-none-any.whl → 1.20250704.120801__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250703.183400
3
+ Version: 1.20250704.120801
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250703.183400'
2
- long_version = '1.20250703.183400+git.a5c35a2'
1
+ version = '1.20250704.120801'
2
+ long_version = '1.20250704.120801+git.b693591'
returnn/datasets/meta.py CHANGED
@@ -1990,9 +1990,13 @@ class VariableDataset(Dataset):
1990
1990
  class MultiEpochDataset(CachedDataset2):
1991
1991
  """
1992
1992
  It wraps some dataset, where one outer epoch corresponds to multiple epochs in the inner wrapped dataset.
1993
+ I.e. one iteration through this dataset corresponds to multiple iterations through the inner dataset.
1993
1994
 
1994
- This can be useful when the inner dataset uses partition_epoch, and we want to cover the whole full epoch.
1995
+ This can be useful for forwarding, when you want to do multiple iterations through the dataset.
1996
+ This could be useful for clustering.
1995
1997
 
1998
+ This can also be useful when the inner dataset uses (or must use) partition_epoch,
1999
+ and we want to cover the whole full epoch:
1996
2000
  One specific example when the data is distributed over multiple files,
1997
2001
  and for reasonable performance, you want to have the data copied to the local disk,
1998
2002
  but all data together is too large to fit on the local disk.
@@ -2041,7 +2045,11 @@ class MultiEpochDataset(CachedDataset2):
2041
2045
  return self._dataset.get_all_tags()
2042
2046
 
2043
2047
  def get_total_num_seqs(self, *, fast: bool = False) -> int:
2044
- """total num seqs"""
2048
+ """
2049
+ Total num seqs.
2050
+ Note that this is the total number of seqs in the inner dataset,
2051
+ so without the multi-epoch handling.
2052
+ """
2045
2053
  return self._dataset.get_total_num_seqs(fast=fast)
2046
2054
 
2047
2055
  def get_data_keys(self) -> List[str]:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250703.183400
3
+ Version: 1.20250704.120801
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=6b050edAnN_IixiTU7cKY9Y7GsV2u54Go4pMebtP1LA,5215
1
+ returnn/PKG-INFO,sha256=V7Fti4odxCkXq9_mO0Fn_AGvs5VVJWqu9W9UtYebguM,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=W3RqBPspEAo2psz8RlzIp3A0pBAmerlhlAfLeZuEUy8,77
6
+ returnn/_setup_info_generated.py,sha256=Xh34434TSfRAFKxnLyywQQ3o1aXs2TrSEL_FezJ6b60,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -22,7 +22,7 @@ returnn/datasets/generating.py,sha256=9U_w6URIrv-Rb-hDbPOzYW9qYXzJbw32N6G268IKyo
22
22
  returnn/datasets/hdf.py,sha256=v5sjBenURR9Z-g7AQ9tsL84yDSye5RtbLpym3M6HSDE,67833
23
23
  returnn/datasets/lm.py,sha256=IqUsOzbdSWUynL0YFL25HbtMR4AxaQGHvjjqRE9IwBo,99215
24
24
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
25
- returnn/datasets/meta.py,sha256=KQtidTgSh-1gNgbpJ8OhXt6v2lkhPPH5dpjfzwsr3E4,95251
25
+ returnn/datasets/meta.py,sha256=6XPPxhiNSxWw9Hu5Z6wG8dD9Zk82FqiI-k9HGQSTKgw,95658
26
26
  returnn/datasets/multi_proc.py,sha256=aVjsLt2qjHnHOrEYCgIPCwNYE-f1fiGP6eZ8NGAr3A4,22583
27
27
  returnn/datasets/normalization_data.py,sha256=J3njQCMvWAbIAVPepO2L_Xdau9eWYB7Zyd6STeGzTbc,14615
28
28
  returnn/datasets/numpy_dump.py,sha256=wl8bKIKAlff2HPJPtuu5wBg3TLOf16d2wLVB4lLAwTM,5158
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250703.183400.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250703.183400.dist-info/METADATA,sha256=6b050edAnN_IixiTU7cKY9Y7GsV2u54Go4pMebtP1LA,5215
258
- returnn-1.20250703.183400.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250703.183400.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250703.183400.dist-info/RECORD,,
256
+ returnn-1.20250704.120801.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250704.120801.dist-info/METADATA,sha256=V7Fti4odxCkXq9_mO0Fn_AGvs5VVJWqu9W9UtYebguM,5215
258
+ returnn-1.20250704.120801.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250704.120801.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250704.120801.dist-info/RECORD,,