resqpy 4.17.10__py3-none-any.whl → 4.18.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
resqpy/__init__.py CHANGED
@@ -28,6 +28,6 @@
28
28
 
29
29
  import logging
30
30
 
31
- __version__ = "4.17.10" # Set at build time
31
+ __version__ = "4.18.1" # Set at build time
32
32
  log = logging.getLogger(__name__)
33
33
  log.info(f"Imported resqpy version {__version__}")
@@ -23,6 +23,8 @@ __all__ = [
23
23
  "find_faces_to_represent_surface_regular_dense_optimised",
24
24
  "find_faces_to_represent_surface",
25
25
  "bisector_from_faces",
26
+ "bisector_from_face_indices",
27
+ "packed_bisector_from_face_indices",
26
28
  "column_bisector_from_faces",
27
29
  "shadow_from_faces",
28
30
  "get_boundary",
@@ -61,6 +63,8 @@ from ._find_faces import (
61
63
  find_faces_to_represent_surface_regular_dense_optimised,
62
64
  find_faces_to_represent_surface,
63
65
  bisector_from_faces,
66
+ bisector_from_face_indices,
67
+ packed_bisector_from_face_indices,
64
68
  column_bisector_from_faces,
65
69
  shadow_from_faces,
66
70
  get_boundary,
@@ -24,6 +24,27 @@ import resqpy.olio.vector_utilities as vec
24
24
  # note: resqpy.grid_surface._grid_surface_cuda will be imported by the find_faces_to_represent_surface() function if needed
25
25
 
26
26
 
27
+ @njit # pragma: no cover
28
+ def _bitwise_count_njit(a: np.ndarray) -> int:
29
+ """Deprecated: only needed till numpy versions < 2.0.0 are dropped."""
30
+ c: int = 0
31
+ c += np.count_nonzero(np.bitwise_and(a, 0x01))
32
+ c += np.count_nonzero(np.bitwise_and(a, 0x02))
33
+ c += np.count_nonzero(np.bitwise_and(a, 0x04))
34
+ c += np.count_nonzero(np.bitwise_and(a, 0x08))
35
+ c += np.count_nonzero(np.bitwise_and(a, 0x10))
36
+ c += np.count_nonzero(np.bitwise_and(a, 0x20))
37
+ c += np.count_nonzero(np.bitwise_and(a, 0x40))
38
+ c += np.count_nonzero(np.bitwise_and(a, 0x80))
39
+ return c
40
+
41
+
42
+ if hasattr(np, 'bitwise_count'):
43
+ bitwise_count = np.bitwise_count
44
+ else:
45
+ bitwise_count = _bitwise_count_njit
46
+
47
+
27
48
  def find_faces_to_represent_surface_staffa(grid, surface, name, feature_type = "fault", progress_fn = None):
28
49
  """Returns a grid connection set containing those cell faces which are deemed to represent the surface.
29
50
 
@@ -877,7 +898,8 @@ def find_faces_to_represent_surface_regular_optimised(grid,
877
898
  progress_fn = None,
878
899
  return_properties = None,
879
900
  raw_bisector = False,
880
- n_batches = 20):
901
+ n_batches = 20,
902
+ packed_bisectors = False):
881
903
  """Returns a grid connection set containing those cell faces which are deemed to represent the surface.
882
904
 
883
905
  argumants:
@@ -911,6 +933,8 @@ def find_faces_to_represent_surface_regular_optimised(grid,
911
933
  form without assessing which side is shallower (True values indicate same side as origin cell)
912
934
  n_batches (int, default 20): the number of batches of triangles to use at the low level (numba multi
913
935
  threading allows some parallelism between the batches)
936
+ packed_bisectors (bool, default False): if True and return properties include 'grid bisector' then
937
+ non curtain bisectors are returned in packed form
914
938
 
915
939
  returns:
916
940
  gcs or (gcs, gcs_props)
@@ -1231,6 +1255,12 @@ def find_faces_to_represent_surface_regular_optimised(grid,
1231
1255
  (j_faces_kji0 is None or len(j_faces_kji0) == 0) and (i_faces_kji0 is None or len(i_faces_kji0) == 0)):
1232
1256
  bisector = np.ones((grid.nj, grid.ni), dtype = bool)
1233
1257
  is_curtain = True
1258
+ elif packed_bisectors:
1259
+ bisector, is_curtain = packed_bisector_from_face_indices(tuple(grid.extent_kji), k_faces_kji0,
1260
+ j_faces_kji0, i_faces_kji0, raw_bisector)
1261
+ if is_curtain:
1262
+ bisector = np.unpackbits(bisector[0], axis = -1,
1263
+ count = grid.ni).astype(bool) # reduce to a columns property
1234
1264
  else:
1235
1265
  bisector, is_curtain = bisector_from_face_indices(tuple(grid.extent_kji), k_faces_kji0, j_faces_kji0,
1236
1266
  i_faces_kji0, raw_bisector)
@@ -1478,6 +1508,92 @@ def bisector_from_face_indices( # type: ignore
1478
1508
  return array, is_curtain
1479
1509
 
