returnn 1.20250515.200041__py3-none-any.whl → 1.20250521.105128__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250515.200041
3
+ Version: 1.20250521.105128
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
returnn/__main__.py CHANGED
@@ -34,21 +34,21 @@ from returnn.util.basic import BackendEngine, BehaviorVersion
34
34
 
35
35
  # These imports are not directly used here, but make them available, as other code imports them from here.
36
36
  # noinspection PyUnresolvedReferences
37
- from returnn.util.debug import init_ipython_kernel, init_better_exchook, init_faulthandler, debug_shell
37
+ from returnn.util.debug import init_ipython_kernel, init_better_exchook, init_faulthandler, debug_shell # noqa: F401
38
38
 
39
39
  # Some external scripts import those functions from here, thus keep this here.
40
40
  # noinspection PyUnresolvedReferences
41
- from returnn.util.basic import init_thread_join_hack, describe_returnn_version
41
+ from returnn.util.basic import init_thread_join_hack, describe_returnn_version # noqa: F401
42
42
 
43
43
  if TYPE_CHECKING:
44
44
  import returnn.tf.engine
45
45
  import returnn.torch.engine
46
46
 
47
- config = None # type: Optional[Config]
48
- engine = None # type: Optional[Union[returnn.tf.engine.Engine, returnn.torch.engine.Engine]]
49
- train_data = None # type: Optional[Dataset]
50
- dev_data = None # type: Optional[Dataset]
51
- eval_data = None # type: Optional[Dataset]
47
+ config: Optional[Config] = None
48
+ engine: Optional[Union[returnn.tf.engine.Engine, returnn.torch.engine.Engine]] = None
49
+ train_data: Optional[Dataset] = None
50
+ dev_data: Optional[Dataset] = None
51
+ eval_data: Optional[Dataset] = None
52
52
  quit_returnn = False
53
53
 
54
54
 
@@ -1,2 +1,2 @@
1
- version = '1.20250515.200041'
2
- long_version = '1.20250515.200041+git.de2d7bc'
1
+ version = '1.20250521.105128'
2
+ long_version = '1.20250521.105128+git.57d7340'
returnn/datasets/lm.py CHANGED
@@ -85,6 +85,7 @@ class LmDataset(CachedDataset2):
85
85
  add_delayed_seq_data=False,
86
86
  delayed_seq_data_start_symbol="[START]",
87
87
  dtype: Optional[str] = None,
88
+ tag_prefix: Optional[str] = None,
88
89
  **kwargs,
89
90
  ):
90
91
  """
@@ -288,7 +289,9 @@ class LmDataset(CachedDataset2):
288
289
  self.num_outputs = {"data": [num_labels, 1]}
289
290
  self.num_inputs = num_labels
290
291
  self.seq_order = None
291
- self._tag_prefix = "line-" # sequence tag is "line-n", where n is the line number (to be compatible with translation) # nopep8
292
+
293
+ # sequence tag is "line-n", where n is the line number (to be compatible with translation)
294
+ self.tag_prefix = tag_prefix or "line-"
292
295
  self.auto_replace_unknown_symbol = auto_replace_unknown_symbol
293
296
  self.log_auto_replace_unknown_symbols = log_auto_replace_unknown_symbols
294
297
  self.log_skipped_seqs = log_skipped_seqs
@@ -504,8 +507,8 @@ class LmDataset(CachedDataset2):
504
507
  elif seq_list is not None:
505
508
  # Might not be initialized. Can even do without init. Thus check seq_list_file.
506
509
  if self._seq_list_file is None:
507
- assert all(s.startswith(self._tag_prefix) for s in seq_list)
508
- self.seq_order = [int(s[len(self._tag_prefix) :]) for s in seq_list]
510
+ assert all(s.startswith(self.tag_prefix) for s in seq_list)
511
+ self.seq_order = [int(s[len(self.tag_prefix) :]) for s in seq_list]
509
512
  else:
510
513
  # Need seq list for this. Just do the lazy init now.
511
514
  self._lazy_init()
@@ -555,7 +558,7 @@ class LmDataset(CachedDataset2):
555
558
  if self._seq_list is not None:
556
559
  return self._seq_list
557
560
  num_seqs = self.get_total_num_seqs()
558
- return [self._tag_prefix + str(line_nr) for line_nr in range(num_seqs)]
561
+ return [self.tag_prefix + str(line_nr) for line_nr in range(num_seqs)]
559
562
 
560
563
  def _reduce_log_skipped_seqs(self):
561
564
  if isinstance(self.log_skipped_seqs, bool):
@@ -594,7 +597,7 @@ class LmDataset(CachedDataset2):
594
597
  idx, offset, len_ = self._orths_offsets_and_lens[true_idx]
595
598
  orth = self._orth_mmaps[idx][offset : offset + len_].decode("utf8").strip()
596
599
  if self._seq_list is None:
597
- seq_tag = self._tag_prefix + str(true_idx)
600
+ seq_tag = self.tag_prefix + str(true_idx)
598
601
  else:
599
602
  seq_tag = self._seq_list[true_idx]
600
603
  self.next_orth_idx += 1
returnn/util/basic.py CHANGED
@@ -1677,17 +1677,16 @@ def random_orthogonal(shape, gain=1.0, seed=None):
1677
1677
 
