resqpy 4.18.11__py3-none-any.whl → 5.1.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -4,8 +4,10 @@ import logging
4
4
 
5
5
  log = logging.getLogger(__name__)
6
6
 
7
+ import os
7
8
  import numpy as np
8
9
  import uuid
10
+ import ast
9
11
  from typing import Tuple, Union, List, Optional, Callable
10
12
  from pathlib import Path
11
13
  from uuid import UUID
@@ -18,33 +20,38 @@ import resqpy.surface as rqs
18
20
  import resqpy.olio.uuid as bu
19
21
 
20
22
 
21
- def find_faces_to_represent_surface_regular_wrapper(index: int,
22
- parent_tmp_dir: str,
23
- use_index_as_realisation: bool,
24
- grid_epc: str,
25
- grid_uuid: Union[UUID, str],
26
- surface_epc: str,
27
- surface_uuid: Union[UUID, str],
28
- name: str,
29
- title: Optional[str] = None,
30
- agitate: bool = False,
31
- random_agitation: bool = False,
32
- feature_type: str = 'fault',
33
- trimmed: bool = False,
34
- is_curtain = False,
35
- extend_fault_representation: bool = False,
36
- flange_inner_ring = False,
37
- saucer_parameter = None,
38
- retriangulate: bool = False,
39
- related_uuid = None,
40
- progress_fn: Optional[Callable] = None,
41
- extra_metadata = None,
42
- return_properties: Optional[List[str]] = None,
43
- raw_bisector: bool = False,
44
- use_pack: bool = False,
45
- flange_radius = None,
46
- reorient = True,
47
- n_threads = 20) -> Tuple[int, bool, str, List[Union[UUID, str]]]:
23
+ def find_faces_to_represent_surface_regular_wrapper(
24
+ index: int,
25
+ parent_tmp_dir: str,
26
+ use_index_as_realisation: bool,
27
+ grid_epc: str,
28
+ grid_uuid: Union[UUID, str],
29
+ surface_epc: str,
30
+ surface_uuid: Union[UUID, str],
31
+ name: str,
32
+ title: Optional[str] = None,
33
+ agitate: bool = False,
34
+ random_agitation: bool = False,
35
+ feature_type: str = 'fault',
36
+ trimmed: bool = False,
37
+ is_curtain = False,
38
+ extend_fault_representation: bool = False,
39
+ flange_inner_ring: bool = False,
40
+ saucer_parameter: Optional[float] = None,
41
+ retriangulate: bool = False,
42
+ related_uuid: Optional[Union[UUID, str]] = None,
43
+ progress_fn: Optional[Callable] = None,
44
+ extra_metadata = None,
45
+ return_properties: Optional[List[str]] = None,
46
+ raw_bisector: bool = False,
47
+ use_pack: bool = False,
48
+ flange_radius: Optional[float] = None,
49
+ reorient: bool = True,
50
+ n_threads: int = 20,
51
+ patchwork: bool = False,
52
+ grid_patching_property_uuid: Optional[Union[UUID, str]] = None,
53
+ surface_patching_property_uuid: Optional[Union[UUID, str]] = None) -> \
54
+ Tuple[int, bool, str, List[Union[UUID, str]]]:
48
55
  """Multiprocessing wrapper function of find_faces_to_represent_surface_regular_optimised.
49
56
 
50
57
  arguments:
@@ -98,8 +105,17 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
98
105
  flange_radius (float, optional): the radial distance to use for outer flange extension points; if None,
99
106
  a large value will be calculated from the grid size; units are xy units of grid crs
100
107
  reorient (bool, default True): if True, the points are reoriented to minimise the
101
- z range prior to retriangulation (ie. z axis is approximate normal to plane of points), to enhace the triangulation
108
+ z range prior to retriangulation (ie. z axis is approximate normal to plane of points), to enhace the triangulation
102
109
  n_threads (int, default 20): the number of parallel threads to use in numba points in triangles function
110
+ patchwork (bool, default False): if True and grid bisector is included in return properties, a compostite
111
+ bisector is generated, based on individual ones for each patch of the surface; the following two
112
+ arguments must be set if patchwork is True
113
+ grid_patching_property_uuid (uuid, optional): required if patchwork is True, the uuid of a discrete or
114
+ categorical cells property on the grid which will be used to determine which patch of the surface is
115
+ relevant to a cell
116
+ surface_patching_property_uuid (uuid, optional): required if patchwork is True, the uuid of a discrete or
117
+ categorical property on the patches of the surface, identifying the value of the grid patching property
118
+ that each patch relates to
103
119
 
