returnn 1.20250416.134058__py3-none-any.whl → 1.20250416.172956__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250416.134058
3
+ Version: 1.20250416.172956
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250416.134058'
2
- long_version = '1.20250416.134058+git.ead6299'
1
+ version = '1.20250416.172956'
2
+ long_version = '1.20250416.172956+git.505963b'
returnn/datasets/hdf.py CHANGED
@@ -1201,6 +1201,7 @@ class SimpleHDFWriter:
1201
1201
  shape = [None] * ndim # type: typing.List[typing.Optional[int]]
1202
1202
  if ndim >= 2:
1203
1203
  shape[-1] = dim
1204
+ assert all(shape[1:]), f"{self} extra {data_key!r} supports only dyn dim in first axis, got shape {shape!r}"
1204
1205
  if dtype == "string":
1205
1206
  # noinspection PyUnresolvedReferences
1206
1207
  dtype = h5py.special_dtype(vlen=str)
@@ -1237,10 +1238,15 @@ class SimpleHDFWriter:
1237
1238
  self._datasets[name] = self._file.create_dataset(
1238
1239
  name, raw_data.shape, raw_data.dtype, maxshape=tuple(None for _ in raw_data.shape)
1239
1240
  )
1241
+ expected_shape = (raw_data.shape[0],) + self._datasets[name].shape[1:]
1240
1242
  else:
1241
1243
  old_shape = self._datasets[name].shape
1242
1244
  self._datasets[name].resize(old_shape[0] + raw_data.shape[0], axis=0)
1245
+ expected_shape = (raw_data.shape[0],) + old_shape[1:]
1243
1246
  # append raw data to dataset
1247
+ assert (
1248
+ expected_shape == raw_data.shape
1249
+ ), f"{self} insert: shape mismatch: expected {expected_shape}, got {raw_data.shape}"
1244
1250
  self._datasets[name][self._file.attrs["numTimesteps"] :] = raw_data
1245
1251
  self._file.attrs["numTimesteps"] += raw_data.shape[0]
1246
1252
  self._file.attrs["numSeqs"] += 1
@@ -1286,13 +1292,17 @@ class SimpleHDFWriter:
1286
1292
  self._seq_lengths[seq_idx, data_key_idx_0 + 1] = self._extra_num_time_steps[data_key_]
1287
1293
 
1288
1294
  self._extra_num_time_steps[data_key] += raw_data.shape[0]
1289
- self._datasets[data_key].resize(self._extra_num_time_steps[data_key], axis=0)
1295
+ hdf_data = self._datasets[data_key]
1296
+ hdf_data.resize(self._extra_num_time_steps[data_key], axis=0)
1290
1297
 
1291
1298
  data_key_idx = sorted(self._prepared_extra).index(data_key) + 1
1292
1299
  self._seq_lengths[seq_idx, data_key_idx] = raw_data.shape[0]
1293
1300
 
1294
1301
  offset = self._extra_num_time_steps[data_key] - raw_data.shape[0]
1295
- hdf_data = self._datasets[data_key]
1302
+ expected_shape = (raw_data.shape[0],) + hdf_data.shape[1:]
1303
+ assert (
1304
+ expected_shape == raw_data.shape
1305
+ ), f"{self} insert other {data_key!r}: shape mismatch: expected {expected_shape}, got {raw_data.shape}"
1296
1306
  hdf_data[offset:] = raw_data
1297
1307
 
1298
1308
  def insert_batch(self, inputs, seq_len, seq_tag, extra=None):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250416.134058
3
+ Version: 1.20250416.172956
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=7DsJhNRMx120PgvkCadLKZw80JtB_JVeD_oBNG4z2Gk,5215
1
+ returnn/PKG-INFO,sha256=y5t_H0i0pLYw-W1KevNnfXbSxkrkqPT2uFYpKMGhS3o,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=DgiJfR1KjQflhw91humh9dADdAZGYBaAZ8_d4ianWiI,77
6
+ returnn/_setup_info_generated.py,sha256=AcoND8SAX3c8L8MOr-ar4L8QEmAQF2emtFz2sd2BL5I,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -19,7 +19,7 @@ returnn/datasets/cached.py,sha256=DIRdWrxBmsZG8O_9eVxBO5mcdo4f5KU-Xb-4wVz59Io,25
19
19
  returnn/datasets/cached2.py,sha256=_6pza3IG68JexaExhj1ld3fP6pE7T-G804driJ9Z_qo,12141
20
20
  returnn/datasets/distrib_files.py,sha256=_UlcrnaU1rA9v6D3H3X4dPhcA--09fNeVnWs9VNo0yg,27656
21
21
  returnn/datasets/generating.py,sha256=O1fs9dhk1Um2E3ZeOTfDHS5FlwvqFImfGcMlJP-xAQM,99814
22
- returnn/datasets/hdf.py,sha256=shif0aQqWWNJ0b6YnycpPjIVNsxjLrA41Y66-_SluGI,66993
22
+ returnn/datasets/hdf.py,sha256=yqzr-nzqlt02QZoW2uFowKT19gd5e-9mJpHCKSQxW8o,67643
23
23
  returnn/datasets/lm.py,sha256=5hSdBgmgTP0IzO2p-JjiWtny0Zb0M20goXtjlw4JVR4,99206
24
24
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
25
25
  returnn/datasets/meta.py,sha256=0wQzRzjShLSYNFoGo_MdR5IT8arxHr9gFjUlEqb2rbY,94969
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250416.134058.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250416.134058.dist-info/METADATA,sha256=7DsJhNRMx120PgvkCadLKZw80JtB_JVeD_oBNG4z2Gk,5215
258
- returnn-1.20250416.134058.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250416.134058.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250416.134058.dist-info/RECORD,,
256
+ returnn-1.20250416.172956.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250416.172956.dist-info/METADATA,sha256=y5t_H0i0pLYw-W1KevNnfXbSxkrkqPT2uFYpKMGhS3o,5215
258
+ returnn-1.20250416.172956.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250416.172956.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250416.172956.dist-info/RECORD,,