1480
1510
 
1511
+ def packed_bisector_from_face_indices( # type: ignore
1512
+ grid_extent_kji: Tuple[int, int, int], k_faces_kji0: Union[np.ndarray, None], j_faces_kji0: Union[np.ndarray,
1513
+ None],
1514
+ i_faces_kji0: Union[np.ndarray, None], raw_bisector: bool) -> Tuple[np.ndarray, bool]:
1515
+ """Creates a uint8 (packed bool) array denoting the bisection of the grid by the face sets.
1516
+
1517
+ arguments:
1518
+ - grid_extent_kji (Tuple[int, int, int]): the shape of the grid
1519
+ - k_faces_kji0 (np.ndarray): an int array of indices of which faces represent the surface in the k dimension
1520
+ - j_faces_kji0 (np.ndarray): an int array of indices of which faces represent the surface in the j dimension
1521
+ - i_faces_kji0 (np.ndarray): an int array of indices of which faces represent the surface in the i dimension
1522
+ - raw_bisector (bool): if True, the bisector is returned without determining which side is shallower
1523
+
1524
+ returns:
1525
+ Tuple containing:
1526
+ - array (np.uint8 array): packed boolean bisector array where values are 1 for cells on the side
1527
+ of the surface that has a lower mean k index on average and 0 for cells on the other side
1528
+ - is_curtain (bool): True if the surface is a curtain (vertical), otherwise False
1529
+
1530
+ notes:
1531
+ - the face sets must form a single 'sealed' cut of the grid (eg. not waving in and out of the grid)
1532
+ - any 'boxed in' parts of the grid (completely enclosed by bisecting faces) will be consistently
1533
+ assigned to either the True or False part
1534
+ - the returned array is packed in the I axis; use np.unpackbits() to unpack
1535
+ """
1536
+ assert len(grid_extent_kji) == 3
1537
+
1538
+ # find the surface boundary (includes a buffer slice where surface does not reach edge of grid), and shrink the I axis
1539
+ box = get_packed_boundary_from_indices(k_faces_kji0, j_faces_kji0, i_faces_kji0, grid_extent_kji)
1540
+ # set k_faces as uint8 packed bool arrays covering box
1541
+ k_faces, j_faces, i_faces = _packed_box_face_arrays_from_indices(k_faces_kji0, j_faces_kji0, i_faces_kji0, box)
1542
+
1543
+ box_shape = box[1, :] - box[0, :]
1544
+
1545
+ # set up the bisector array for the bounding box
1546
+ box_array = np.zeros(box_shape, dtype = np.uint8)
1547
+
1548
+ # seed the bisector box array at (0, 0, 0)
1549
+ box_array[0, 0, 0] = 0x80 # first bit only set
1550
+
1551
+ # prepare to spread True values to neighbouring cells that are not the other side of a face
1552
+ if k_faces is None:
1553
+ open_k = np.invert(np.zeros((box_shape[0] - 1, box_shape[1], box_shape[2]), dtype = np.uint8), dtype = np.uint8)
1554
+ else:
1555
+ open_k = np.invert(k_faces, dtype = np.uint8)
1556
+ if j_faces is None:
1557
+ open_j = np.invert(np.zeros((box_shape[0], box_shape[1] - 1, box_shape[2]), dtype = np.uint8), dtype = np.uint8)
1558
+ else:
1559
+ open_j = np.invert(j_faces, dtype = np.uint8)
1560
+ if i_faces is None:
1561
+ open_i = np.invert(np.zeros(tuple(box_shape), dtype = np.uint8), dtype = np.uint8)
1562
+ else:
1563
+ open_i = np.invert(i_faces, dtype = np.uint8)
1564
+
1565
+ # close off faces in padding bits
1566
+ tail = grid_extent_kji[2] % 8 # number of valid bits in padded byte
1567
+ if tail:
1568
+ m = np.uint8((255 << (8 - tail)) & 255)
1569
+ open_k[:, :, -1] &= m
1570
+ open_j[:, :, -1] &= m
1571
+ m = np.uint8((m << 1) & 255)
1572
+ open_i[:, :, -1] &= m
1573
+
1574
+ # populate bisector array for box
1575
+ _fill_packed_bisector(box_array, open_k, open_j, open_i)
1576
+
1577
+ del open_i, open_j, open_k
1578
+
1579
+ # set up the full bisectors array and assigning the bounding box values
1580
+ array = np.zeros(_shape_packed(grid_extent_kji), dtype = np.uint8)
1581
+ array[box[0, 0]:box[1, 0], box[0, 1]:box[1, 1], box[0, 2]:box[1, 2]] = box_array
1582
+
1583
+ # set bisector values outside of the bounding box
1584
+ _set_packed_bisector_outside_box(array, box, box_array)
1585
+
1586
+ # check all array elements are not the same
1587
+ true_count = np.sum(bitwise_count(array)) # note: will usually include some padding bits, so not so true!
1588
+ cell_count = np.prod(grid_extent_kji)
1589
+ assert (0 < true_count < cell_count), "face set for surface is leaky or empty (surface does not intersect grid)"
1590
+
1591
+ # negate the array if it minimises the mean k and determine if the surface is a curtain
1592
+ is_curtain = _packed_shallow_or_curtain(array, true_count, raw_bisector)
1593
+
1594
+ return array, is_curtain
1595
+
1596
+
1481
1597
  def column_bisector_from_face_indices(grid_extent_ji: Tuple[int, int], j_faces_ji0: np.ndarray,
1482
1598
  i_faces_ji0: np.ndarray) -> np.ndarray:
1483
1599
  """Returns a numpy bool array denoting the bisection of the top layer of the grid by the curtain face sets.
@@ -1890,14 +2006,12 @@ def _all_offsets(crs, k_offsets_list, j_offsets_list, i_offsets_list):
1890
2006
 
1891
2007
  @njit # pragma: no cover
1892
2008
  def _fill_bisector(bisect: np.ndarray, open_k: np.ndarray, open_j: np.ndarray, open_i: np.ndarray):
1893
- change = np.zeros(bisect.shape, dtype = np.bool_)
1894
2009
  nk: int = bisect.shape[0]
1895
2010
  nj: int = bisect.shape[1]
1896
2011
  ni: int = bisect.shape[2]
1897
2012
  going: bool = True
1898
2013
  while going:
1899
2014
  going = False
1900
- change[:] = False
1901
2015
  for k in range(nk):
1902
2016
  for j in range(nj):
1903
2017
  for i in range(ni):
@@ -1911,7 +2025,43 @@ def _fill_bisector(bisect: np.ndarray, open_k: np.ndarray, open_j: np.ndarray, o
1911
2025
  (i < ni - 1 and bisect[k, j, i + 1] and open_i[k, j, i])):
1912
2026
  bisect[k, j, i] = True
1913
2027
  going = True
2028
+
2029
+
2030
+ # TODO: uncomment njit
2031
+ #@njit # pragma: no cover
2032
+ def _fill_packed_bisector(bisect: np.ndarray, open_k: np.ndarray, open_j: np.ndarray, open_i: np.ndarray):
2033
+ nk: int = bisect.shape[0]
2034
+ nj: int = bisect.shape[1]
2035
+ ni: int = bisect.shape[2]
2036
+ going: bool = True
2037
+ while going:
2038
+ going = False
2039
+ for k in range(nk):
2040
+ for j in range(nj):
2041
+ for i in range(ni):
2042
+ m = bisect[k, j, i] # 8 bools packed into a uint8
2043
+ if bisect[k, j, i] == 255: # all 8 values already set
1914
2044
  continue
2045
+ om = m # copy to check for changes later
2046
+ if k:
2047
+ m |= (bisect[k - 1, j, i] & open_k[k - 1, j, i])
2048
+ if k < nk - 1:
2049
+ m |= (bisect[k + 1, j, i] & open_k[k, j, i])
2050
+ if j:
2051
+ m |= (bisect[k, j - 1, i] & open_j[k, j - 1, i])
2052
+ if j < nj - 1:
2053
+ m |= (bisect[k, j + 1, i] & open_j[k, j, i])
2054
+ oi = open_i[k, j, i]
2055
+ m |= (m >> 1) & (oi >> 1)
2056
+ m |= (m << 1) & oi
2057
+ # handle rollover bits for I
2058
+ if i and (bisect[k, j, i - 1] & open_i[k, j, i - 1] & 1):
2059
+ m |= 0x80
2060
+ if (i < ni - 1) and (oi & 1) and (bisect[k, j, i + 1] & 0x80):
2061
+ m |= 1
2062
+ if m != om:
2063
+ bisect[k, j, i] = m
2064
+ going = True
1915
2065
 