104
120
  returns:
105
121
  Tuple containing:
@@ -109,18 +125,15 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
109
125
  - uuid_list (List[str]): list of UUIDs of relevant objects
110
126
 
111
127
  notes:
112
- Use this function as argument to the multiprocessing function; it will create a new model that is saved
113
- in a temporary epc file and returns the required values, which are used in the multiprocessing function to
114
- recombine all the objects into a single epc file;
115
- the saucer_parameter is interpreted in one of two ways: (1) +ve fractoinal values between zero and one
116
- are the fractional distance from the centre of the points to its rim at which to sample the surface for
117
- extrapolation and thereby modify the recumbent z of flange points; 0 will usually give shallower and
118
- smoother saucer; larger values (must be less than one) will lead to stronger and more erratic saucer
119
- shape in flange; (2) other values between -90.0 and 90.0 are interpreted as an angle to apply out of
120
- the plane of the original points, to give a simple (and less computationally demanding) saucer shape;
121
- +ve angles result in the shift being in the direction of the -ve z hemisphere; -ve angles result in
122
- the shift being in the +ve z hemisphere; in either case the direction of the shift is perpendicular
123
- to the average plane of the original points
128
+ - use this function as argument to the multiprocessing function; it will create a new model that is saved
129
+ in a temporary epc file and returns the required values, which are used in the multiprocessing function to
130
+ recombine all the objects into a single epc file
131
+ - the saucer_parameter is between -90.0 and 90.0 and is interpreted as an angle to apply out of
132
+ the plane of the original points, to give a simple saucer shape;
133
+ +ve angles result in the shift being in the direction of the -ve z hemisphere; -ve angles result in
134
+ the shift being in the +ve z hemisphere; in either case the direction of the shift is perpendicular
135
+ to the average plane of the original points
136
+ - patchwork is not compatible with re-triangulation
124
137
  """
125
138
  tmp_dir = Path(parent_tmp_dir) / f"{uuid.uuid4()}"
126
139
  tmp_dir.mkdir(parents = True, exist_ok = True)
@@ -149,11 +162,18 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
149
162
  flange_radius = 5.0 * np.sum(np.array(grid.extent_kji, dtype = float) * np.array(grid.aligned_dxyz()))
150
163
  s_model = rq.Model(surface_epc, quiet = True)
151
164
  model.copy_uuid_from_other_model(s_model, uuid = str(surface_uuid))
165
+ if surface_patching_property_uuid is not None:
166
+ model.copy_uuid_from_other_model(s_model, uuid = surface_patching_property_uuid)
167
+ uuid_list.append(surface_patching_property_uuid)
152
168
  repr_type = model.type_of_part(model.part(uuid = surface_uuid), strip_obj = True)
153
169
  assert repr_type in ['TriangulatedSetRepresentation', 'PointSetRepresentation']
170
+ assert repr_type == 'TriangulatedSetRepresentation' or not patchwork, \
171
+ 'patchwork only implemented for triangulated set surfaces'
172
+
154
173
  extended = False
155
174
  retriangulated = False
156
175
  flange_bool = None
176
+
157
177
  if repr_type == 'PointSetRepresentation':
158
178
  # trim pointset to grid xyz box
159
179
  pset = rqs.PointSet(model, uuid = surface_uuid)
@@ -197,15 +217,22 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
197
217
  surf_title = surface.title
198
218
