replay-rec 0.18.1rc0__py3-none-any.whl → 0.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (72) hide show
  1. replay/__init__.py +1 -1
  2. replay/data/nn/schema.py +3 -1
  3. replay/metrics/surprisal.py +4 -2
  4. replay/models/lin_ucb.py +2 -3
  5. replay/models/nn/loss/__init__.py +1 -0
  6. replay/models/nn/loss/sce.py +131 -0
  7. replay/models/nn/sequential/bert4rec/lightning.py +36 -4
  8. replay/models/nn/sequential/bert4rec/model.py +5 -46
  9. replay/models/nn/sequential/sasrec/lightning.py +27 -3
  10. replay/models/nn/sequential/sasrec/model.py +1 -1
  11. replay/preprocessing/filters.py +102 -1
  12. replay/preprocessing/label_encoder.py +8 -4
  13. {replay_rec-0.18.1rc0.dist-info → replay_rec-0.19.0.dist-info}/METADATA +5 -12
  14. {replay_rec-0.18.1rc0.dist-info → replay_rec-0.19.0.dist-info}/RECORD +16 -70
  15. {replay_rec-0.18.1rc0.dist-info → replay_rec-0.19.0.dist-info}/WHEEL +1 -1
  16. replay/experimental/__init__.py +0 -0
  17. replay/experimental/metrics/__init__.py +0 -62
  18. replay/experimental/metrics/base_metric.py +0 -602
  19. replay/experimental/metrics/coverage.py +0 -97
  20. replay/experimental/metrics/experiment.py +0 -175
  21. replay/experimental/metrics/hitrate.py +0 -26
  22. replay/experimental/metrics/map.py +0 -30
  23. replay/experimental/metrics/mrr.py +0 -18
  24. replay/experimental/metrics/ncis_precision.py +0 -31
  25. replay/experimental/metrics/ndcg.py +0 -49
  26. replay/experimental/metrics/precision.py +0 -22
  27. replay/experimental/metrics/recall.py +0 -25
  28. replay/experimental/metrics/rocauc.py +0 -49
  29. replay/experimental/metrics/surprisal.py +0 -90
  30. replay/experimental/metrics/unexpectedness.py +0 -76
  31. replay/experimental/models/__init__.py +0 -13
  32. replay/experimental/models/admm_slim.py +0 -205
  33. replay/experimental/models/base_neighbour_rec.py +0 -204
  34. replay/experimental/models/base_rec.py +0 -1340
  35. replay/experimental/models/base_torch_rec.py +0 -234
  36. replay/experimental/models/cql.py +0 -454
  37. replay/experimental/models/ddpg.py +0 -923
  38. replay/experimental/models/dt4rec/__init__.py +0 -0
  39. replay/experimental/models/dt4rec/dt4rec.py +0 -189
  40. replay/experimental/models/dt4rec/gpt1.py +0 -401
  41. replay/experimental/models/dt4rec/trainer.py +0 -127
  42. replay/experimental/models/dt4rec/utils.py +0 -265
  43. replay/experimental/models/extensions/spark_custom_models/__init__.py +0 -0
  44. replay/experimental/models/extensions/spark_custom_models/als_extension.py +0 -792
  45. replay/experimental/models/hierarchical_recommender.py +0 -331
