retab 0.0.64__py3-none-any.whl → 0.0.66__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -6,6 +6,17 @@ from pydantic import BaseModel, Field, ConfigDict
6
6
 
7
7
  from .documents import ProjectDocument
8
8
  from .iterations import Iteration
9
+ from ..inference_settings import InferenceSettings
10
+
11
+ default_inference_settings = InferenceSettings(
12
+ model="auto-small",
13
+ temperature=0.5,
14
+ reasoning_effort="minimal",
15
+ modality="native",
16
+ image_resolution_dpi=192,
17
+ browser_canvas="A4",
18
+ n_consensus=1,
19
+ )
9
20
 
10
21
  class SheetsIntegration(BaseModel):
11
22
  sheet_id: str
@@ -19,7 +30,7 @@ class BaseProject(BaseModel):
19
30
  updated_at: datetime.datetime = Field(default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc))
20
31
  sheets_integration: SheetsIntegration | None = None
21
32
  validation_flags: dict[str, Any] | None = None
22
-
33
+ inference_settings: InferenceSettings = default_inference_settings
23
34
 
24
35
  # Actual Object stored in DB
25
36
  class Project(BaseProject):
@@ -40,6 +51,7 @@ class PatchProjectRequest(BaseModel):
40
51
  json_schema: Optional[dict[str, Any]] = Field(default=None, description="The json schema of the project")
41
52
  sheets_integration: SheetsIntegration | None = None
42
53
  validation_flags: Optional[dict[str, Any]] = Field(default=None, description="The validation flags of the project")
54
+ inference_settings: Optional[InferenceSettings] = Field(default=None, description="The inference settings of the project")
43
55
 
44
56
  class AddIterationFromJsonlRequest(BaseModel):
45
57
  model_config = ConfigDict(extra="ignore")
@@ -0,0 +1,137 @@
1
+ import datetime
2
+ from typing import Any, Optional
3
+
4
+ import nanoid # type: ignore
5
+ from pydantic import BaseModel, Field, ConfigDict
6
+
7
+ from ..inference_settings import InferenceSettings
8
+ from ..mime import MIMEData
9
+ from .predictions import PredictionData, PredictionMetadata
10
+ from .documents import ProjectDocument
11
+
12
+ from typing import Self
13
+ from pydantic import model_validator
14
+
15
+ class DatasetDocument(BaseModel):
16
+ model_config = ConfigDict(extra="ignore")
17
+ id: str = Field(default_factory=lambda: "dataset_doc_" + nanoid.generate(), description="The ID of the document. Equal to mime_data.id but robust to the case where mime_data is a BaseMIMEData")
18
+ mime_data: MIMEData = Field(description="The mime data of the document. Can also be a BaseMIMEData, which is why we have this id field (to be able to identify the file, but id is equal to mime_data.id)")
19
+ annotation: dict[str, Any] = Field(default={}, description="The ground truth of the document")
20
+ annotation_metadata: Optional[PredictionMetadata] = Field(default=None, description="The metadata of the annotation when the annotation is a prediction")
21
+ validation_flags: dict[str, Any] | None = None
22
+
23
+ default_inference_settings = InferenceSettings(
24
+ model="auto-small",
25
+ temperature=0.5,
26
+ reasoning_effort="minimal",
27
+ modality="native",
28
+ image_resolution_dpi=192,
29
+ browser_canvas="A4",
30
+ n_consensus=1,
31
+ )
32
+
33
+ class Dataset(BaseModel):
34
+ id: str = Field(default_factory=lambda: "dataset_" + nanoid.generate())
35
+ name: str = Field(default="", description="The name of the dataset")
36
+ updated_at: datetime.datetime = Field(default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc))
37
+ inference_settings: InferenceSettings = default_inference_settings
38
+ documents: list[DatasetDocument] = Field(default_factory=list)
39
+ iteration_ids: list[str] = Field(default_factory=list)
40
+
41
+
42
+ class SchemaOverrides(BaseModel):
43
+ model_config = ConfigDict(extra="ignore")
44
+ """Schema override for a field path. Only supports non-structural metadata.