  assert surf_title
199
219
  surface.change_crs(grid.crs)
220
+ normal_vector = None
221
+ if reorient:
222
+ normal_vector = surface.normal()
223
+ if patchwork: # disable trimming as whole patches could be trimmed out, changing the patch indexing from that expected
224
+ trimmed = True
200
225
  if not trimmed and surface.triangle_count() > 100:
201
226
  if not surf_title.endswith('trimmed'):
202
227
  surf_title += ' trimmed'
203
228
  trimmed_surf = rqs.Surface(model, crs_uuid = grid.crs.uuid, title = surf_title)
204
229
  # trimmed_surf.set_to_trimmed_surface(surf, xyz_box = xyz_box, xy_polygon = parent_seg.polygon)
205
230
  trimmed_surf.set_to_trimmed_surface(surface, xyz_box = grid.xyz_box(local = True))
231
+ trimmed_surf.extra_metadata = surface.extra_metadata
206
232
  surface = trimmed_surf
207
233
  trimmed = True
208
234
  if (extend_fault_representation and not extended) or (retriangulate and not retriangulated):
235
+ assert not patchwork, 'extension or re-triangulation are not compatible with patchwork'
209
236
  _, p = surface.triangles_and_points()
210
237
  pset = rqs.PointSet(model, points_array = p, crs_uuid = grid.crs.uuid, title = surf_title)
211
238
  if extend_fault_representation and not surf_title.endswith('extended'):
@@ -213,12 +240,13 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
213
240
  surface = rqs.Surface(model, crs_uuid = grid.crs.uuid, title = surf_title)
214
241
  flange_bool = surface.set_from_point_set(pset,
215
242
  convexity_parameter = 2.0,
216
- reorient = True,
243
+ reorient = reorient,
217
244
  extend_with_flange = extend_fault_representation,
218
245
  flange_inner_ring = flange_inner_ring,
219
246
  saucer_parameter = saucer_parameter,
220
247
  flange_radial_distance = flange_radius,
221
- make_clockwise = False)
248
+ make_clockwise = False,
249
+ normal_vector = normal_vector)
222
250
  del pset
223
251
  extended = extend_fault_representation
224
252
  retriangulated = True
@@ -242,7 +270,23 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
242
270
  discrete = True,
243
271
  dtype = np.uint8)
244
272
  uuid_list.append(flange_p.uuid)
245
- uuid_list.append(surface_uuid)
273
+
274
+ if not patchwork:
275
+ uuid_list.append(surface_uuid)
276
+
277
+ patch_indices = None
278
+ if patchwork: # generate a patch indices array over grid cells based on supplied patching properties
279
+ assert grid_patching_property_uuid is not None and surface_patching_property_uuid is not None
280
+ g_patching_array = rqp.Property(g_model, uuid = grid_patching_property_uuid).array_ref()
281
+ assert g_patching_array.shape == tuple(grid.extent_kji)
282
+ s_patches_array = rqp.Property(model, uuid = surface_patching_property_uuid).array_ref()
283
+ patch_count = surface.number_of_patches()
284
+ assert s_patches_array.shape == (patch_count,)
285
+ p_dtype = (np.int8 if s_patches_array.shape[0] < 128 else np.int32)
286
+ patch_indices = np.full(g_patching_array.shape, -1, dtype = p_dtype)
287
+ for patch in range(patch_count):
288
+ gp = s_patches_array[patch]
289
+ patch_indices[(g_patching_array == gp).astype(bool)] = patch
246
290
 
247
291
  returns = rqgs.find_faces_to_represent_surface_regular_optimised(grid,
248
292
  surface,
@@ -256,7 +300,8 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
256
300
  return_properties,
257
301
  raw_bisector = raw_bisector,
258
302
  n_batches = n_threads,
259
- packed_bisectors = use_pack)
303
+ packed_bisectors = use_pack,
304
+ patch_indices = patch_indices)
260
305
 