  46. replay/experimental/models/implicit_wrap.py +0 -131
  47. replay/experimental/models/lightfm_wrap.py +0 -302
  48. replay/experimental/models/mult_vae.py +0 -332
  49. replay/experimental/models/neural_ts.py +0 -986
  50. replay/experimental/models/neuromf.py +0 -406
  51. replay/experimental/models/scala_als.py +0 -296
  52. replay/experimental/models/u_lin_ucb.py +0 -115
  53. replay/experimental/nn/data/__init__.py +0 -1
  54. replay/experimental/nn/data/schema_builder.py +0 -102
  55. replay/experimental/preprocessing/__init__.py +0 -3
  56. replay/experimental/preprocessing/data_preparator.py +0 -839
  57. replay/experimental/preprocessing/padder.py +0 -229
  58. replay/experimental/preprocessing/sequence_generator.py +0 -208
  59. replay/experimental/scenarios/__init__.py +0 -1
  60. replay/experimental/scenarios/obp_wrapper/__init__.py +0 -8
  61. replay/experimental/scenarios/obp_wrapper/obp_optuna_objective.py +0 -74
  62. replay/experimental/scenarios/obp_wrapper/replay_offline.py +0 -261
  63. replay/experimental/scenarios/obp_wrapper/utils.py +0 -87
  64. replay/experimental/scenarios/two_stages/__init__.py +0 -0
  65. replay/experimental/scenarios/two_stages/reranker.py +0 -117
  66. replay/experimental/scenarios/two_stages/two_stages_scenario.py +0 -757
  67. replay/experimental/utils/__init__.py +0 -0
  68. replay/experimental/utils/logger.py +0 -24
  69. replay/experimental/utils/model_handler.py +0 -186
  70. replay/experimental/utils/session_handler.py +0 -44
  71. replay_rec-0.18.1rc0.dist-info/NOTICE +0 -41
  72. {replay_rec-0.18.1rc0.dist-info → replay_rec-0.19.0.dist-info}/LICENSE +0 -0
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: replay-rec
3
- Version: 0.18.1rc0
3
+ Version: 0.19.0
4
4
  Summary: RecSys Library
5
5
  Home-page: https://sb-ai-lab.github.io/RePlay/
6
6
  License: Apache-2.0
@@ -22,16 +22,9 @@ Provides-Extra: all
22
22
  Provides-Extra: spark
23
23
  Provides-Extra: torch
24
24
  Provides-Extra: torch-openvino
25
- Requires-Dist: d3rlpy (>=2.0.4,<3.0.0)
26
25
  Requires-Dist: fixed-install-nmslib (==2.1.2)
27
- Requires-Dist: gym (>=0.26.0,<0.27.0)
28
26
  Requires-Dist: hnswlib (>=0.7.0,<0.8.0)
29
- Requires-Dist: implicit (>=0.7.0,<0.8.0)
30
- Requires-Dist: lightautoml (>=0.3.1,<0.4.0)
31
- Requires-Dist: lightfm (==1.17)
32
27
  Requires-Dist: lightning (>=2.0.2,<=2.4.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
33
- Requires-Dist: llvmlite (>=0.32.1)
34
- Requires-Dist: numba (>=0.50)
35
28
  Requires-Dist: numpy (>=1.20.0)
36
29