1916
2066
 
1917
2067
  @njit # pragma: no cover
@@ -1937,6 +2087,30 @@ def _shallow_or_curtain(a: np.ndarray, true_count: int, raw: bool) -> bool:
1937
2087
  return is_curtain
1938
2088
 
1939
2089
 
2090
+ # TODO: uncomment njit
2091
+ #@njit # pragma: no cover
2092
+ def _packed_shallow_or_curtain(a: np.ndarray, true_count: int, raw: bool) -> bool:
2093
+ # negate the packed bool array if it minimises the mean k and determine if the bisector indicates a curtain
2094
+ assert a.ndim == 3
2095
+ layer_cell_count: int = 8 * a.shape[1] * a.shape[2] # note: includes padding bits
2096
+ k_sum: int = 0
2097
+ opposite_k_sum: int = 0
2098
+ is_curtain: bool = False
2099
+ layer_count: int = 0
2100
+ for k in range(a.shape[0]):
2101
+ layer_count = np.sum(bitwise_count(a[k]))
2102
+ k_sum += (k + 1) * layer_count
2103
+ opposite_k_sum += (k + 1) * (layer_cell_count - layer_count)
2104
+ mean_k: float = float(k_sum) / float(true_count)
2105
+ opposite_mean_k: float = float(opposite_k_sum) / float(8 * a.size - true_count)
2106
+ if mean_k > opposite_mean_k and not raw:
2107
+ a[:] = np.invert(a, dtype = np.uint8)
2108
+ if abs(mean_k - opposite_mean_k) <= 0.001:
2109
+ # log.warning('unable to determine which side of surface is shallower')
2110
+ is_curtain = True
2111
+ return is_curtain
2112
+
2113
+
1940
2114
  def _set_bisector_outside_box(a: np.ndarray, box: np.ndarray, box_array: np.ndarray):
1941
2115
  # set values outside of the bounding box
1942
2116
  if box[1, 0] < a.shape[0] and np.any(box_array[-1, :, :]):
@@ -1953,6 +2127,22 @@ def _set_bisector_outside_box(a: np.ndarray, box: np.ndarray, box_array: np.ndar
1953
2127
  a[:, :, :box[0, 2]] = True
1954
2128
 
1955
2129
 
2130
+ def _set_packed_bisector_outside_box(a: np.ndarray, box: np.ndarray, box_array: np.ndarray):
2131
+ # set values outside of the bounding box, working with packed arrays
2132
+ if box[1, 0] < a.shape[0] and np.any(box_array[-1, :, :]):
2133
+ a[box[1, 0]:, :, :] = 255
2134
+ if box[0, 0] != 0:
2135
+ a[:box[0, 0], :, :] = 255
2136
+ if box[1, 1] < a.shape[1] and np.any(box_array[:, -1, :]):
2137
+ a[:, box[1, 1]:, :] = 255
2138
+ if box[0, 1] != 0:
2139
+ a[:, :box[0, 1], :] = 255
2140
+ if box[1, 2] < a.shape[2] and np.any(np.bitwise_and(box_array[:, :, -1], 1)):
2141
+ a[:, :, box[1, 2]:] = 255
2142
+ if box[0, 2] != 0:
2143
+ a[:, :, :box[0, 2]] = 255
2144
+
2145
+
1956
2146
  def _box_face_arrays_from_indices( # type: ignore
1957
2147
  k_faces_kji0: Union[np.ndarray, None], j_faces_kji0: Union[np.ndarray, None],
1958
2148
  i_faces_kji0: Union[np.ndarray, None], box: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
@@ -1972,6 +2162,25 @@ def _box_face_arrays_from_indices( # type: ignore
1972
2162
  return k_a, j_a, i_a
1973
2163
 
1974
2164
 
2165
+ def _packed_box_face_arrays_from_indices( # type: ignore
2166
+ k_faces_kji0: Union[np.ndarray, None], j_faces_kji0: Union[np.ndarray, None],
2167
+ i_faces_kji0: Union[np.ndarray, None], box: np.ndarray) -> Tuple[np.ndarray, np.ndarray, np.ndarray]:
2168
+ box_shape = box[1, :] - box[0, :] # note: I axis already shrunken
2169
+ k_a = np.zeros((box_shape[0] - 1, box_shape[1], box_shape[2]), dtype = np.uint8)
2170
+ j_a = np.zeros((box_shape[0], box_shape[1] - 1, box_shape[2]), dtype = np.uint8)
2171
+ i_a = np.zeros(tuple(box_shape), dtype = np.uint8)
2172
+ ko = box[0, 0]
2173
+ jo = box[0, 1]
2174
+ io = box[0, 2]
2175
+ if k_faces_kji0 is not None:
2176
+ _set_packed_face_array(k_a, k_faces_kji0, ko, jo, io)
2177
+ if j_faces_kji0 is not None:
2178
+ _set_packed_face_array(j_a, j_faces_kji0, ko, jo, io)
2179
+ if i_faces_kji0 is not None:
2180
+ _set_packed_face_array(i_a, i_faces_kji0, ko, jo, io)
2181
+ return k_a, j_a, i_a
2182
+
2183
+
1975
2184
  @njit # pragma: no cover
1976
2185
  def _set_face_array(a: np.ndarray, indices: np.ndarray, ko: int, jo: int, io: int):
1977
2186
  k: int = 0
@@ -1984,6 +2193,19 @@ def _set_face_array(a: np.ndarray, indices: np.ndarray, ko: int, jo: int, io: in
1984
2193
  a[k, j, i] = True
1985
2194
 