261
306
  success = False
262
307
 
@@ -286,6 +331,7 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
286
331
 
287
332
  if success and return_properties is not None and len(return_properties):
288
333
  log.debug(f'{name} requested properties: {return_properties}')
334
+ assert isinstance(returns, tuple)
289
335
  properties = returns[1]
290
336
  realisation = index if use_index_as_realisation else None
291
337
  property_collection = rqp.PropertyCollection(support = gcs)
@@ -346,6 +392,7 @@ def find_faces_to_represent_surface_regular_wrapper(index: int,
346
392
  if grid_pc is None:
347
393
  grid_pc = rqp.PropertyCollection()
348
394
  grid_pc.set_support(support = grid)
395
+ assert array.ndim == (2 if is_curtain else 3)
349
396
  grid_pc.add_cached_array_to_imported_list(array,
350
397
  f"from find_faces function for {surface.title}",
351
398
  f'{surface.title} {p_name}',
@@ -25,7 +25,7 @@ import resqpy.olio.vector_utilities as vec
25
25
 
26
26
  def _dt_scipy(points: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
27
27
  """Calculates the Delaunay triangulation for an array of points and the convex hull indices.
28
-
28
+
29
29
  arguments:
30
30
  points (np.ndarray): coordinates of the points to triangulate; array has shape
31
31
  (npoints, ndim)
@@ -48,7 +48,7 @@ def _dt_scipy(points: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
48
48
 
49
49
 
50
50
  def _dt_simple(po, plot_fn = None, progress_fn = None, container_size_factor = None):
51
- # returns Delauney triangulation of po and list of hull point indices, using a simple algorithm
51
+ # returns Delaunay triangulation of po and list of hull point indices, using a simple algorithm
52
52
 
53
53
  def flip(ei):
54
54
  nonlocal fm, e, t, te, p, nt, p_i, ne
@@ -234,7 +234,7 @@ def _dt_simple(po, plot_fn = None, progress_fn = None, container_size_factor = N
234
234
 
235
235
 
236
236
  def dt(p, algorithm = "scipy", plot_fn = None, progress_fn = None, container_size_factor = 100.0, return_hull = False):
237
- """Returns the Delauney Triangulation of 2D point set p.
237
+ """Returns the Delaunay Triangulation of 2D point set p.
238
238
 
239
239
  arguments:
240
240
  p (numpy float array of shape (N, 2): the x,y coordinates of the points
@@ -253,7 +253,7 @@ def dt(p, algorithm = "scipy", plot_fn = None, progress_fn = None, container_siz
253
253
 
254
254
  returns:
255
255
  numpy int array of shape (M, 3) - being the indices into the first axis of p of the 3 points
256
- per triangle in the Delauney Triangulation - and if return_hull is True, another int array
256
+ per triangle in the Delaunay Triangulation - and if return_hull is True, another int array
257
257
  of shape (B,) - being indices into p of the clockwise ordered points on the boundary of
258
258
  the triangulation
259
259
 
@@ -261,7 +261,7 @@ def dt(p, algorithm = "scipy", plot_fn = None, progress_fn = None, container_siz
261
261
  the plot_fn, progress_fn and container_size_factor arguments are only used by the 'simple' algorithm;
262
262
  if points p are 3D, the projection onto the xy plane is used for the triangulation
263
263
  """
264
- assert p.ndim == 2 and p.shape[1] >= 2, 'bad points shape for 2D Delauney Triangulation'
264
+ assert p.ndim == 2 and p.shape[1] >= 2, 'bad points shape for 2D Delaunay Triangulation'
265
265
 
266
266
  if not algorithm:
267
267
  algorithm = 'scipy'
@@ -274,7 +274,7 @@ def dt(p, algorithm = "scipy", plot_fn = None, progress_fn = None, container_siz
274
274
  progress_fn = progress_fn,
275
275
  container_size_factor = container_size_factor)
276
276
  else:
277
- raise Exception(f'unrecognised Delauney Triangulation algorithm name: {algorithm}')
277
+ raise Exception(f'unrecognised Delaunay Triangulation algorithm name: {algorithm}')
278
278
 