  Requires-Dist: onnx (>=1.16.2,<1.17.0) ; extra == "torch-openvino" or extra == "all"
37
30
  Requires-Dist: openvino (>=2024.3.0,<2024.4.0) ; extra == "torch-openvino" or extra == "all"
@@ -40,13 +33,13 @@ Requires-Dist: pandas (>=1.3.5,<=2.2.2)
40
33
  Requires-Dist: polars (>=1.0.0,<1.1.0)
41
34
  Requires-Dist: psutil (>=6.0.0,<6.1.0)
42
35
  Requires-Dist: pyarrow (>=12.0.1)
43
- Requires-Dist: pyspark (>=3.0,<3.5) ; (python_full_version >= "3.8.1" and python_version < "3.11") and (extra == "spark" or extra == "all")
44
- Requires-Dist: pyspark (>=3.4,<3.5) ; (python_version >= "3.11" and python_version < "3.12") and (extra == "spark" or extra == "all")
36
+ Requires-Dist: pyspark (>=3.0,<3.6) ; (python_full_version >= "3.8.1" and python_version < "3.11") and (extra == "spark" or extra == "all")
37
+ Requires-Dist: pyspark (>=3.4,<3.6) ; (python_version >= "3.11" and python_version < "3.12") and (extra == "spark" or extra == "all")
45
38
  Requires-Dist: pytorch-ranger (>=0.1.1,<0.2.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
46
- Requires-Dist: sb-obp (>=0.5.8,<0.6.0)
47
39
  Requires-Dist: scikit-learn (>=1.0.2,<2.0.0)
48
40
  Requires-Dist: scipy (>=1.8.1,<2.0.0)
49
- Requires-Dist: torch (>=1.8,<=2.4.0) ; extra == "torch" or extra == "torch-openvino" or extra == "all"
41
+ Requires-Dist: torch (>=1.8,<3.0.0) ; (python_version >= "3.9") and (extra == "torch" or extra == "torch-openvino" or extra == "all")
42
+ Requires-Dist: torch (>=1.8,<=2.4.1) ; (python_version >= "3.8" and python_version < "3.9") and (extra == "torch" or extra == "torch-openvino" or extra == "all")
50
43
  Project-URL: Repository, https://github.com/sb-ai-lab/RePlay
51
44
  Description-Content-Type: text/markdown
52
45
 
@@ -1,71 +1,16 @@
1
- replay/__init__.py,sha256=CPoFX1gaBk1ouwZEOQzg1iY7TJnIUQXMLeo_OLBDfEA,55
1
+ replay/__init__.py,sha256=VCw4rEsV7NJBn3E_Oj5nX6XGb4DcpirC4alAPsNb_HM,47
2
2
  replay/data/__init__.py,sha256=g5bKRyF76QL_BqlED-31RnS8pBdcyj9loMsx5vAG_0E,301
3
3
  replay/data/dataset.py,sha256=wIIezbAWP7yzYAHei0gD0z45Uk6quaWRKsQo2pcjj8A,30749
4
4
  replay/data/dataset_utils/__init__.py,sha256=9wUvG8ZwGUvuzLU4zQI5FDcH0WVVo5YLN2ey3DterP0,55
5
5
  replay/data/dataset_utils/dataset_label_encoder.py,sha256=6Pd6LYXLL_9xwvV5hbJvL88Um-KSIeVeYTa3RopuHP0,9807
6
6
  replay/data/nn/__init__.py,sha256=WxLsi4rgOuuvGYHN49xBPxP2Srhqf3NYgfBDVH-ZvBo,1122
7
- replay/data/nn/schema.py,sha256=Am_6HdQIQdXtJcQ7HjJdZr623f2ugf6WCnOtNYmgHys,16988
7
+ replay/data/nn/schema.py,sha256=0I3fdMYuMElcAhVfY44eFDGq1tVYRUMvZBspdVUqyfI,17112
8
8
  replay/data/nn/sequence_tokenizer.py,sha256=0IBPkVwxgimLmuSGqQheVyy9dbo5kDvNutoRBRCipEA,37051