45
+
46
+ - description: JSON Schema description string
47
+ - reasoning_prompt: value mapped to schema key "X-ReasoningPrompt"
48
+ """
49
+
50
+ descriptionsOverride: Optional[dict[str, str]] = None
51
+ reasoningPromptsOverride: Optional[dict[str, str]] = Field(default=None, description="Maps to X-ReasoningPrompt in schema")
52
+
53
+ class BaseIteration(BaseModel):
54
+ model_config = ConfigDict(extra="ignore")
55
+ id: str = Field(default_factory=lambda: "eval_iter_" + nanoid.generate())
56
+ parent_id: Optional[str] = Field(default=None, description="The ID of the parent iteration")
57
+ inference_settings: InferenceSettings
58
+ # Store only overrides rather than the full schema. Keys are dot-paths like "address.street" or "items.*.price".
59
+ schema_overrides: SchemaOverrides = Field(
60
+ default_factory=SchemaOverrides, description="Map of field path -> non-structural schema overrides (description, reasoning_prompt)"
61
+ )
62
+ updated_at: datetime.datetime = Field(
63
+ default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc),
64
+ description="The last update date of inference settings or schema overrides",
65
+ )
66
+
67
+ class DraftIteration(BaseModel):
68
+ model_config = ConfigDict(extra="ignore")
69
+ # Store draft overrides only.
70
+ schema_overrides: SchemaOverrides = Field(default_factory=SchemaOverrides)
71
+ updated_at: datetime.datetime = Field(
72
+ default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc),
73
+ description="The last update date of draft schema overrides",
74
+ )
75
+
76
+ class Iteration(BaseIteration):
77
+ model_config = ConfigDict(extra="ignore")
78
+ predictions: dict[str, PredictionData] = Field(default_factory=dict, description="The predictions of the iteration for all the documents")
79
+ draft: Optional[DraftIteration] = Field(default=None, description="The draft iteration of the iteration")
80
+
81
+ # if no draft is provided, set it to the current iteration
82
+ @model_validator(mode="after")
83
+ def set_draft_to_current_iteration(self) -> Self:
84
+ if self.draft is None:
85
+ self.draft = DraftIteration(
86
+ schema_overrides=SchemaOverrides(),
87
+ updated_at=datetime.datetime.now(tz=datetime.timezone.utc),
88
+ )
89
+ return self
90
+
91
+ class Evaluation(BaseModel):
92
+ id: str = Field(default_factory=lambda: "eval_" + nanoid.generate())
93
+ updated_at: datetime.datetime = Field(default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc))
94
+ dataset_id: str
95
+ iteration_ids: list[str] = Field(default_factory=list)
96
+
97
+ class PublishedConfig(BaseModel):
98
+ inference_settings: InferenceSettings = default_inference_settings
99
+ json_schema: dict[str, Any] = Field(default_factory=dict, description="The json schema of the project")
100
+ human_in_the_loop_criteria: list[str] = Field(default_factory=list)
101
+
102
+ class DraftConfig(BaseModel):
103
+ inference_settings: InferenceSettings = default_inference_settings
104
+ schema_overrides: SchemaOverrides = Field(default_factory=SchemaOverrides)
105
+ human_in_the_loop_criteria: list[str] = Field(default_factory=list)
106
+
107
+ class Project(BaseModel):
108
+ model_config = ConfigDict(extra="ignore")
109
+ id: str = Field(default_factory=lambda: "project_" + nanoid.generate())
110
+ name: str = Field(default="", description="The name of the project")
111
+ updated_at: datetime.datetime = Field(default_factory=lambda: datetime.datetime.now(tz=datetime.timezone.utc))
112
+ dataset_ids: list[str] = Field(default_factory=list)
113
+ is_published: bool = False
114
+ published_config: PublishedConfig
115
+ draft_config: DraftConfig
116
+
117
+
118
+ # Actual Object stored in DB
119
+
120
+ class CreateProjectRequest(BaseModel):
121
+ model_config = ConfigDict(extra="ignore")
122
+ name: str
123
+ json_schema: dict[str, Any]
124
+
125
+
126
+ # This is basically the same as BaseProject, but everything is optional.
