returnn 1.20250514.101430__py3-none-any.whl → 1.20250515.200041__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250514.101430
3
+ Version: 1.20250515.200041
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250514.101430'
2
- long_version = '1.20250514.101430+git.c557cc3'
1
+ version = '1.20250515.200041'
2
+ long_version = '1.20250515.200041+git.de2d7bc'
@@ -160,6 +160,7 @@ def _gather_prepare_dims(s: T, *, indices: Tensor, dim_map: Dict[Dim, Dim]) -> T
160
160
  return new_dim
161
161
  return s
162
162
  # everything else ignored at this stage
163
+ return s
163
164
 
164
165
 
165
166
  def _gather(s: T, *, indices: Tensor, dim_map: Optional[Dict[Dim, Dim]] = None) -> T:
@@ -243,6 +244,7 @@ def _masked_select_prepare_dims(s, *, mask: Tensor, dims: Sequence[Dim], out_dim
243
244
  dim_map[s] = new_dim
244
245
  return new_dim
245
246
  # everything else ignored at this stage
247
+ return s
246
248
 
247
249
 
248
250
  def _masked_select(
@@ -370,6 +372,7 @@ def _masked_scatter_merge_dims(
370
372
  merged_dim_map[backup] = new_dim
371
373
  return new_dim
372
374
  # everything else ignored at this stage
375
+ return s
373
376
 
374
377
 
375
378
  def _masked_scatter(
@@ -123,7 +123,14 @@ class Parameter(Tensor[T]):
123
123
  from copy import deepcopy
124
124
 
125
125
  assert _copy_behavior == "copy_init"
126
- res = self.__copy__()
126
+ res = type(self)(
127
+ dims=self.dims,
128
+ dtype=self.dtype,
129
+ trainable=self.trainable,
130
+ auxiliary=self.auxiliary,
131
+ non_critical_for_restore=self.non_critical_for_restore,
132
+ weight_decay=self.weight_decay,
133
+ )
127
134
  if isinstance(self.initial, rf.init.ParamInit):
128
135
  res.initial = deepcopy(self.initial, memo=memo) # noqa
129
136
  else:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250514.101430
3
+ Version: 1.20250515.200041
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=AEKRzwj7-1_1NcUCAPSSEPkMoIrXK-7K5NtSOZBfJvk,5215
1
+ returnn/PKG-INFO,sha256=-_3YF9H1ZnHtnjwS14AkpBNWU1xZ37Eh8Is-GKiCEsQ,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=CfrKH5EWL08ucEeXafiSxPiV-BUoBw--NGoCK_ERZnw,77
6
+ returnn/_setup_info_generated.py,sha256=QyXc6YGLtWErCGMsxxk2603mbIP3skVFTczFJDhXi80,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -104,9 +104,9 @@ returnn/frontend/loss.py,sha256=uSvou2MPd13JiLAg_OIQ3AyyLvD3RHjMEVgFEN0gKqU,7440
104
104
  returnn/frontend/math_.py,sha256=KlJxdIib8ENlid7cc4lcwHv5e21tzTjTEV8VgEDAijo,16984
105
105
  returnn/frontend/matmul.py,sha256=xkueyxzSDz8MsYaWxPSjmV2Yy-tcaiOQDXbFt1IQM2A,1944
106
106
  returnn/frontend/module.py,sha256=219rh5mE0CD0-NdxXLsKyhv3BNtOI9jSyiI1Rb8MOyU,10700
107
- returnn/frontend/nested.py,sha256=Hm4GT5ZI1OyWpYxv_SP5jlBztJsjGVMgtvKJnvQYa00,15068
107
+ returnn/frontend/nested.py,sha256=P84u_cjoYdYRJ_0Cbt0vlKXxskmXTDfsnw_vFCCNKtU,15107
108
108
  returnn/frontend/normalization.py,sha256=-lYJ9IWcheOQu1gXJehSOA76qgVtxd1C07Jqps6Qg1o,14116
109
- returnn/frontend/parameter.py,sha256=w6SN-uv87OyeWBt90_3UBbK0h6sftSOCxkqXPg76caY,10375
109
+ returnn/frontend/parameter.py,sha256=zvrkhSYC1c_O9kVwgHvOtOnWNurl5J28lkS0i1LQpWU,10627
110
110
  returnn/frontend/parametrizations.py,sha256=ptNgBw5IiPXVpB3QGse7AGAhdXp8X1rCqYUl2Mae8aI,2876
111
111
  returnn/frontend/parametrize.py,sha256=VhgTEP7ehON950Q4bkCy8rvg9641moEKAXn0XzomK6E,7216
112
112
  returnn/frontend/piecewise_linear.py,sha256=TdL6wzop8P1dcIZwkEbJFvSUZSI1cbhS3XKzlWQkEVI,1964
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250514.101430.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250514.101430.dist-info/METADATA,sha256=AEKRzwj7-1_1NcUCAPSSEPkMoIrXK-7K5NtSOZBfJvk,5215
258
- returnn-1.20250514.101430.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250514.101430.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250514.101430.dist-info/RECORD,,
256
+ returnn-1.20250515.200041.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250515.200041.dist-info/METADATA,sha256=-_3YF9H1ZnHtnjwS14AkpBNWU1xZ37Eh8Is-GKiCEsQ,5215
258
+ returnn-1.20250515.200041.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250515.200041.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250515.200041.dist-info/RECORD,,