returnn 1.20250312.115110__py3-none-any.whl → 1.20250317.160550__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of returnn might be problematic. Click here for more details.

returnn/PKG-INFO CHANGED
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250312.115110
3
+ Version: 1.20250317.160550
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,2 +1,2 @@
1
- version = '1.20250312.115110'
2
- long_version = '1.20250312.115110+git.49d5548'
1
+ version = '1.20250317.160550'
2
+ long_version = '1.20250317.160550+git.b173148'
@@ -21,6 +21,7 @@ def mask_nested(
21
21
  s: T,
22
22
  *,
23
23
  mask: Tensor,
24
+ mask_cpu: Optional[Tensor] = None,
24
25
  mask_value: Union[T, Tensor, float, None],
25
26
  dim_map: Optional[Dict[Dim, Dim]] = None,
26
27
  allow_dim_extension: bool = True,
@@ -30,6 +31,7 @@ def mask_nested(
30
31
 
31
32
  :param s:
32
33
  :param mask:
34
+ :param mask_cpu: mask tensor for CPU. this is used e.g. for dyn dim sizes
33
35
  :param mask_value:
34
36
  :param dim_map:
35
37
  :param allow_dim_extension:
@@ -37,7 +39,7 @@ def mask_nested(
37
39
  """
38
40
  if dim_map is None:
39
41
  dim_map = {}
40
- partial_kwargs = dict(mask=mask, dim_map=dim_map, allow_dim_extension=allow_dim_extension)
42
+ partial_kwargs = dict(mask=mask, mask_cpu=mask_cpu, dim_map=dim_map, allow_dim_extension=allow_dim_extension)
41
43
  structures = [s]
42
44
  if type(s) is type(mask_value): # mask_value also same nested structure?
43
45
  tree.assert_same_structure(s, mask_value)
@@ -49,7 +51,13 @@ def mask_nested(
49
51
 
50
52
 
51
53
  def _mask_prepare_dims(
52
- s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
54
+ s: T,
55
+ mask_value: Union[T, Tensor, float, None],
56
+ *,
57
+ mask: Tensor,
58
+ mask_cpu: Optional[Tensor] = None,
59
+ dim_map: Dict[Dim, Dim],
60
+ allow_dim_extension: bool,
53
61
  ) -> T:
54
62
  if isinstance(s, Dim):
55
63
  if mask_value is None:
@@ -69,6 +77,7 @@ def _mask_prepare_dims(
69
77
  new_dyn_size = _mask(
70
78
  s.get_size_tensor(),
71
79
  mask=mask,
80
+ mask_cpu=mask_cpu,
72
81
  mask_value=mask_value.get_size_tensor(),
73
82
  dim_map=dim_map,
74
83
  allow_dim_extension=allow_dim_extension,
@@ -80,11 +89,19 @@ def _mask_prepare_dims(
80
89
 