127
+ # Could be achieved by convert_basemodel_to_partial_basemodel(BaseProject) but we prefer explicitness
128
+ class PatchProjectRequest(BaseModel):
129
+ model_config = ConfigDict(extra="ignore")
130
+ name: Optional[str] = Field(default=None, description="The name of the document")
131
+ json_schema: Optional[dict[str, Any]] = Field(default=None, description="The json schema of the project")
132
+ validation_flags: Optional[dict[str, Any]] = Field(default=None, description="The validation flags of the project")
133
+ inference_settings: Optional[InferenceSettings] = Field(default=None, description="The inference settings of the project")
134
+
135
+ class AddIterationFromJsonlRequest(BaseModel):
136
+ model_config = ConfigDict(extra="ignore")
137
+ jsonl_gcs_path: str
@@ -0,0 +1,5 @@
1
+ from .model import Schema
2
+
3
+ __all__ = [
4
+ "Schema"
5
+ ]
@@ -0,0 +1,491 @@
1
+ import base64
2
+ import logging
3
+ from typing import List, Literal, Optional, Union, cast
4
+ import datetime
5
+ import json
6
+
7
+ from jiter import from_json
8
+ import requests
9
+
10
+ from anthropic.types.image_block_param import ImageBlockParam
11
+ from anthropic.types.message_param import MessageParam
12
+ from anthropic.types.text_block_param import TextBlockParam
13
+ from google.genai.types import BlobDict, ContentDict, ContentUnionDict, PartDict # type: ignore
14
+ from openai.types.chat.chat_completion_content_part_input_audio_param import ChatCompletionContentPartInputAudioParam
15
+ from openai.types.chat.chat_completion_message_param import ChatCompletionMessageParam
16
+ from openai.types.chat.chat_completion_content_part_image_param import ChatCompletionContentPartImageParam, ImageURL
17
+ from openai.types.chat.chat_completion_content_part_param import ChatCompletionContentPartParam
18
+ from openai.types.chat.chat_completion_content_part_text_param import ChatCompletionContentPartTextParam
19
+ from openai.types.chat.parsed_chat_completion import ParsedChatCompletionMessage
20
+ from openai.types.completion_usage import CompletionTokensDetails, CompletionUsage, PromptTokensDetails
21
+ from openai.types.responses.easy_input_message_param import EasyInputMessageParam
22
+ from openai.types.responses.response import Response
23
+ from openai.types.responses.response_input_image_param import ResponseInputImageParam
24
+ from openai.types.responses.response_input_message_content_list_param import ResponseInputMessageContentListParam
25
+ from openai.types.responses.response_input_param import ResponseInputItemParam
26
+ from openai.types.responses.response_input_text_param import ResponseInputTextParam
27
+
28
+ from retab.types.chat import ChatCompletionRetabMessage
29
+ from retab.types.documents.extract import RetabParsedChatCompletion, RetabParsedChoice
30
+
31
+
32
+ MediaType = Literal["image/jpeg", "image/png", "image/gif", "image/webp"]
33
+
34
+
35
+ def convert_to_google_genai_format(messages: List[ChatCompletionRetabMessage]) -> tuple[str, list[ContentUnionDict]]:
36
+ """
37
+ Converts a list of ChatCompletionRetabMessage to a format compatible with the google.genai SDK.
38
+
39
+
40
+ Example:
41
+ ```python
42
+ import google.genai as genai
43
+
44
+ # Configure the Gemini client
45
+ genai.configure(api_key=os.environ["GEMINI_API_KEY"])
46
+
47
+ # Initialize the model
48
+ model = genai.GenerativeModel("gemini-2.0-flash")
49
+
50
+ # Get messages in Gemini format
51
+ gemini_messages = document_message.gemini_messages
52
+
53
+ # Generate a response
54
+ ```
55
+
56
+ Args:
57
+ messages (List[ChatCompletionRetabMessage]): List of chat messages.
58
+
59
+ Returns:
60
+ List[Union[Dict[str, str], str]]: A list of formatted inputs for the google.genai SDK.
61
+ """
62
+ system_message: str = ""
63
+ formatted_content: list[ContentUnionDict] = []
64
+ for message in messages:
65
+ # -----------------------
66
+ # Handle system message
67
+ # -----------------------
68
+ if message["role"] in ("system", "developer"):
69
+ assert isinstance(message.get("content"), str), "System message content must be a string."
70
+ if system_message != "":
71
+ raise ValueError("Only one system message is allowed per chat.")