279
279
  assert tri.ndim == 2 and tri.shape[1] == 3
280
280
 
@@ -304,11 +304,11 @@ def ccc(p1, p2, p3):
304
304
 
305
305
 
306
306
  def voronoi(p, t, b, aoi: rql.Polyline):
307
- """Returns dual Voronoi diagram for a Delauney triangulation.
307
+ """Returns dual Voronoi diagram for a Delaunay triangulation.
308
308
 
309
309
  arguments:
310
- p (numpy float array of shape (N, 2)): seed points used in the Delauney triangulation
311
- t (numpy int array of shape (M, 3)): the Delauney triangulation of p as returned by dt()
310
+ p (numpy float array of shape (N, 2)): seed points used in the Delaunay triangulation
311
+ t (numpy int array of shape (M, 3)): the Delaunay triangulation of p as returned by dt()
312
312
  b (numpy int array of shape (B,)): clockwise sorted list of indices into p of the boundary
313
313
  points of the triangulation t
314
314
  aoi (lines.Polyline): area of interest; a closed clockwise polyline that must strictly contain
@@ -329,7 +329,7 @@ def voronoi(p, t, b, aoi: rql.Polyline):
329
329
 
330
330
  # this code assumes that the Voronoi polygon for a seed point visits the circumcentres of
331
331
  # all the triangles that make use of the point – currently understood to be always the case
332
- # for a Delauney triangulation
332
+ # for a Delaunay triangulation
333
333
 
334
334
  def __aoi_intervening_nodes(aoi_count, c_count, seg_a, seg_c):
335
335
  nodes = []
@@ -582,7 +582,7 @@ def voronoi(p, t, b, aoi: rql.Polyline):
582
582
 
583
583
  # check for concavities in hull
584
584
  if not hull.is_convex():
585
- log.warning('Delauney triangulation is not convex; Voronoi diagram construction might fail')
585
+ log.warning('Delaunay triangulation is not convex; Voronoi diagram construction might fail')
586
586
 
587
587
  # compute circumcircle centres
588
588
  c = np.zeros((t.shape[0], 2))
@@ -750,7 +750,7 @@ def reorient(points, rough = True, max_dip = None, use_linalg = True, sample = 5
750
750
  notes:
751
751
  the original points array is not modified by this function;
752
752
  implicit xy & z units for points are assumed to be the same;
753
- the function may typically be called prior to the Delauney triangulation, which uses an xy projection to
753
+ the function may typically be called prior to the Delaunay triangulation, which uses an xy projection to
754
754
  determine the triangulation;
755
755
  the numpy linear algebra option seems to be memory intensive, not recommended;
756
756
  downsampling will occur (for normal vector determination) when the number of points exceeds double that
@@ -868,9 +868,11 @@ def surrounding_xy_ring(p,
868
868
  being an angle to determine a z offset for the ring(s); a +ve angle results in a -ve z shift
869
869
 
870
870
  returns:
871
- numpy float array of shape (N, 3) being xyz points in surrounding ring(s); z is set constant to
872
- mean value of z in p (optionally adjussted based on saucer_angle);
873
- N is count if inner_ring is False, 3 * count if True
871
+ (numpy float array, float) pair:
872
+ - numpy float array of shape (N, 3) being xyz points in surrounding ring(s); z is set constant to
873
+ mean value of z in p (optionally adjussted based on saucer_angle);
874
+ N is count if inner_ring is False, 3 * count if True
875
+ - radius used for ring of additional points
874
876
  """
875
877
 
876
878
  def make_ring(count, centre, radius, saucer_angle):
@@ -898,8 +900,8 @@ def surrounding_xy_ring(p,
898
900
  inner_radius = p_radius * 1.1
899
901
  assert radius > inner_radius
900
902
  in_ring = make_ring(2 * count, centre, inner_radius, saucer_angle)
901
- return np.concatenate((in_ring, ring), axis = 0)
902
- return ring
903
+ return np.concatenate((in_ring, ring), axis = 0), radius
904
+ return ring, radius
903
905
 