81
90
 
82
91
  def _mask(
83
- s: T, mask_value: Union[T, Tensor, float, None], *, mask: Tensor, dim_map: Dict[Dim, Dim], allow_dim_extension: bool
92
+ s: T,
93
+ mask_value: Union[T, Tensor, float, None],
94
+ *,
95
+ mask: Tensor,
96
+ mask_cpu: Optional[Tensor] = None,
97
+ dim_map: Dict[Dim, Dim],
98
+ allow_dim_extension: bool,
84
99
  ) -> T:
85
100
  if s is None:
86
101
  return s
87
102
  if isinstance(s, Tensor):
103
+ if s.device == "cpu" and mask_cpu is not None:
104
+ mask = mask_cpu
88
105
  if dim_map:
89
106
  for d in s.dims:
90
107
  if d in dim_map:
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: returnn
3
- Version: 1.20250312.115110
3
+ Version: 1.20250317.160550
4
4
  Summary: The RWTH extensible training framework for universal recurrent neural networks
5
5
  Home-page: https://github.com/rwth-i6/returnn/
6
6
  Author: Albert Zeyer
@@ -1,9 +1,9 @@
1
- returnn/PKG-INFO,sha256=dyIFnlVsSzl6vav3eUCY_ftvfxs5n25NybrPYEC6hXE,5215
1
+ returnn/PKG-INFO,sha256=TV21aoMQ025cRAZICtmi0RJ_meXE0a64AGfhceYHZjI,5215
2
2
  returnn/__init__.py,sha256=biBtRsM0WZ406vShaeH-9WFoqJ8XwTbn6g0EeFJ7l8E,1012
3
3
  returnn/__main__.py,sha256=qBFbuB1yN3adgVM5pXt2-Yq9vorjRNchNPL8kDKx44M,31752
4
4
  returnn/__old_mod_loader__.py,sha256=nvsNY-xELdS_IPNkv66Q9Rmvg4dbGW0-EBRDcCmctos,7654
5
5
  returnn/__setup__.py,sha256=22kQn2fh11iPM0hLb2Fy5sLmoU1JGvmDxXRYuRgQkwU,4659
6
- returnn/_setup_info_generated.py,sha256=_X6wcHxiihVbKjuoxFSVFNRs5Bwgln_kBEVWvZNlI8M,77
6
+ returnn/_setup_info_generated.py,sha256=ArtH4g8hmYryE0Dl4mKk7JFa1Qkulave6EJ1xHrafOY,77
7
7
  returnn/config.py,sha256=3tmKhB6FnQZaNdtcYsiB61JnEY--iZ2qmJ4yq0b6tE0,29140
8
8
  returnn/forward_iface.py,sha256=A_OJiaXsX4MlXQRzST86ylyxSUZbC402PQL1REcqHjM,911
9
9
  returnn/learning_rate_control.py,sha256=ZvWryAn_tv9DhV8sh1LV3eE34Yltl3On3mYZAG4hR9s,34684
@@ -104,7 +104,7 @@ returnn/frontend/loss.py,sha256=r_qRAiFIXgXTnFuLoAhE5jsyAZYMCucRzf55XfWbkC8,7441
104
104
  returnn/frontend/math_.py,sha256=KlJxdIib8ENlid7cc4lcwHv5e21tzTjTEV8VgEDAijo,16984
105
105
  returnn/frontend/matmul.py,sha256=3QaGiZtSs9PriT40T7Vc3KnYKPgYSN4tCZytYeq9qMA,1945
106
106
  returnn/frontend/module.py,sha256=219rh5mE0CD0-NdxXLsKyhv3BNtOI9jSyiI1Rb8MOyU,10700
107
- returnn/frontend/nested.py,sha256=oDiqnyTML7ZtCxrufU4ypG0fOZ_WsZPIvfdSn1Phs6M,14698
107
+ returnn/frontend/nested.py,sha256=Hm4GT5ZI1OyWpYxv_SP5jlBztJsjGVMgtvKJnvQYa00,15068
108
108
  returnn/frontend/normalization.py,sha256=QIjXYg0C8BD2g_1lAkVO4Cara729uHC_bsQh99VsWeI,14061
109
109
  returnn/frontend/parameter.py,sha256=w6SN-uv87OyeWBt90_3UBbK0h6sftSOCxkqXPg76caY,10375
110
110
  returnn/frontend/parametrizations.py,sha256=hVbOlgm1pQAmZnAnNxq8Tk23rykr_iy3-6R1H6CwlMA,2798
@@ -253,8 +253,8 @@ returnn/util/sig_proc.py,sha256=Tjz0VOAVyqu2qDCF5HZ1JjALjcFsHcNkcd96WgZeKfE,7265
253
253
  returnn/util/task_system.py,sha256=y4sMVXQ25Qd2z0rx03uOlXlkE-jbCYC1Sjfn-XlraVU,26003
254
254
  returnn/util/train_proc_manager.py,sha256=Pjht28k6uz6BNQ47uW6Gf880iyq5q4wx7P_K2tmoAM8,3266
255
255
  returnn/util/watch_memory.py,sha256=BR5P2kvBN6UI81cE0_1WAA6Hd1SByLbBaiDxvLhPOew,4213
256
- returnn-1.20250312.115110.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
- returnn-1.20250312.115110.dist-info/METADATA,sha256=dyIFnlVsSzl6vav3eUCY_ftvfxs5n25NybrPYEC6hXE,5215
258
- returnn-1.20250312.115110.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
- returnn-1.20250312.115110.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
- returnn-1.20250312.115110.dist-info/RECORD,,
256
+ returnn-1.20250317.160550.dist-info/LICENSE,sha256=ywBD_U2aD4vpuoIgNAsjIGBYydl0tVKll3De0Z8s77c,11041
257
+ returnn-1.20250317.160550.dist-info/METADATA,sha256=TV21aoMQ025cRAZICtmi0RJ_meXE0a64AGfhceYHZjI,5215
258
+ returnn-1.20250317.160550.dist-info/WHEEL,sha256=iAkIy5fosb7FzIOwONchHf19Qu7_1wCWyFNR5gu9nU0,91
259
+ returnn-1.20250317.160550.dist-info/top_level.txt,sha256=Lsn4WZc5Pbfk0-xDQOgnFCxOoqxL4CyeM3N1TFbJncw,8
260
+ returnn-1.20250317.160550.dist-info/RECORD,,