returnn 1.20250417.191918__py3-none-any.whl → 1.20250418.115249__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250417.191918
3
+ Version: 1.20250418.115249
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250417.191918'
2
- long_version = '1.20250417.191918+git.4ce0802'
1
+ version = '1.20250418.115249'
2
+ long_version = '1.20250418.115249+git.3cef372'
@@ -792,10 +792,10 @@ class DummyDataset(GeneratingDataset):
792
792
  i1 = seq_idx
793
793
  i2 = i1 + seq_len * self.num_inputs
794
794
  features = numpy.array(
795
- [((i % self.input_max_value) + self.input_shift) * self.input_scale for i in range(i1, i2)]
795
+ [((i % self.input_max_value) + self.input_shift) * self.input_scale for i in range(i1, i2)], dtype="float32"
796
796
  ).reshape((seq_len, self.num_inputs))
797
797
  i1, i2 = i2, i2 + seq_len
798
- targets = numpy.array([i % self.num_outputs["classes"][0] for i in range(i1, i2)])
798
+ targets = numpy.array([i % self.num_outputs["classes"][0] for i in range(i1, i2)], dtype="int32")
799
799
  return DatasetSeq(seq_idx=seq_idx, features=features, targets=targets)
800
800
 
801
801
 
@@ -141,13 +141,14 @@ class PostprocessingDataset(CachedDataset2):
141
141
  self._map_seq_stream = map_seq_stream
142
142
  if map_seq_stream_preserves_num_seqs is None and map_seq_stream is not None:
143
143
  map_seq_stream_preserves_num_seqs = getattr(map_seq_stream, "preserves_num_seqs", None)
144
- self._map_seq_stream_preserves_num_seqs = map_seq_stream_preserves_num_seqs or False
144
+ assert map_seq_stream_preserves_num_seqs is None or isinstance(map_seq_stream_preserves_num_seqs, bool)
145
+ self._map_seq_stream_preserves_num_seqs = map_seq_stream_preserves_num_seqs
145
146
  self._map_outputs = map_outputs
146
147
  self._rng = RandomState(self._get_random_seed_for_epoch(0))
147
148
  self._seq_list_for_validation: Optional[List[str]] = None
148
149
 
149
150
  self._dataset = init_dataset(self._dataset_def, parent_dataset=self)
150
- if self._map_seq_stream is None or self._map_seq_stream_preserves_num_seqs:
151
+ if self._map_seq_stream is None or self._map_seq_stream_preserves_num_seqs is True:
151
152
  # if the stream mapper is set, the num_seqs may change and the estimation is less accurate
152
153
  self._estimated_num_seqs = self._dataset.estimated_num_seqs
153
154
  self._data_iter: Optional[Iterator[Tuple[int, TensorDict]]] = None
@@ -210,7 +211,7 @@ class PostprocessingDataset(CachedDataset2):
210
211
  self._data_iter = enumerate(self._build_mapping_iter())
211
212
  self._data_iter_produced_num_seqs = 0
212
213
  self._seq_list_for_validation = seq_list
213
- if self._map_seq_stream is None or self._map_seq_stream_preserves_num_seqs:
214
+ if self._map_seq_stream is None or self._map_seq_stream_preserves_num_seqs is True:
214
215
  # If we don't have an iterable mapper (or the user explicitly specifies this),
215
216
  # we know the number of segments exactly equals the number of segments in the wrapped dataset
216
217
  try:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250417.191918
3
+ Version: 1.20250418.115249
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=F-f1DEzHygaHesMySEkH2_u39GXt9OERAslZKyZmcmI,5215
1
+ returnn/PKG-INFO,sha256=vWxYPYgsvU3GDUCQEiHY5h2C09lxsFvZ-GUR6jfYUxM,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=bEaq0TU9FCMkk-5FMiUwVz_fxtRp8y5ZMan1RswtRTU,77
6
+ returnn/_setup_info_generated.py,sha256=oEWWbm7JJwkhmRryz4mvP5IIrbCPVx8zczj4izvepn0,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -18,7 +18,7 @@ returnn/datasets/bundle_file.py,sha256=KQNrS1MSf-4_idlK0c0KFwON-f5sEK0sWU15WpoMY
18
18
  returnn/datasets/cached.py,sha256=DIRdWrxBmsZG8O_9eVxBO5mcdo4f5KU-Xb-4wVz59Io,25418
19
19
  returnn/datasets/cached2.py,sha256=_6pza3IG68JexaExhj1ld3fP6pE7T-G804driJ9Z_qo,12141
20
20
  returnn/datasets/distrib_files.py,sha256=_UlcrnaU1rA9v6D3H3X4dPhcA--09fNeVnWs9VNo0yg,27656
21
- returnn/datasets/generating.py,sha256=O1fs9dhk1Um2E3ZeOTfDHS5FlwvqFImfGcMlJP-xAQM,99814
21
+ returnn/datasets/generating.py,sha256=E_6KpnSu8ChqG3pb4VTChWDsBTonIwFFAj53SI9NSow,99846
22
22
  returnn/datasets/hdf.py,sha256=yqzr-nzqlt02QZoW2uFowKT19gd5e-9mJpHCKSQxW8o,67643
23
23
  returnn/datasets/lm.py,sha256=5hSdBgmgTP0IzO2p-JjiWtny0Zb0M20goXtjlw4JVR4,99206
24
24
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
@@ -26,7 +26,7 @@ returnn/datasets/meta.py,sha256=0wQzRzjShLSYNFoGo_MdR5IT8arxHr9gFjUlEqb2rbY,9496
26
26
  returnn/datasets/multi_proc.py,sha256=aVjsLt2qjHnHOrEYCgIPCwNYE-f1fiGP6eZ8NGAr3A4,22583
27
27
  returnn/datasets/normalization_data.py,sha256=wOHrbO3612uWXpzLHHxksDw0qeVmQ42w7byBL9QMh9Q,14618
28
28
  returnn/datasets/numpy_dump.py,sha256=wl8bKIKAlff2HPJPtuu5wBg3TLOf16d2wLVB4lLAwTM,5158
29
- returnn/datasets/postprocessing.py,sha256=dXlRiZNuC8921RZ3lkgX1Lt88K61lKsG47nVIH5x7nI,23395
29
+ returnn/datasets/postprocessing.py,sha256=Ug2fvzbutnwJSvErIK2Ft-bd0pz79ZBmEg12pLEo1f0,23514
30
30
  returnn/datasets/raw_wav.py,sha256=M7eTHp4CTtLQf3yPTiJY-mSJYgZNxkGV9IFN9J1dq_4,9144
31
31
  returnn/datasets/sprint.py,sha256=YhhdNbBTuL_HCc3asgK3o6vgq5h5nMPH5nBFvsuwVjA,55464
32
32
  returnn/datasets/stereo.py,sha256=PkowC91bZWihIYuIZgyGgPcNwgq5jBvyxxu1nER-VhM,17633
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250417.191918.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250417.191918.dist-info/METADATA,sha256=F-f1DEzHygaHesMySEkH2_u39GXt9OERAslZKyZmcmI,5215
258
- returnn-1.20250417.191918.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250417.191918.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250417.191918.dist-info/RECORD,,
256
+ returnn-1.20250418.115249.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250418.115249.dist-info/METADATA,sha256=vWxYPYgsvU3GDUCQEiHY5h2C09lxsFvZ-GUR6jfYUxM,5215
258
+ returnn-1.20250418.115249.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250418.115249.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250418.115249.dist-info/RECORD,,