72
+ system_message += cast(str, message.get("content", ""))
73
+ continue
74
+ parts: list[PartDict] = []
75
+
76
+ message_content = message.get("content")
77
+ if isinstance(message_content, str):
78
+ # Direct string content is treated as the prompt for the SDK
79
+ parts.append(PartDict(text=message_content))
80
+ elif isinstance(message_content, list):
81
+ # Handle structured content
82
+ for part in message_content:
83
+ if part["type"] == "text":
84
+ parts.append(PartDict(text=part["text"]))
85
+ elif part["type"] == "image_url":
86
+ url = part["image_url"].get("url", "") # type: ignore
87
+ if url.startswith("data:image"):
88
+ # Extract base64 data and add it to the formatted inputs
89
+ media_type, data_content = url.split(";base64,")
90
+ media_type = media_type.split("data:")[-1] # => "image/jpeg"
91
+ base64_data = data_content
92
+
93
+ # Try to convert to PIL.Image and append it to the formatted inputs
94
+ try:
95
+ image_bytes = base64.b64decode(base64_data)
96
+ parts.append(PartDict(inline_data=BlobDict(data=image_bytes, mime_type=media_type)))
97
+ except Exception:
98
+ pass
99
+ elif part["type"] == "input_audio":
100
+ pass
101
+ elif part["type"] == "file":
102
+ pass
103
+ else:
104
+ pass
105
+
106
+ formatted_content.append(ContentDict(parts=parts, role=("user" if message["role"] == "user" else "model")))
107
+
108
+ return system_message, formatted_content
109
+
110
+
111
+ def convert_to_anthropic_format(messages: List[ChatCompletionRetabMessage]) -> tuple[str, List[MessageParam]]:
112
+ """
113
+ Converts a list of ChatCompletionRetabMessage to a format compatible with the Anthropic SDK.
114
+
115
+ Args:
116
+ messages (List[ChatCompletionRetabMessage]): List of chat messages.
117
+
118
+ Returns:
119
+ (system_message, formatted_messages):
120
+ system_message (str | NotGiven):
121
+ The system message if one was found, otherwise NOT_GIVEN.
122
+ formatted_messages (List[MessageParam]):
123
+ A list of formatted messages ready for Anthropic.
124
+ """
125
+
126
+ formatted_messages: list[MessageParam] = []
127
+ system_message: str = ""
128
+
129
+ for message in messages:
130
+ content_blocks: list[Union[TextBlockParam, ImageBlockParam]] = []
131
+
132
+ # -----------------------
133
+ # Handle system message
134
+ # -----------------------
135
+ if message["role"] in ("system", "developer"):
136
+ assert isinstance(message.get("content"), str), "System message content must be a string."
137
+ if system_message != "":
138
+ raise ValueError("Only one system message is allowed per chat.")
139
+ system_message += cast(str, message.get("content", ""))
140
+ continue
141
+
142
+ # -----------------------
143
+ # Handle non-system roles
144
+ # -----------------------
145
+ if isinstance(message.get("content"), str):
146
+ # Direct string content is treated as a single text block
147
+ content_blocks.append(
148
+ {
149
+ "type": "text",
150
+ "text": cast(str, message.get("content", "")),
151
+ }
152
+ )
153
+
154
+ elif isinstance(message.get("content"), list):
155
+ # Handle structured content
156
+ for part in cast(list, message.get("content", [])):
157
+ if part["type"] == "text":
158
+ part = cast(ChatCompletionContentPartTextParam, part)
159
+ content_blocks.append(
160
+ {
161
+ "type": "text",
162
+ "text": part["text"], # type: ignore
163
+ }
164
+ )
165
+
166
+ elif part["type"] == "input_audio":
167
+ part = cast(ChatCompletionContentPartInputAudioParam, part)
168
+ logging.warning("Audio input is not supported yet.")
169
+ # No blocks appended since not supported
170
+
171
+ elif part["type"] == "image_url":
172
+ # Handle images that may be either base64 data-URLs or standard remote URLs
173
+ part = cast(ChatCompletionContentPartImageParam, part)
174
+ image_url = part["image_url"]["url"]
175
+
176
+ if "base64," in image_url:
177
+ # The string is already something like: ...