9
9
  replay/data/nn/sequential_dataset.py,sha256=jCWxC0Pm1eQ5p8Y6_Bmg4fSEvPaecLrqz1iaWzaICdI,11014
10
10
  replay/data/nn/torch_sequential_dataset.py,sha256=NCNYLuhiRJj7x0_E6Z2UkF0h2YdumbWzJSG6GCb3muA,11501
11
11
  replay/data/nn/utils.py,sha256=fQiEZyc0YuCSDi9Rfp9KRtXGjedH1Lc_4QWd3-rTFjs,3272
12
12
  replay/data/schema.py,sha256=iQormeeiLbbxyADdV6Dv_KENe-tIaRiqlhixkQlC2aw,15952
13
13
  replay/data/spark_schema.py,sha256=4o0Kn_fjwz2-9dBY3q46F9PL0F3E7jdVpIlX7SG3OZI,1111
14
- replay/experimental/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
15
- replay/experimental/metrics/__init__.py,sha256=bdQogGbEDVAeH7Ejbb6vpw7bP6CYhftTu_DQuoFRuCA,2861
16
- replay/experimental/metrics/base_metric.py,sha256=mWbkRGdHTF3ZHq9WSqTGGAX2XJtOSzwcefjSu1Mdl0Y,22649
17
- replay/experimental/metrics/coverage.py,sha256=3kVBAUhIEOuD8aJ6DShH2xh_1F61dcLZb001VCkmeJk,3154
18
- replay/experimental/metrics/experiment.py,sha256=Bd_XB9zbngcAwf5JLZKVPsFWQoz9pEGlPEUbkiR_MDc,7343
19
- replay/experimental/metrics/hitrate.py,sha256=TfWJrUyZXabdMr4tn8zqUPGDcYy2yphVCzXmLSHCxY0,675
20
- replay/experimental/metrics/map.py,sha256=S4dKiMpYR0_pu0bqioGMT0kIC1s2aojFP4rddBqMPtM,921
21
- replay/experimental/metrics/mrr.py,sha256=q6I1Cndlwr716mMuYtTMu0lN8Rrp9khxhb49OM2IpV8,530
22
- replay/experimental/metrics/ncis_precision.py,sha256=yrErOhBZvZdNpQPx_AXyktDJatqdWRIHNMyei0QDJtQ,1088
23
- replay/experimental/metrics/ndcg.py,sha256=q3KTsyZCrfvcpEjEnR_kWVB9ZaTFRxnoNRAr2WD0TrU,1538
24
- replay/experimental/metrics/precision.py,sha256=U9pD9yRGeT8uH32BTyQ-W5qsAnbFWu-pqy4XfkcXfCM,664
25
- replay/experimental/metrics/recall.py,sha256=5xRPGxfbVoDFEI5E6dVlZpT4RvnDlWzaktyoqh3a8mc,774
26
- replay/experimental/metrics/rocauc.py,sha256=yq4vW2_bXO8HCjREBZVrHMKeZ054LYvjJmLJTXWPfQA,1675
27
- replay/experimental/metrics/surprisal.py,sha256=CK4_zed2bSMDwC7ZBCS8d8RwGEqt8bh3w3fTpjKiK6Y,3052
28
- replay/experimental/metrics/unexpectedness.py,sha256=JQQXEYHtQM8nqp7X2He4E9ZYwbpdENaK8oQG7sUQT3s,2621
29
- replay/experimental/models/__init__.py,sha256=7k_KigXnXmdnAnP3uf9DJR_GChG--jGUxPov05UVBgs,791
30
- replay/experimental/models/admm_slim.py,sha256=Oz-x0aQAnGFN9z7PB7MiKfduBasc4KQrBT0JwtYdwLY,6581
31
- replay/experimental/models/base_neighbour_rec.py,sha256=pRcffr0cdRNZRVpzWb2Qv-UIsLkhbs7K1GRAmrSqPSM,7506
32
- replay/experimental/models/base_rec.py,sha256=0u_kAUelLyIO6VSu6Un5zFZpzSjKYR7l384BY_79EWY,52108
33
- replay/experimental/models/base_torch_rec.py,sha256=oDkCxVFQjIHSWKlCns6mU3ECWbQW3mQZWvBHBxJQdwc,8111
34
- replay/experimental/models/cql.py,sha256=3IBQEqWfyHmvGxCvWtIbLgjuRWfd_8mySg8bVaI4KHQ,19630