1986
2195
 
2196
+ @njit # pragma: no cover
2197
+ def _set_packed_face_array(a: np.ndarray, indices: np.ndarray, ko: int, jo: int, io: int):
2198
+ k: int = 0
2199
+ j: int = 0
2200
+ i: int = 0
2201
+ for ind in range(len(indices)):
2202
+ k = indices[ind, 0] - ko
2203
+ j = indices[ind, 1] - jo
2204
+ i = indices[ind, 2] - io
2205
+ ii, ib = divmod(i, 8)
2206
+ a[k, j, ii] |= (1 << (7 - ib))
2207
+
2208
+
1987
2209
  def get_boundary_from_indices( # type: ignore
1988
2210
  k_faces_kji0: Union[np.ndarray, None], j_faces_kji0: Union[np.ndarray, None],
1989
2211
  i_faces_kji0: Union[np.ndarray, None], grid_extent_kji: Tuple[int, int, int]) -> np.ndarray:
@@ -2028,3 +2250,23 @@ def get_boundary_from_indices( # type: ignore
2028
2250
  assert np.all(box[1] > box[0])
2029
2251
  assert np.all(box[1] <= grid_extent_kji)
2030
2252
  return box
2253
+
2254
+
2255
+ def get_packed_boundary_from_indices( # type: ignore
2256
+ k_faces_kji0: Union[np.ndarray, None], j_faces_kji0: Union[np.ndarray, None],
2257
+ i_faces_kji0: Union[np.ndarray, None], grid_extent_kji: Tuple[int, int, int]) -> np.ndarray:
2258
+ """Return python protocol box containing indices, with I axis packed"""
2259
+ box = get_boundary_from_indices(k_faces_kji0, j_faces_kji0, i_faces_kji0, grid_extent_kji)
2260
+ box[0, 2] /= 8
2261
+ box[1, 2] = ((box[1, 2] - 1) // 8) + 1
2262
+ return box
2263
+
2264
+
2265
+ def _shape_packed(unpacked_shape):
2266
+ """Return the equivalent packed shape for a given unpacked shape, as a tuple."""
2267
+ shrunken = ((unpacked_shape[-1] - 1) // 8) + 1
2268
+ if len(unpacked_shape) == 1:
2269
+ return (shrunken,)
2270
+ head = list(unpacked_shape[:-1])
2271
+ head.append(shrunken)
2272
+ return tuple(head)
@@ -18,32 +18,32 @@ import resqpy.surface as rqs
18
18
  import resqpy.olio.uuid as bu
19
19
 
20
20
 
21
- def find_faces_to_represent_surface_regular_wrapper(
22
- index: int,
23
- parent_tmp_dir: str,
24
- use_index_as_realisation: bool,
25
- grid_epc: str,
26
- grid_uuid: Union[UUID, str],
27
- surface_epc: str,
28
- surface_uuid: Union[UUID, str],
29
- name: str,
30
- title: Optional[str] = None,
31
- agitate: bool = False,
32
- random_agitation: bool = False,
33
- feature_type: str = 'fault',
34
- trimmed: bool = False,
35
- is_curtain = False,
36
- extend_fault_representation: bool = False,
37
- flange_inner_ring = False,
38
- saucer_parameter = None,
39
- retriangulate: bool = False,
40
- related_uuid = None,
41
- progress_fn: Optional[Callable] = None,
42
- extra_metadata = None,
43
- return_properties: Optional[List[str]] = None,
44
- raw_bisector: bool = False,
45
- use_pack: bool = False,
46
- flange_radius = None) -> Tuple[int, bool, str, List[Union[UUID, str]]]:
21
+ def find_faces_to_represent_surface_regular_wrapper(index: int,
22
+ parent_tmp_dir: str,
23
+ use_index_as_realisation: bool,
24
+ grid_epc: str,
25
+ grid_uuid: Union[UUID, str],
26
+ surface_epc: str,
27
+ surface_uuid: Union[UUID, str],
28
+ name: str,
29
+ title: Optional[str] = None,
30
+ agitate: bool = False,
31
+ random_agitation: bool = False,
32
+ feature_type: str = 'fault',
33
+ trimmed: bool = False,
34
+ is_curtain = False,
35
+ extend_fault_representation: bool = False,
36
+ flange_inner_ring = False,
37
+ saucer_parameter = None,
38
+ retriangulate: bool = False,
39
+ related_uuid = None,
40
+ progress_fn: Optional[Callable] = None,
41
+ extra_metadata = None,
42
+ return_properties: Optional[List[str]] = None,
43
+ raw_bisector: bool = False,
44
+ use_pack: bool = False,
45
+ flange_radius = None,
46
+ n_threads = 20) -> Tuple[int, bool, str, List[Union[UUID, str]]]:
47
47
  """Multiprocessing wrapper function of find_faces_to_represent_surface_regular_optimised.
48
48
 
49
49
  arguments:
@@ -92,10 +92,11 @@ def find_faces_to_represent_surface_regular_wrapper(
92
92
  the returned dictionary has the passed strings as keys and numpy arrays as values
93
93
  raw_bisector (bool, default False): if True and grid bisector is requested then it is left in a raw
94
94
  form without assessing which side is shallower (True values indicate same side as origin cell)
95
- use_pack (bool, default False): if True, boolean properties will be stored in numpy packed format,
96
- which will only be readable by resqpy based applications
95
+ use_pack (bool, default False): if True, boolean properties will be generated and stored in numpy
96
+ packed format, which will only be readable by resqpy based applications
97
97
  flange_radius (float, optional): the radial distance to use for outer flange extension points; if None,
98
98
  a large value will be calculated from the grid size; units are xy units of grid crs
99
+ n_threads (int, default 20): the number of parallel threads to use in numba points in triangles function
99
100
 
100
101
  returns:
101
102
  Tuple containing:
@@ -250,7 +251,9 @@ def find_faces_to_represent_surface_regular_wrapper(
250
251
  is_curtain,
251
252
  progress_fn,
252
253
  return_properties,
253
- raw_bisector = raw_bisector)
254
+ raw_bisector = raw_bisector,
255
+ n_batches = n_threads,
256
+ packed_bisectors = use_pack)
254
257
 