178
+ media_type, data_content = image_url.split(";base64,")
179
+ # media_type might look like: "data:image/jpeg"
180
+ media_type = media_type.split("data:")[-1] # => "image/jpeg"
181
+ base64_data = data_content
182
+ else:
183
+ # It's a remote URL, so fetch, encode, and derive media type from headers
184
+ try:
185
+ r = requests.get(image_url)
186
+ r.raise_for_status()
187
+ content_type = r.headers.get("Content-Type", "image/jpeg")
188
+ # fallback "image/jpeg" if no Content-Type given
189
+
190
+ # Only keep recognized image/* for anthropic
191
+ if content_type not in ("image/jpeg", "image/png", "image/gif", "image/webp"):
192
+ logging.warning(
193
+ "Unrecognized Content-Type '%s' - defaulting to image/jpeg",
194
+ content_type,
195
+ )
196
+ content_type = "image/jpeg"
197
+
198
+ media_type = content_type
199
+ base64_data = base64.b64encode(r.content).decode("utf-8")
200
+
201
+ except Exception:
202
+ logging.warning(
203
+ "Failed to load image from URL: %s",
204
+ image_url,
205
+ exc_info=True,
206
+ stack_info=True,
207
+ )
208
+ # Skip adding this block if error
209
+ continue
210
+
211
+ # Finally, append to content blocks
212
+ content_blocks.append(
213
+ {
214
+ "type": "image",
215
+ "source": {
216
+ "type": "base64",
217
+ "media_type": cast(MediaType, media_type),
218
+ "data": base64_data,
219
+ },
220
+ }
221
+ )
222
+
223
+ formatted_messages.append(
224
+ MessageParam(
225
+ role=message["role"], # type: ignore
226
+ content=content_blocks,
227
+ )
228
+ )
229
+
230
+ return system_message, formatted_messages
231
+
232
+
233
+ def convert_from_anthropic_format(messages: list[MessageParam], system_prompt: str) -> list[ChatCompletionRetabMessage]:
234
+ """
235
+ Converts a list of Anthropic MessageParam to a list of ChatCompletionRetabMessage.
236
+ """
237
+ formatted_messages: list[ChatCompletionRetabMessage] = [ChatCompletionRetabMessage(role="developer", content=system_prompt)]
238
+
239
+ for message in messages:
240
+ role = message["role"]
241
+ content_blocks = message["content"]
242
+
243
+ # Handle different content structures
244
+ if isinstance(content_blocks, list) and len(content_blocks) == 1 and isinstance(content_blocks[0], dict) and content_blocks[0].get("type") == "text":
245
+ # Simple text message
246
+ formatted_messages.append(cast(ChatCompletionRetabMessage, {"role": role, "content": content_blocks[0].get("text", "")}))
247
+ elif isinstance(content_blocks, list):
248
+ # Message with multiple content parts or non-text content
249
+ formatted_content: list[ChatCompletionContentPartParam] = []
250
+
251
+ for block in content_blocks:
252
+ if isinstance(block, dict):
253
+ if block.get("type") == "text":
254
+ formatted_content.append(cast(ChatCompletionContentPartParam, {"type": "text", "text": block.get("text", "")}))
255
+ elif block.get("type") == "image":
256
+ source = block.get("source", {})
257
+ if isinstance(source, dict) and source.get("type") == "base64":
258
+ # Convert base64 image to data URL format
259
+ media_type = source.get("media_type", "image/jpeg")
260
+ data = source.get("data", "")
261
+ image_url = f"data:{media_type};base64,{data}"
262
+
263
+ formatted_content.append(cast(ChatCompletionContentPartParam, {"type": "image_url", "image_url": {"url": image_url}}))
264
+
265
+ formatted_messages.append(cast(ChatCompletionRetabMessage, {"role": role, "content": formatted_content}))
266
+
267
+ return formatted_messages
268
+
269
+
270
+ def convert_to_openai_completions_api_format(messages: List[ChatCompletionRetabMessage]) -> List[ChatCompletionMessageParam]:
271
+ return cast(list[ChatCompletionMessageParam], messages)
272
+
273
+
274
+ def convert_from_openai_completions_api_format(messages: list[ChatCompletionMessageParam]) -> list[ChatCompletionRetabMessage]:
275
+ return cast(list[ChatCompletionRetabMessage], messages)
276
+
277
+
278
+ def separate_messages(
279
+ messages: list[ChatCompletionRetabMessage],
280
+ ) -> tuple[Optional[ChatCompletionRetabMessage], list[ChatCompletionRetabMessage], list[ChatCompletionRetabMessage]]:
281
+ """
282
+ Separates messages into system, user and assistant messages.