904
906
 
905
907
  def edges(t):
resqpy/olio/volume.py CHANGED
@@ -77,26 +77,6 @@ def tetra_cell_volume(cp, centre = None, off_hand = False):
77
77
  return v / 6.0
78
78
 
79
79
 
80
- def tetra_volumes_slow(cp, centres = None, off_hand = False):
81
- """Returns volume array for all hexahedral cells assuming bilinear faces, using loop over cells."""
82
-
83
- # NB: deprecated, superceded by much faster function below
84
- # todo: handle NaNs
85
- # Pagoda style corner point data
86
- assert cp.ndim == 7
87
-
88
- flat = cp.reshape(-1, 2, 2, 2, 3)
89
- cells = flat.shape[0]
90
- if centres is None:
91
- centres = np.mean(flat, axis = (1, 2, 3))
92
- else:
93
- centres = centres.reshape((-1, 3))
94
- volumes = np.zeros(cells)
95
- for cell in range(cells):
96
- volumes[cell] = tetra_cell_volume(flat[cell], centre = centres[cell], off_hand = off_hand)
97
- return volumes.reshape(cp.shape[0:3])
98
-
99
-
100
80
  def tetra_volumes(cp, centres = None, off_hand = False):
101
81
  """Returns volume array for all hexahedral cells assuming bilinear faces, using numpy operations.
102
82
 
@@ -8,7 +8,8 @@ __all__ = [
8
8
  'reformat_column_edges_from_resqml_format', 'same_property_kind', 'selective_version_of_collection',
9
9
  'supported_local_property_kind_list', 'supported_property_kind_list', 'supported_facet_type_list',
10
10
  'expected_facet_type_dict', 'create_transmisibility_multiplier_property_kind',
11
- 'property_kind_and_facet_from_keyword', 'guess_uom', 'property_parts', 'property_part', 'make_aps_key'
11
+ 'property_kind_and_facet_from_keyword', 'guess_uom', 'property_parts', 'property_part', 'make_aps_key',
12
+ 'establish_zone_property_kind'
12
13
  ]
13
14
 
14
15
  from .property_common import property_collection_for_keyword, \
@@ -27,7 +28,7 @@ from .property_common import property_collection_for_keyword, \
27
28
  guess_uom, \
28
29
  property_parts, \
29
30
  property_part
30
- from .property_kind import PropertyKind, create_transmisibility_multiplier_property_kind
31
+ from .property_kind import PropertyKind, create_transmisibility_multiplier_property_kind, establish_zone_property_kind
31
32
  from .string_lookup import StringLookup
32
33
  from .property_collection import PropertyCollection
33
34
  from .attribute_property_set import AttributePropertySet, ApsProperty, make_aps_key
@@ -509,6 +509,8 @@ def _supporting_shape_surface(support, indexable_element):
509
509
  shape_list = [support.triangle_count()]
510
510
  elif indexable_element == 'nodes':
511
511
  shape_list = [support.node_count()]
512
+ elif indexable_element == 'patches':
513
+ shape_list = [len(support.patch_list)]
512
514
  return shape_list
513
515
 
514
516
 
@@ -511,8 +511,8 @@ class _GridFromCp:
511
511
  assert len(where_defined) == 3 and len(where_defined[0]) > 0, 'no extant cell geometries'
512
512
  sample_kji0 = (where_defined[0][0], where_defined[1][0], where_defined[2][0])
513
513
  sample_cp = self.__cp_array[sample_kji0]
514
- self.__cell_ijk_lefthanded = (vec.clockwise(sample_cp[0, 0, 0], sample_cp[0, 1, 0], sample_cp[0, 0, 1]) >=
515
- 0.0)
514
+ self.__cell_ijk_lefthanded = \
515
+ (vec.clockwise(sample_cp[0, 0, 0], sample_cp[0, 1, 0], sample_cp[0, 0, 1]) >= 0.0)
516
516
  if not self.grid.k_direction_is_down:
517
517
  self.__cell_ijk_lefthanded = not self.__cell_ijk_lefthanded
518
518
  if self.__crs.is_right_handed_xyz():