255
258
  success = False
256
259
 
@@ -340,17 +343,17 @@ def find_faces_to_represent_surface_regular_wrapper(
340
343
  if grid_pc is None:
341
344
  grid_pc = rqp.PropertyCollection()
342
345
  grid_pc.set_support(support = grid)
343
- grid_pc.add_cached_array_to_imported_list(
344
- array,
345
- f"from find_faces function for {surface.title}",
346
- f'{surface.title} {p_name}',
347
- discrete = True,
348
- property_kind = "grid bisector",
349
- facet_type = 'direction',
350
- facet = 'raw' if raw_bisector else ('vertical' if is_curtain else 'sloping'),
351
- realization = realisation,
352
- indexable_element = "columns" if is_curtain else "cells",
353
- )
346
+ grid_pc.add_cached_array_to_imported_list(array,
347
+ f"from find_faces function for {surface.title}",
348
+ f'{surface.title} {p_name}',
349
+ discrete = True,
350
+ property_kind = "grid bisector",
351
+ facet_type = 'direction',
352
+ facet = 'raw' if raw_bisector else
353
+ ('vertical' if is_curtain else 'sloping'),
354
+ realization = realisation,
355
+ indexable_element = "columns" if is_curtain else "cells",
356
+ pre_packed = use_pack)
354
357
  elif p_name == 'grid shadow':
355
358
  if grid_pc is None:
356
359
  grid_pc = rqp.PropertyCollection()
resqpy/olio/write_hdf5.py CHANGED
@@ -101,7 +101,7 @@ class H5Register():
101
101
  assert chunks is None or isinstance(chunks, str) or isinstance(chunks, tuple)
102
102
  assert compression is None or (isinstance(compression, str) and compression in ['gzip', 'lzf', 'none'])
103
103
  if str(dtype) == 'pack':
104
- a = np.packbits(a, axis = -1) # todo: check this returns uint8 array
104
+ a = np.packbits(a, axis = -1)
105
105
  dtype = 'uint8'
106
106
  elif dtype is not None:
107
107
  a = a.astype(dtype, copy = copy)
@@ -199,7 +199,7 @@ def _process_imported_property(collection, attributes, property_kind_uuid, strin
199
199
  extra_metadata, expand_const_arrays):
200
200
  (p_uuid, p_file_name, p_keyword, p_cached_name, p_discrete, p_uom, p_time_index, p_null_value, p_min_value,
201
201
  p_max_value, property_kind, facet_type, facet, realization, indexable_element, count, local_property_kind_uuid,
202
- const_value, points, p_time_series_uuid, p_string_lookup_uuid) = attributes
202
+ const_value, points, p_time_series_uuid, p_string_lookup_uuid, pre_packed) = attributes
203
203
 
204
204
  log.debug('processing imported property ' + str(p_keyword))
205
205
  assert not points or not p_discrete
@@ -214,7 +214,7 @@ def _process_imported_property(collection, attributes, property_kind_uuid, strin
214
214
  p_keyword, p_discrete, string_lookup_uuid, points)
215
215
 
216
216
  p_array = _process_imported_property_get_p_array(collection, p_cached_name)
217
- p_array_bool = isinstance(const_value, bool) if p_array is None else p_array.dtype in [bool, np.int8]
217
+ p_array_bool = isinstance(const_value, bool) if p_array is None else p_array.dtype in [bool, np.int8, np.uint8]
218
218
 
219
219
  add_min_max = pcga._process_imported_property_get_add_min_max(points, property_kind, string_lookup_uuid,
220
220
  local_property_kind_uuid, p_array_bool)
@@ -251,7 +251,8 @@ def _process_imported_property(collection, attributes, property_kind_uuid, strin
251
251
  find_local_property_kinds = find_local_property_kinds,
252
252
  extra_metadata = extra_metadata,
253
253
  const_value = const_value,
254
- expand_const_arrays = expand_const_arrays)
254
+ expand_const_arrays = expand_const_arrays,
255
+ pre_packed = pre_packed)
255
256
  if p_node is not None:
256
257
  return p_node
257
258
  else:
@@ -246,8 +246,10 @@ def _create_xml_facet_node(facet_type, facet, p_node):
246
246
  facet_value_node.text = facet
247
247
 
248
248
 
249
- def _check_shape_list(collection, indexable_element, direction, property_array, points, count):
249
+ def _check_shape_list(collection, indexable_element, direction, property_array, points, count, pre_packed):
250
250
  shape_list = collection.supporting_shape(indexable_element = indexable_element, direction = direction)
251
+ if pre_packed:
252
+ shape_list[-1] = (shape_list[-1] - 1) // 8 + 1
251
253
  if shape_list is not None:
252
254
  if count > 1:
253
255
  shape_list.append(count)
@@ -88,7 +88,7 @@ class PropertyCollection():
88
88
  # above is list of (uuid, source, keyword, cached_name, discrete, uom, time_index, null_value,
89
89
  # min_value, max_value, property_kind, facet_type, facet, realization,
90
90
  # indexable_element, count, local_property_kind_uuid, const_value, points,
91
- # time_series_uuid, string_lookup_uuid)
91
+ # time_series_uuid, string_lookup_uuid, pre_packed)
92
92
  self.guess_warning = False
93
93
  if support is not None:
94
94
  self.model = support.model
@@ -404,7 +404,8 @@ class PropertyCollection():
404
404
  call this method once for each group of differently sized properties; for very large collections
405
405
  it might also be necessary to divide the work into smaller groups to reduce memory usage;
406
406
  this method does not write to hdf5 nor create xml – use the usual methods for further processing
407
- of the imported list
407
+ of the imported list;
408
+ does not currently support packed arrays
408
409
  """
409
410
 
410
411
  source = 'sampled'
@@ -2219,7 +2220,8 @@ class PropertyCollection():
2219
2220
  const_value = None,
2220
2221
  points = False,
2221
2222
  time_series_uuid = None,
2222
- string_lookup_uuid = None):
2223
+ string_lookup_uuid = None,
2224
+ pre_packed = False):
2223
2225
  """Caches array and adds to the list of imported properties (but not to the collection dict).
2224
2226
 
2225
2227
  arguments:
@@ -2250,6 +2252,7 @@ class PropertyCollection():
2250
2252
  be provided when writing hdf5 and creating xml for the imported list
2251
2253
  string_lookup_uuid (UUID, optional): should be provided for categorical properties, though can alternatively
2252
2254
  be specified when creating xml
2255
+ pre_packed (bool, default False): set to True if the property is boolean and the array is already packed
2253
2256
 