35
- replay/experimental/models/ddpg.py,sha256=uqWk235-YZ2na-NPN4TxUM9ZhogpLZEjivt1oSC2rtI,32080
36
- replay/experimental/models/dt4rec/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
37
- replay/experimental/models/dt4rec/dt4rec.py,sha256=ZIHYonDubStN7Gb703csy86R7Q3_1fZc4zJf98HYFe4,5895
38
- replay/experimental/models/dt4rec/gpt1.py,sha256=T3buFtYyF6Fh6sW6f9dUZFcFEnQdljItbRa22CiKb0w,14044
39
- replay/experimental/models/dt4rec/trainer.py,sha256=YeaJ8mnoYZqnPwm1P9qOYb8GzgFC5At-JeSDcvG2V2o,3859
40
- replay/experimental/models/dt4rec/utils.py,sha256=jbCx2Xc85VtjQx-caYhJFfVuj1Wf866OAiSoZlR4q48,8201
41
- replay/experimental/models/extensions/spark_custom_models/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
42
- replay/experimental/models/extensions/spark_custom_models/als_extension.py,sha256=dKSVCMXWRB7IUnpEK_QNhSEuUSVcG793E8MT_AGXneY,25890
43
- replay/experimental/models/hierarchical_recommender.py,sha256=BqnEFBppKawt8Xx5lzBWk6qnmdCrZ7c2hpKj3mi1GvU,11441
44
- replay/experimental/models/implicit_wrap.py,sha256=8F-f-CaStmlNHwphu-yu8o4Aft08NKDD_SqqH0zp1Uo,4655
45
- replay/experimental/models/lightfm_wrap.py,sha256=8nuTpiBuddKlMFFpbUpRt5k_JiBGRjPpF_hNbKdLP4Q,11327
46
- replay/experimental/models/mult_vae.py,sha256=BnnlUHPlNuvh7EFA8bjITRW_m8JQANRD6zvsNQ1SUXM,11608
47
- replay/experimental/models/neural_ts.py,sha256=zviSSY43Pmr4WJXD4I7UobBby5fU1To4SM1Mfz-wae0,42506
48
- replay/experimental/models/neuromf.py,sha256=Hr9qEKv1shkwAqCVCxfews1Pk3F6yni2WIZUGS2tNCE,14392
49
- replay/experimental/models/scala_als.py,sha256=-sMZ8P_XbmVi-hApuS46MpaosVIXRED05cgsOI3ojvQ,10975
50
- replay/experimental/models/u_lin_ucb.py,sha256=-gu6meOYeSwP6N8ILtwasWYj4Mbs6EJEFQXUHE8N_lY,3750
51
- replay/experimental/nn/data/__init__.py,sha256=5EAF-FNd7xhkUpTq_5MyVcPXBD81mJCwYrcbhdGOWjE,48
52
- replay/experimental/nn/data/schema_builder.py,sha256=cG1IOXr28QMa39ZuKroC6wyniX-wuyxRgrw1cfhDclE,3313
53
- replay/experimental/preprocessing/__init__.py,sha256=uMyeyQ_GKqjLhVGwhrEk3NLhhzS0DKi5xGo3VF4WkiA,130
54
- replay/experimental/preprocessing/data_preparator.py,sha256=SLyk4HWurLmUHuev5L_GmI3oVU-58lCflOExHJ7zCGw,35964
55
- replay/experimental/preprocessing/padder.py,sha256=ROKnGA0136C9W9Qkky-1V5klcMxvwos5KL4_jMLOgwY,9564
56
- replay/experimental/preprocessing/sequence_generator.py,sha256=E1_0uZJLv8V_n6YzRlgUWtcrHIdjNwPeBN-BMbz0e-A,9053
57
- replay/experimental/scenarios/__init__.py,sha256=gWFLCkLyOmOppvbRMK7C3UMlMpcbIgiGVolSH6LPgWA,91
58
- replay/experimental/scenarios/obp_wrapper/__init__.py,sha256=rsRyfsTnVNp20LkTEugwoBrV9XWbIhR8tOqec_Au6dY,450
59
