returnn 1.20250416.132454__py3-none-any.whl → 1.20250416.172956__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250416.132454
3
+ Version: 1.20250416.172956
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250416.132454'
2
- long_version = '1.20250416.132454+git.6addb6a'
1
+ version = '1.20250416.172956'
2
+ long_version = '1.20250416.172956+git.505963b'
returnn/datasets/basic.py CHANGED
@@ -864,18 +864,16 @@ class Dataset:
864
864
  data = self.get_data(seq_idx, key)
865
865
  return data[s0_start:s0_end]
866
866
 
867
- def get_tag(self, sorted_seq_idx):
867
+ def get_tag(self, sorted_seq_idx: int) -> str:
868
868
  """
869
- :param int sorted_seq_idx:
870
- :rtype: str
869
+ :param sorted_seq_idx:
871
870
  """
872
871
  return "seq-%i" % sorted_seq_idx
873
872
 
874
- def get_all_tags(self):
873
+ def get_all_tags(self) -> List[str]:
875
874
  """
876
875
  :return: list of all seq tags, of the whole dataset, without partition epoch.
877
876
  Note that this is not possible with all datasets.
878
- :rtype: list[str]
879
877
  """
880
878
  raise OptionalNotImplementedError(f"{self} get_all_tags not implemented")
881
879
 
returnn/datasets/hdf.py CHANGED
@@ -1201,6 +1201,7 @@ class SimpleHDFWriter:
1201
1201
  shape = [None] * ndim # type: typing.List[typing.Optional[int]]
1202
1202
  if ndim >= 2:
1203
1203
  shape[-1] = dim
1204
+ assert all(shape[1:]), f"{self} extra {data_key!r} supports only dyn dim in first axis, got shape {shape!r}"
1204
1205
  if dtype == "string":
1205
1206
  # noinspection PyUnresolvedReferences
1206
1207
  dtype = h5py.special_dtype(vlen=str)
@@ -1237,10 +1238,15 @@ class SimpleHDFWriter:
1237
1238
  self._datasets[name] = self._file.create_dataset(
1238
1239
  name, raw_data.shape, raw_data.dtype, maxshape=tuple(None for _ in raw_data.shape)
1239
1240
  )
1241
+ expected_shape = (raw_data.shape[0],) + self._datasets[name].shape[1:]
1240
1242
  else:
1241
1243
  old_shape = self._datasets[name].shape
1242
1244
  self._datasets[name].resize(old_shape[0] + raw_data.shape[0], axis=0)
1245
+ expected_shape = (raw_data.shape[0],) + old_shape[1:]
1243
1246
  # append raw data to dataset
1247
+ assert (
1248
+ expected_shape == raw_data.shape
1249
+ ), f"{self} insert: shape mismatch: expected {expected_shape}, got {raw_data.shape}"
1244
1250
  self._datasets[name][self._file.attrs["numTimesteps"] :] = raw_data
1245
1251
  self._file.attrs["numTimesteps"] += raw_data.shape[0]
1246
1252
  self._file.attrs["numSeqs"] += 1
@@ -1286,13 +1292,17 @@ class SimpleHDFWriter:
1286
1292
  self._seq_lengths[seq_idx, data_key_idx_0 + 1] = self._extra_num_time_steps[data_key_]
1287
1293
 
1288
1294
  self._extra_num_time_steps[data_key] += raw_data.shape[0]
1289
- self._datasets[data_key].resize(self._extra_num_time_steps[data_key], axis=0)
1295
+ hdf_data = self._datasets[data_key]
1296
+ hdf_data.resize(self._extra_num_time_steps[data_key], axis=0)
1290
1297
 
1291
1298
  data_key_idx = sorted(self._prepared_extra).index(data_key) + 1
1292
1299
  self._seq_lengths[seq_idx, data_key_idx] = raw_data.shape[0]
1293
1300
 
1294
1301
  offset = self._extra_num_time_steps[data_key] - raw_data.shape[0]
1295
- hdf_data = self._datasets[data_key]
1302
+ expected_shape = (raw_data.shape[0],) + hdf_data.shape[1:]
1303
+ assert (
1304
+ expected_shape == raw_data.shape
1305
+ ), f"{self} insert other {data_key!r}: shape mismatch: expected {expected_shape}, got {raw_data.shape}"
1296
1306
  hdf_data[offset:] = raw_data
1297
1307
 
1298
1308
  def insert_batch(self, inputs, seq_len, seq_tag, extra=None):
@@ -243,6 +243,13 @@ class PostprocessingDataset(CachedDataset2):
243
243
  assert self._dataset is not None
244
244
  return self._dataset.get_total_num_seqs(fast=fast)
245
245
 