2254
2257
  returns:
2255
2258
  uuid of nascent property object
@@ -2271,6 +2274,7 @@ class PropertyCollection():
2271
2274
  assert (cached_array is not None and const_value is None) or (cached_array is None and const_value is not None)
2272
2275
  assert not points or not discrete
2273
2276
  assert count > 0
2277
+ assert (not pre_packed) or ((cached_array is not None) and (cached_array.dtype == np.uint8))
2274
2278
  rqp_c.check_and_warn_property_kind(property_kind, 'adding property to imported list')
2275
2279
 
2276
2280
  if self.imported_list is None:
@@ -2288,7 +2292,7 @@ class PropertyCollection():
2288
2292
  self.imported_list.append(
2289
2293
  (uuid, source_info, keyword, cached_name, discrete, uom, time_index, null_value, min_value, max_value,
2290
2294
  property_kind, facet_type, facet, realization, indexable_element, count, local_property_kind_uuid,
2291
- const_value, points, time_series_uuid, string_lookup_uuid))
2295
+ const_value, points, time_series_uuid, string_lookup_uuid, pre_packed))
2292
2296
  return uuid
2293
2297
 
2294
2298
  def add_similar_to_imported_list(self,
@@ -2311,6 +2315,7 @@ class PropertyCollection():
2311
2315
  points = None,
2312
2316
  time_series_uuid = None,
2313
2317
  string_lookup_uuid = None,
2318
+ pre_packed = False,
2314
2319
  similar_model = None,
2315
2320
  title = None):
2316
2321
  """Caches array and adds to the list of imported properties using default metadata from a similar property.
@@ -2342,6 +2347,7 @@ class PropertyCollection():
2342
2347
  be provided when writing hdf5 and creating xml for the imported list
2343
2348
  string_lookup_uuid (UUID, optional): should be provided for categorical properties, though can alternatively
2344
2349
  be specified when creating xml
2350
+ pre_packed (bool, default False): set to True if the property is boolean and the cached array is packed
2345
2351
  similar_model (Model, optional): the model where the similar property resides, if not the same as this
2346
2352
  property collection
2347
2353
  title (str, optional): synonym for keyword argument
@@ -2398,6 +2404,7 @@ class PropertyCollection():
2398
2404
  args['string_lookup_uuid'] = get_arg(time_series_uuid, similar.string_lookup_uuid())
2399
2405
  em = similar.extra_metadata if hasattr(similar, 'extra_metadata') else {}
2400
2406
  args['source_info'] = get_arg(source_info, em.get('source'))
2407
+ args['pre_packed'] = pre_packed
2401
2408
 
2402
2409
  return self.add_cached_array_to_imported_list(cached_array, **args)
2403
2410
 
@@ -2445,7 +2452,8 @@ class PropertyCollection():
2445
2452
  as 32 bit; if None, the system default is to write as 32 bit; if True, 32 bit is used; if
2446
2453
  False, 64 bit data is written; ignored if dtype is not None
2447
2454
  use_pack (bool, default False): if True, bool arrays will be packed along their last axis; this
2448
- will generally result in hdf5 data that is not readable by non-resqpy applications
2455
+ will generally result in hdf5 data that is not readable by non-resqpy applications; leave
2456
+ as False for already packed arrays
2449
2457
  chunks (str, optional): if not None, one of 'auto', 'all', or 'slice', controlling hdf5 chunks
2450
2458
  compression (str, optional): if not None, one of 'gzip' or 'lzf' being the hdf5 compression
2451
2459
  algorithm to be used; gzip gives better compression ratio but is slower
@@ -2473,8 +2481,8 @@ class PropertyCollection():
2473
2481
  uuid = entry[0]
2474
2482
  cached_name = entry[3]
2475
2483
  tail = 'points_patch0' if entry[18] else 'values_patch0'
2476
- if use_pack and (str(dtype).startswith('bool') or
2477
- (dtype is None and str(self.__dict__[cached_name].dtype) == 'bool')):
2484
+ if use_pack and ('bool' in str(dtype) or
2485
+ (dtype is None and 'bool' in str(self.__dict__[cached_name].dtype))):
2478
2486
  dtype = 'pack'
2479
2487
  h5_reg.register_dataset(uuid, tail, self.__dict__[cached_name], dtype = dtype)
2480
2488
  h5_reg.write(file = file_name, mode = mode, use_int32 = use_int32)
@@ -2601,7 +2609,8 @@ class PropertyCollection():
2601
2609
  points = False,
2602
2610
  extra_metadata = {},
2603
2611
  const_value = None,
2604
- expand_const_arrays = False):
2612
+ expand_const_arrays = False,
2613
+ pre_packed = False):
2605
2614
  """Create a property xml node for a single property related to a given supporting representation node.
2606
2615
 
2607
2616
  arguments:
@@ -2661,6 +2670,8 @@ class PropertyCollection():
2661
2670
  const_value (float, int or bool, optional): if present, create xml for a constant array filled with this value
2662
2671
  expand_const_arrays (boolean, default False): if True, the hdf5 write must also have been called with the
2663
2672
  same argument and the xml will treat a constant array as a normal array
2673
+ pre_packed (boolean, default False): if True, the property is a boolean property and the array has already
2674
+ been packed into bits
2664
2675
 
2665
2676
  returns:
2666
2677
  the newly created property xml node
@@ -2688,7 +2699,7 @@ class PropertyCollection():
2688
2699
  direction = None if facet_type is None or facet_type != 'direction' else facet
2689
2700
 
2690
2701
  if self.support is not None:
2691
- pcxml._check_shape_list(self, indexable_element, direction, property_array, points, count)
2702
+ pcxml._check_shape_list(self, indexable_element, direction, property_array, points, count, pre_packed)
2692
2703
 