283
+
284
+ Args:
285
+ messages: List of chat messages containing system, user and assistant messages
286
+
287
+ Returns:
288
+ Tuple containing:
289
+ - The system message if present, otherwise None
290
+ - List of user messages
291
+ - List of assistant messages
292
+ """
293
+ system_message = None
294
+ user_messages = []
295
+ assistant_messages = []
296
+
297
+ for message in messages:
298
+ if message["role"] in ("system", "developer"):
299
+ system_message = message
300
+ elif message["role"] == "user":
301
+ user_messages.append(message)
302
+ elif message["role"] == "assistant":
303
+ assistant_messages.append(message)
304
+
305
+ return system_message, user_messages, assistant_messages
306
+
307
+
308
+ def str_messages(messages: list[ChatCompletionRetabMessage], max_length: int = 100) -> str:
309
+ """
310
+ Converts a list of chat messages into a string representation with faithfully serialized structure.
311
+
312
+ Args:
313
+ messages (list[ChatCompletionRetabMessage]): The list of chat messages.
314
+ max_length (int): Maximum length for content before truncation.
315
+
316
+ Returns:
317
+ str: A string representation of the messages with applied truncation.
318
+ """
319
+
320
+ def truncate(text: str, max_len: int) -> str:
321
+ """Truncate text to max_len with ellipsis."""
322
+ return text if len(text) <= max_len else f"{text[:max_len]}..."
323
+
324
+ serialized: list[ChatCompletionRetabMessage] = []
325
+ for message in messages:
326
+ role = message["role"]
327
+ content = message.get("content")
328
+
329
+ if isinstance(content, str):
330
+ serialized.append({"role": role, "content": truncate(content, max_length)})
331
+ elif isinstance(content, list):
332
+ truncated_content: list[ChatCompletionContentPartParam] = []
333
+ for part in content:
334
+ if part["type"] == "text" and part["text"]:
335
+ truncated_content.append({"type": "text", "text": truncate(part["text"], max_length)})
336
+ elif part["type"] == "image_url" and part["image_url"]:
337
+ image_url = part["image_url"].get("url", "unknown image")
338
+ truncated_content.append({"type": "image_url", "image_url": {"url": truncate(image_url, max_length)}})
339
+ serialized.append({"role": role, "content": truncated_content})
340
+
341
+ return repr(serialized)
342
+
343
+
344
+ def convert_to_openai_responses_api_format(messages: list[ChatCompletionRetabMessage]) -> list[ResponseInputItemParam]:
345
+ """
346
+ Converts a list of ChatCompletionRetabMessage to the OpenAI ResponseInputParam format.
347
+
348
+ Args:
349
+ messages: List of chat messages in UIForm format
350
+
351
+ Returns:
352
+ Messages in OpenAI ResponseInputParam format for the Responses API
353
+ """
354
+ formatted_messages: list[ResponseInputItemParam] = []
355
+
356
+ for message in messages:
357
+ role = message["role"]
358
+ content = message.get("content")
359
+
360
+ # Handle different content formats
361
+ formatted_content: ResponseInputMessageContentListParam = []
362
+
363
+ if isinstance(content, str):
364
+ # Simple text content - provide direct string value
365
+ formatted_content.append(ResponseInputTextParam(text=content, type="input_text"))
366
+ elif isinstance(content, list):
367
+ # Content is a list of parts
368
+ for part in content:
369
+ if part["type"] == "text":
370
+ formatted_content.append(ResponseInputTextParam(text=part["text"], type="input_text"))
371
+ elif part["type"] == "image_url":
372
+ if "detail" in part["image_url"]:
373
+ detail = part["image_url"]["detail"]
374
+ else:
375
+ detail = "high"
376
+ formatted_content.append(ResponseInputImageParam(image_url=part["image_url"]["url"], type="input_image", detail=detail))
377
+ else:
378
+ print(f"Not supported content type: {part['type']}... Skipping...")