246
+ def get_all_tags(self) -> List[str]:
247
+ """:return: all tags"""
248
+ if self._map_seq_stream is not None:
249
+ raise util.OptionalNotImplementedError(f"{self}: get_all_tags not allowed when map_seq_stream is set.")
250
+ assert self._dataset is not None
251
+ return self._dataset.get_all_tags()
252
+
246
253
  def supports_sharding(self) -> bool:
247
254
  """:return: whether this dataset supports sharding"""
248
255
  assert self._dataset is not None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250416.132454
3
+ Version: 1.20250416.172956
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=nh3HsmNuM_9Ajc0Isw5Kywi3F78997moKSyz6ngop04,5215
1
+ returnn/PKG-INFO,sha256=y5t_H0i0pLYw-W1KevNnfXbSxkrkqPT2uFYpKMGhS3o,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=5_0aXMwqvYeSVdL7N4tMjAxD50ulqwCjubacaqbvLWY,77
6
+ returnn/_setup_info_generated.py,sha256=AcoND8SAX3c8L8MOr-ar4L8QEmAQF2emtFz2sd2BL5I,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -13,20 +13,20 @@ returnn/native_op.py,sha256=yqpE7SqBqXq77FCVnWMloUwadWlslEk-VzdK7FMpt_U,244411
13
13
  returnn/pretrain.py,sha256=MHiXJZqkQFmDVyaYsGpd_Acv20wxl7Pr6s6qJzAT2FI,22648
14
14
  returnn/datasets/__init__.py,sha256=PvDlfDOaaopIeUIt0OSvHD2eHZkdkyE-sjMXf35EH5U,390
15
15
  returnn/datasets/audio.py,sha256=Gmj7a08dnvYh7Z-G1TNapz42L50AIcDE9JeIZaO1s1M,23334
16
- returnn/datasets/basic.py,sha256=EhgyOv9bGHY08rCTQpt1HN_vW3djP5RwJuxtbp53neM,72300
16
+ returnn/datasets/basic.py,sha256=BBDXCqesUBJ-4HsaT4zw3wzkS1kd15FDy0OX8TY10pQ,72275
17
17
  returnn/datasets/bundle_file.py,sha256=KQNrS1MSf-4_idlK0c0KFwON-f5sEK0sWU15WpoMYpE,2380
18
18
  returnn/datasets/cached.py,sha256=DIRdWrxBmsZG8O_9eVxBO5mcdo4f5KU-Xb-4wVz59Io,25418
19
19
  returnn/datasets/cached2.py,sha256=_6pza3IG68JexaExhj1ld3fP6pE7T-G804driJ9Z_qo,12141
20
20
  returnn/datasets/distrib_files.py,sha256=_UlcrnaU1rA9v6D3H3X4dPhcA--09fNeVnWs9VNo0yg,27656
21
21
  returnn/datasets/generating.py,sha256=O1fs9dhk1Um2E3ZeOTfDHS5FlwvqFImfGcMlJP-xAQM,99814
22
- returnn/datasets/hdf.py,sha256=shif0aQqWWNJ0b6YnycpPjIVNsxjLrA41Y66-_SluGI,66993
22
+ returnn/datasets/hdf.py,sha256=yqzr-nzqlt02QZoW2uFowKT19gd5e-9mJpHCKSQxW8o,67643
23
23
  returnn/datasets/lm.py,sha256=5hSdBgmgTP0IzO2p-JjiWtny0Zb0M20goXtjlw4JVR4,99206
24
24
  returnn/datasets/map.py,sha256=kOBJVZmwDhLsOplzDNByIfa0NRSUaMo2Lsy36lBvxrM,10907
25
25
  returnn/datasets/meta.py,sha256=0wQzRzjShLSYNFoGo_MdR5IT8arxHr9gFjUlEqb2rbY,94969
26
26
  returnn/datasets/multi_proc.py,sha256=aVjsLt2qjHnHOrEYCgIPCwNYE-f1fiGP6eZ8NGAr3A4,22583
27
27
  returnn/datasets/normalization_data.py,sha256=wOHrbO3612uWXpzLHHxksDw0qeVmQ42w7byBL9QMh9Q,14618
28
28
  returnn/datasets/numpy_dump.py,sha256=wl8bKIKAlff2HPJPtuu5wBg3TLOf16d2wLVB4lLAwTM,5158
29
- returnn/datasets/postprocessing.py,sha256=Jkad_KHMesdPFFg9NKi7U3sbPw-RzxfUX_vOgJsI7p0,23075
29
+ returnn/datasets/postprocessing.py,sha256=dXlRiZNuC8921RZ3lkgX1Lt88K61lKsG47nVIH5x7nI,23395
30
30
  returnn/datasets/raw_wav.py,sha256=M7eTHp4CTtLQf3yPTiJY-mSJYgZNxkGV9IFN9J1dq_4,9144
31
31
  returnn/datasets/sprint.py,sha256=YhhdNbBTuL_HCc3asgK3o6vgq5h5nMPH5nBFvsuwVjA,55464
32
32
  returnn/datasets/stereo.py,sha256=PkowC91bZWihIYuIZgyGgPcNwgq5jBvyxxu1nER-VhM,17633
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250416.132454.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250416.132454.dist-info/METADATA,sha256=nh3HsmNuM_9Ajc0Isw5Kywi3F78997moKSyz6ngop04,5215
258
- returnn-1.20250416.132454.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250416.132454.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250416.132454.dist-info/RECORD,,
256
+ returnn-1.20250416.172956.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250416.172956.dist-info/METADATA,sha256=y5t_H0i0pLYw-W1KevNnfXbSxkrkqPT2uFYpKMGhS3o,5215
258
+ returnn-1.20250416.172956.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250416.172956.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250416.172956.dist-info/RECORD,,