2693
2704
  # todo: assertions:
2694
2705
  # numpy data type matches discrete flag (and assumptions about precision)
@@ -258,7 +258,7 @@ def add_blocked_well_properties_from_wellbore_frame(bw,
258
258
  wbf_p = wbf_pc.singleton(property_kind = 'wellbore radius')
259
259
  assert wbf_p is not None, 'problem with wellbore radius wellbore frame property'
260
260
  wbf_a = wbf_pc.cached_part_array_ref(wbf_p)
261
- wb_a = np.full(bw.cell_count, np.NaN, dtype = float)
261
+ wb_a = np.full(bw.cell_count, np.nan, dtype = float)
262
262
  for i, wbf_contributions in enumerate(wb_fraction_of_wbf):
263
263
  if len(wbf_contributions) == 0:
264
264
  continue # todo: could try to inherit wellbore radius from above or below?
@@ -350,7 +350,7 @@ def add_blocked_well_properties_from_wellbore_frame(bw,
350
350
  skin_uom = skin_pc.uom_for_part(skin_part)
351
351
  else:
352
352
  assert skin_pc.uom_for_part(skin_part) == skin_uom, 'mixed skin units of measure'
353
- wb_skin = np.full(bw.cell_count, np.NaN, dtype = float)
353
+ wb_skin = np.full(bw.cell_count, np.nan, dtype = float)
354
354
  for i, wbf_contributions in enumerate(wb_fraction_of_wbf):
355
355
  if len(wbf_contributions) == 0:
356
356
  continue
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: resqpy
3
- Version: 4.17.10
3
+ Version: 4.18.1
4
4
  Summary: Python API for working with RESQML models
5
5
  Home-page: https://github.com/bp/resqpy
6
6
  License: MIT
@@ -1,4 +1,4 @@
1
- resqpy/__init__.py,sha256=aTwCJeIjGzaZqObVT5I0P6wYP60BEBWztBZxI-AMahc,557
1
+ resqpy/__init__.py,sha256=m7ex3YMpQEz7CGtNIaAvVVxBOBQyIH3030Q1cW0Yzjc,556
2
2
  resqpy/crs.py,sha256=R7DfcTP5xGv5pu9Y8RHA2WVM9DjBCSVMoHcz4RmQ7Yw,27646
3
3
  resqpy/derived_model/__init__.py,sha256=NFvMSOKI3cxmH7lAbddV43JjoUj-r2G7ExEfOqinD1I,1982
4
4
  resqpy/derived_model/_add_edges_per_column_property_array.py,sha256=cpW3gwp6MSYIrtvFmCjoJXcyUsgGuCDbgmwlJCJebUs,6410
@@ -46,9 +46,9 @@ resqpy/grid/_transmissibility.py,sha256=cLtuVaLgBQqRXa-_YQ5mjR_QC842Jxn2d-Hl6171
46
46
  resqpy/grid/_write_hdf5_from_caches.py,sha256=s3gcoilsFCCSw_wjnTjWe1xMHEWr_cessoGVgzqiqVI,9707
47
47
  resqpy/grid/_write_nexus_corp.py,sha256=yEVfiObsedEAXX6UG6ZTf56kZnQVkd3lLqE2NpL-KBM,6147
48
48
  resqpy/grid/_xyz.py,sha256=RLQWOdM_DRoCj4JypwB5gUJ78HTdk5JnZHSeAzuU634,13087
49
- resqpy/grid_surface/__init__.py,sha256=rPr5zFFRmUDbMEhnCYsweSC3xugtQ8LnhZOf8JLIqIc,2765
49
+ resqpy/grid_surface/__init__.py,sha256=IlPwm6G7P_Vg_w7JHqSs-d_oxk2QmFtWGTk_vvr1qm8,2911
50
50
  resqpy/grid_surface/_blocked_well_populate.py,sha256=Lme1AR-nLWOUlNnmHMVThk6jEg_lAZxWWtL82Yksppw,35867
51
- resqpy/grid_surface/_find_faces.py,sha256=eMiT7wWIJJtldAY0-Imb2f3d_cjsADj-UCeMDaGAYaM,93899
51
+ resqpy/grid_surface/_find_faces.py,sha256=kJl9DEN2AdhKZH7xzmS6Pvp8wSy6antAwgl9I5CE-2w,104982
52
52
  resqpy/grid_surface/_grid_skin.py,sha256=D0cjHkcuT5KCKb-8EZfXgh0GgJj3kzOBS2wVNXg4bfY,26056
53
53
  resqpy/grid_surface/_grid_surface.py,sha256=l2NJo7Kiucolbb_TlLPC7NGdksg_JahkihfsrJVq99w,14379
54
54
  resqpy/grid_surface/_trajectory_intersects.py,sha256=Och9cZYU9Y7ofovhPzsLyIblRUl2xj9_5nHH3fMZp-A,22498
@@ -69,7 +69,7 @@ resqpy/multi_processing/__init__.py,sha256=ZRudHfN9aaZjxvat7t8BZr6mwMi9baiCNjczw
69
69
  resqpy/multi_processing/_multiprocessing.py,sha256=bnCKfSC1tWwvZmZ7BZqCyje0C93m6q7HZPxNpx8xoxA,7301
70
70
  resqpy/multi_processing/wrappers/__init__.py,sha256=7vjuTWdHnp3rN9Ud8ljpDnt1NbBAyhA08lv-sQ9Kf3o,72
71
71
  resqpy/multi_processing/wrappers/blocked_well_mp.py,sha256=_2fEsSmJVQCnbQIjTHqmnNEugfhN1KvX-o4ZbvtChdI,5952
72
- resqpy/multi_processing/wrappers/grid_surface_mp.py,sha256=ZIYH34BfdFY7wkcxX3VycJtaFGL4NRpa8tQY391SzQs,23409
72
+ resqpy/multi_processing/wrappers/grid_surface_mp.py,sha256=rnq5i34MRnwFFTzjcs_TzL4Y_dVn68Eg6Jh9nvSNx8Y,25245
73
73
  resqpy/multi_processing/wrappers/mesh_mp.py,sha256=0VYoqtgBFfrlyYB6kkjbdrRQ5FKe6t5pHJO3wD9b8Fc,5793
74
74
  resqpy/olio/__init__.py,sha256=j2breqKYVufhw5k8qS2uZwB3tUKT7FhdZ23ninS75YA,84
75
75
  resqpy/olio/ab_toolbox.py,sha256=bZlAhOJVS0HvIYBW0Lg68re17N8eltoQhIUh0xuUyVc,2147
@@ -102,7 +102,7 @@ resqpy/olio/vector_utilities.py,sha256=B354cr9-nqqPcb3SAx1jD9Uk51sjkV95xToAiF3-W