379
+
380
+ # Create Message structure which is one of the types in ResponseInputItemParam
381
+ role_for_response = role if role in ("user", "assistant", "system", "developer") else "assistant"
382
+ formatted_message = EasyInputMessageParam(role=role_for_response, content=formatted_content, type="message")
383
+
384
+ formatted_messages.append(formatted_message)
385
+
386
+ return formatted_messages
387
+
388
+
389
+ def convert_from_openai_responses_api_format(messages: list[ResponseInputItemParam]) -> list[ChatCompletionRetabMessage]:
390
+ """
391
+ Converts messages from OpenAI ResponseInputParam format to ChatCompletionRetabMessage format.
392
+
393
+ Args:
394
+ messages: Messages in OpenAI ResponseInputParam format
395
+
396
+ Returns:
397
+ List of chat messages in UIForm format
398
+ """
399
+ formatted_messages: list[ChatCompletionRetabMessage] = []
400
+
401
+ for message in messages:
402
+ if "role" not in message or "content" not in message:
403
+ # Mandatory fields for a message
404
+ if message.get("type") != "message":
405
+ print(f"Not supported message type: {message.get('type')}... Skipping...")
406
+ continue
407
+
408
+ role = message["role"]
409
+ content = message["content"]
410
+
411
+ if "type" not in message:
412
+ # The type is required by all other sub-types of ResponseInputItemParam except for EasyInputMessageParam and Message, which are messages.
413
+ message["type"] = "message"
414
+
415
+ role = message["role"]
416
+ content = message["content"]
417
+ formatted_content: str | list[ChatCompletionContentPartParam]
418
+
419
+ if isinstance(content, str):
420
+ formatted_content = content
421
+ else:
422
+ # Handle different content formats
423
+ formatted_content = []
424
+ for part in content:
425
+ if part["type"] == "input_text":
426
+ formatted_content.append(ChatCompletionContentPartTextParam(text=part["text"], type="text"))
427
+ elif part["type"] == "input_image":
428
+ image_url = part.get("image_url") or ""
429
+ image_detail = part.get("detail") or "high"
430
+ formatted_content.append(ChatCompletionContentPartImageParam(image_url=ImageURL(url=image_url, detail=image_detail), type="image_url"))
431
+ else:
432
+ print(f"Not supported content type: {part['type']}... Skipping...")
433
+
434
+ # Create message in UIForm format
435
+ formatted_message = ChatCompletionRetabMessage(role=role, content=formatted_content)
436
+ formatted_messages.append(formatted_message)
437
+
438
+ return formatted_messages
439
+
440
+
441
+ def parse_openai_responses_response(response: Response) -> RetabParsedChatCompletion:
442
+ """
443
+ Convert an OpenAI Response (Responses API) to RetabParsedChatCompletion type.
444
+
445
+ Args:
446
+ response: Response from OpenAI Responses API
447
+
448
+ Returns:
449
+ Parsed response in RetabParsedChatCompletion format
450
+ """
451
+ # Create the RetabParsedChatCompletion object
452
+ if response.usage:
453
+ usage = CompletionUsage(
454
+ prompt_tokens=response.usage.input_tokens,
455
+ completion_tokens=response.usage.output_tokens,
456
+ total_tokens=response.usage.total_tokens,
457
+ prompt_tokens_details=PromptTokensDetails(
458
+ cached_tokens=response.usage.input_tokens_details.cached_tokens,
459
+ ),
460
+ completion_tokens_details=CompletionTokensDetails(
461
+ reasoning_tokens=response.usage.output_tokens_details.reasoning_tokens,
462
+ ),
463
+ )
464
+ else:
465
+ usage = None
466
+
467
+ # Parse the ParsedChoice
468
+ choices = []
469
+ output_text = response.output_text
470
+ result_object = from_json(bytes(output_text, "utf-8"), partial_mode=True) # Attempt to parse the result even if EOF is reached
471
+
472
+ choices.append(
473
+ RetabParsedChoice(
474
+ index=0,
475
+ message=ParsedChatCompletionMessage(
476
+ role="assistant",
477
+ content=json.dumps(result_object),
478
+ ),
479
+ finish_reason="stop",
480
+ )
481
+ )
482
+
483
+ return RetabParsedChatCompletion(
484
+ id=response.id,
485
+ choices=choices,
486
+ created=int(datetime.datetime.now().timestamp()),
487
+ model=response.model,
488
+ object="chat.completion",
489
+ likelihoods={},
490
+ usage=usage,
491
+ )