1678
1678
 
1679
1679
  # noinspection PyUnusedLocal
1680
- def inplace_increment(x, idx, y):
1680
+ def inplace_increment(x: numpy.ndarray, idx: numpy.ndarray, y: Union[numpy.ndarray, float, int]) -> numpy.ndarray:
1681
1681
  """
1682
1682
  This basically does `x[idx] += y`.
1683
1683
  The difference to the Numpy version is that in case some index is there multiple
1684
1684
  times, it will only be incremented once (and it is not specified which one).
1685
1685
  See also theano.tensor.subtensor.AdvancedIncSubtensor documentation.
1686
1686
 
1687
- :param numpy.ndarray x:
1688
- :param numpy.ndarray idx:
1689
- :param numpy.ndarray y:
1690
- :rtype: numpy.ndarray
1687
+ :param x:
1688
+ :param idx:
1689
+ :param y:
1691
1690
  """
1692
1691
  raise NotImplementedError("This feature was removed with dropped Theano support")
1693
1692
 
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250515.200041
3
+ Version: 1.20250521.105128
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=-_3YF9H1ZnHtnjwS14AkpBNWU1xZ37Eh8Is-GKiCEsQ,5215
1
+ returnn/PKG-INFO,sha256=9FIsKQntzHycJxh5W0elKEkWr68gbK3bh6hOmYiY2gk,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
- returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
3
+ returnn/__main__.py,sha256=lHyZcu_0yc9f7Vf_Kfdy9PmeU0T76XVXnpalHi5WKro,31740
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=QyXc6YGLtWErCGMsxxk2603mbIP3skVFTczFJDhXi80,77
6
+ returnn/_setup_info_generated.py,sha256=fRT-AuqUKrqoSgbmGlg_6qxAX0iBoVGsUA6jkyc4BvQ,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -20,7 +20,7 @@ returnn/datasets/cached2.py,sha256=_6pza3IG68JexaExhj1ld3fP6pE7T-G804driJ9Z_qo,1
20
20
  returnn/datasets/distrib_files.py,sha256=9-3pJaF8Ws1Cs4AlelFCODz6b5YiaTsrD7tMCB76PDY,29865
21
21
  returnn/datasets/generating.py,sha256=9U_w6URIrv-Rb-hDbPOzYW9qYXzJbw32N6G268IKyoM,99833
22
22
  returnn/datasets/hdf.py,sha256=v5sjBenURR9Z-g7AQ9tsL84yDSye5RtbLpym3M6HSDE,67833
23
- returnn/datasets/lm.py,sha256=MpJwlXJbMzbO0EDSgGeyDg062YXN0gwvBsBI9A9RtLE,99166
23
+ returnn/datasets/lm.py,sha256=IqUsOzbdSWUynL0YFL25HbtMR4AxaQGHvjjqRE9IwBo,99215
24
24
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
25
25
  returnn/datasets/meta.py,sha256=KQtidTgSh-1gNgbpJ8OhXt6v2lkhPPH5dpjfzwsr3E4,95251
26
26
  returnn/datasets/multi_proc.py,sha256=aVjsLt2qjHnHOrEYCgIPCwNYE-f1fiGP6eZ8NGAr3A4,22583
@@ -233,7 +233,7 @@ returnn/torch/util/gradient_checkpoint.py,sha256=iLy-FB65DC8O6LxzmMvFjnSdpIVpko8
233
233
  returnn/torch/util/module.py,sha256=MXHIrF9Isu575DDJIa81212ULKwdqu1oOLxDVZecVSk,1693
234
234
  returnn/torch/util/scaled_gradient.py,sha256=C5e79mpqtxdtw08OTSy413TSBSlOertRisc-ioiFIaU,3191
235
235
  returnn/util/__init__.py,sha256=UIG1qw4idqhW71BV60ha7h9PktxvEVcBIu0lYRossK8,336
236
- returnn/util/basic.py,sha256=468hHOL1hYMmQUz1B4MnYvn7aRn1baP1Y8tjSoauO-A,142557
236
+ returnn/util/basic.py,sha256=Ep67bFPbxiaMKgsjrUqF0seoswghAqLsUQYcpgQGeyE,142570
237
237
  returnn/util/better_exchook.py,sha256=98XnUZIWpYN7NfklSGt_5hYNplADVFQnh857esKxjdI,64475
238
238
  returnn/util/bpe.py,sha256=LWFhICZsEOnMwNws0lybPNzKRX6rSr8yKCvP65vjl9Y,19656
239
239
  returnn/util/debug.py,sha256=wuRzdg9zB84WWCGyTjmRR_zYypu8gXxlc0nZ6si9OC8,28224
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250515.200041.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250515.200041.dist-info/METADATA,sha256=-_3YF9H1ZnHtnjwS14AkpBNWU1xZ37Eh8Is-GKiCEsQ,5215
258
- returnn-1.20250515.200041.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250515.200041.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250515.200041.dist-info/RECORD,,
256
+ returnn-1.20250521.105128.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250521.105128.dist-info/METADATA,sha256=9FIsKQntzHycJxh5W0elKEkWr68gbK3bh6hOmYiY2gk,5215
258
+ returnn-1.20250521.105128.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250521.105128.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250521.105128.dist-info/RECORD,,