102
102
  resqpy/olio/volume.py,sha256=F1pMnDoJ4ricy4dfdLuLuK1xkVgJckL9V06tUeyK6Wc,6185
103
103
  resqpy/olio/wellspec_keywords.py,sha256=ad3B727golWYiko54OZOw7vG21IvpNxCMCyLv8jSkcI,26533
104
104
  resqpy/olio/write_data.py,sha256=bIX7ilMkXWCMz_zQh-Gqk56sNzng4W5l4BahW2EV7Kw,5142
105
- resqpy/olio/write_hdf5.py,sha256=KXB2L6Qz3TFb9yDjT-Ty0CXgjyq0nhVp3GADlekWhMQ,19055
105
+ resqpy/olio/write_hdf5.py,sha256=iUIYPWlbJsSSq9UXXiXAW_S6TeK-N2M7QvlJJE43EK8,19015
106
106
  resqpy/olio/xml_et.py,sha256=aPjxr2XWvYcwlnckL_UiZmd5EGEoIfy_JxeOKOk3vwQ,25322
107
107
  resqpy/olio/xml_namespaces.py,sha256=PiQi2W7gRLxhMSEs26ahT4MlagYqsjMWJlNpIiZupoA,1824
108
108
  resqpy/olio/zmap_reader.py,sha256=YuhZjde_DZszVFsUKfu0XieKGg7ONXtJWskRV9Pw7VE,5709
@@ -128,14 +128,14 @@ resqpy/organize/tectonic_boundary_feature.py,sha256=mMSsIW8YJ6qpeOe-6gRFaQbK39-W
128
128
  resqpy/organize/wellbore_feature.py,sha256=E2gFwgPZGr8nkhRHAIR0wTZ8uwcze7y2WBIV7AXeW2A,1843
129
129
  resqpy/organize/wellbore_interpretation.py,sha256=jRAHq90tR2dCQSXsZicujXhSVHOEPoGjFgh5S87SMAI,6973
130
130
  resqpy/property/__init__.py,sha256=KegXDizklsMB-EnGFrzhCSszrXAHXEIoStdC5XmyifQ,2294
131
- resqpy/property/_collection_add_part.py,sha256=7GRtiYVP5nmIj48Xynbu19evhQslnbbfiM8Wfnz3vcU,17101
132
- resqpy/property/_collection_create_xml.py,sha256=E48fu8h64T_bz5k3OEqIzPvZAOYRTBgvQ75wreqMwZc,12915
131
+ resqpy/property/_collection_add_part.py,sha256=uM64TWqJ0aBUwP1u1OJNTUhKLGlmOQj14fGPLG-2pRs,17156
132
+ resqpy/property/_collection_create_xml.py,sha256=p9GASodhg4vQqDDvCOHScto_Qtz_nDADGtvZY92Dcu8,13001
133
133
  resqpy/property/_collection_get_attributes.py,sha256=MlontPfGo00lxt0SpB49YG9PRsi5oXPqduDgCSOSmzs,32441
134
134
  resqpy/property/_collection_support.py,sha256=77_DG-0pzhMWdG_mNDiGfihXD7Pp-CvDSGCV8ZlDjj4,5889
135
135
  resqpy/property/_property.py,sha256=JcG7h6k4cJ4l3WC_VCsvoqHM3FBxrnUuxbIK2Ono1M0,24426
136
136
  resqpy/property/attribute_property_set.py,sha256=gATFe-vI00GrgaJNMHSKbM0xmlxIsO5DT1qRSU9snYI,12295
137
137
  resqpy/property/grid_property_collection.py,sha256=37dVQSBSTpX22UfBcpPvwGjd8H3O2MepKpWXYc4yJvM,66858
138
- resqpy/property/property_collection.py,sha256=Ax1wzqE9xfsMaIIKVlVTxNaDRZ4RpEK9ZcBEf_JDtWU,152167
138
+ resqpy/property/property_collection.py,sha256=RqFzbN60P_Q973R9UsxXo2gBnwv-9NSuNPpo38fQgxY,152986
139
139
  resqpy/property/property_common.py,sha256=wf429weNtgf6J4gCNNoRwj64elQvUPI_ZWzg4qI7l6c,35993
140
140
  resqpy/property/property_kind.py,sha256=6SK0La09eisHPYOSgdx69K_Ordrq0x2tz4IAyurVyY8,5557
141
141
  resqpy/property/string_lookup.py,sha256=eH-lbLRbb8JKtO91FTtyuYseRGwPkmsghcXbKUTvVgI,7737
@@ -191,10 +191,10 @@ resqpy/well/_trajectory.py,sha256=GOJsxh1FGEScg4ayQHSuIj05W0S7QNUmvyz8vSaM_4I,52
191
191
  resqpy/well/_wellbore_frame.py,sha256=rzWsBnM-L2NbSpdk-6F5BKYeaqDWbwrIrlpkPjtt0kE,15192
192
192
  resqpy/well/_wellbore_marker.py,sha256=ZqcZC5Xmta3IJOAaZXZAWAQX9iaS312WjhnJSge8yks,8403
193
193
  resqpy/well/_wellbore_marker_frame.py,sha256=xvYH2_2Ie3a18LReFymbUrZboOx7Rhv5DODEVO4-B-k,20933
194
- resqpy/well/blocked_well_frame.py,sha256=eK7Ca6PcqI3pK-XurZIcXAV5Z4B9PFe6H8a7DqVkmBo,22560
194
+ resqpy/well/blocked_well_frame.py,sha256=Rx8jwkCjchseDZaTttPkA1-f6l7W6vRGrxWtDHlEPx8,22560
195
195
  resqpy/well/well_object_funcs.py,sha256=tWufc8wahihzMEO-Ou1dncIttrf4bNo1qmLgh3I2pOM,24717
196
196
  resqpy/well/well_utils.py,sha256=zwpYjT85nXAwWBhYB1Pygu2SgouZ-44k6hEOnpoMfBI,5969
197
- resqpy-4.17.10.dist-info/LICENSE,sha256=2duHPIkKQyESMdQ4hKjL8CYEsYRHXaYxt0YQkzsUYE4,1059
198
- resqpy-4.17.10.dist-info/METADATA,sha256=AnujGEZLIW5OeC7MNnoyy06OOqUfNsdTGaSVL98G0us,4029
199
- resqpy-4.17.10.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
200
- resqpy-4.17.10.dist-info/RECORD,,
197
+ resqpy-4.18.1.dist-info/LICENSE,sha256=2duHPIkKQyESMdQ4hKjL8CYEsYRHXaYxt0YQkzsUYE4,1059
198
+ resqpy-4.18.1.dist-info/METADATA,sha256=koDfqOD-Z2n2hELGkShabQJBZ1L17FJ0hypnJCmX5PI,4028
199
+ resqpy-4.18.1.dist-info/WHEEL,sha256=Nq82e9rUAnEjt98J6MlVmMCZb-t9cYE2Ir1kpBmnWfs,88
200
+ resqpy-4.18.1.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 1.9.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any