- replay/experimental/scenarios/obp_wrapper/obp_optuna_objective.py,sha256=vmLANYB5i1UR3uY7e-T0IBEYwPxOYHtKqhkmUvMUYhU,2548
60
- replay/experimental/scenarios/obp_wrapper/replay_offline.py,sha256=3NYjmsaQlQrrhSySIAzZmOfzjDepnHXlLWRfUSyCHYg,9634
61
- replay/experimental/scenarios/obp_wrapper/utils.py,sha256=-ioWTb73NmHWxVxw4BdSolctqeeGIyjKtydwc45nrrk,3271
62
- replay/experimental/scenarios/two_stages/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
63
- replay/experimental/scenarios/two_stages/reranker.py,sha256=tJtWhbHRNV4sJZ9RZzqIfylTplKh9QVwTIBhEGGnXq8,4244
64
- replay/experimental/scenarios/two_stages/two_stages_scenario.py,sha256=frwsST85YGMGEZPf4DZFp3kPKPEcVgaxOCEdtZywpkw,29841
65
- replay/experimental/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
66
- replay/experimental/utils/logger.py,sha256=UwLowaeOG17sDEe32LiZel8MnjSTzeW7J3uLG1iwLuA,639
67
- replay/experimental/utils/model_handler.py,sha256=Rfj57E1R_XMEEigHNZa9a-rzEsyLWSDsgKfXoRzWWdg,6426
68
- replay/experimental/utils/session_handler.py,sha256=076TLpTOcnh13BznNTtJW6Zhrqvm9Ee1mlpP5YMD4No,1313
69
14
  replay/metrics/__init__.py,sha256=j0PGvUehaPEZMNo9SQwJsnvzrS4bam9eHrRMQFLnMjY,2813
70
15
  replay/metrics/base_metric.py,sha256=uleW5vLrdA3iRx72tFyW0cxe6ne_ugQ1XaY_ZTcnAOo,15960
71
16
  replay/metrics/categorical_diversity.py,sha256=OYsF-Ng-WrF9CC-sKgQKngrA779NO8MtgRvvAyC8MXM,10781
@@ -81,7 +26,7 @@ replay/metrics/offline_metrics.py,sha256=LWofpuzvqc92jSnmMWvW-ffTGEgHxAgZO_yuSSV
81
26
  replay/metrics/precision.py,sha256=8hfz9bLZt7wUfyJtJPiIoDEOP_bweZSpCS6Z1Cm9IGE,2281
82
27
  replay/metrics/recall.py,sha256=ATN5OIeFKMG7-nqpPCBPLItrUhGRucLCELWnzRyCRoo,2472
83
28
  replay/metrics/rocauc.py,sha256=gybFcyIyVDpwoR9K38nOSxlAjIYbFqXUzABuckxqHps,3307
84
- replay/metrics/surprisal.py,sha256=wj9Q5mAdECpl0LfykJWt8jgN3_CUSlai2fhiFgJr_Vw,7474
29
+ replay/metrics/surprisal.py,sha256=mcGOQTvlNcGz4vNi-U-qe-CJqlYICKMRny5KtJVMKAc,7538
85
30
  replay/metrics/torch_metrics_builder.py,sha256=2gcCcb0A-TVpYcBIYGhXrggyFX-M_T7Q1pQUiMpxEZE,13845
86
31
  replay/metrics/unexpectedness.py,sha256=cfDnkpK6nPeawwHDVNQAkUtsW0SvAttI84k4M5ttkyo,6888
87
32
  replay/models/__init__.py,sha256=A1xEE3CbCrhCPkh94U_yYs9jzoP8IEyPukKj7DyY7bs,836
@@ -121,15 +66,17 @@ replay/models/extensions/ann/index_stores/utils.py,sha256=6r2GP_EFCaCguolW857pb4
121
66
  replay/models/extensions/ann/utils.py,sha256=qLeT0wHzbzBU5J6SE3xbbT3vYrLrFcEEQNJCtElvP_U,1213
122
67
  replay/models/kl_ucb.py,sha256=L6vC2KsTBTTx4ckmGhWybOiLa5Wt54N7cgl7jS2FQRg,6731
123
68
  replay/models/knn.py,sha256=ujJRiRJ9Nfs_m7eTvk0fDTYiR95aKnDO4e2Tf2q2AQI,9109
124
- replay/models/lin_ucb.py,sha256=z25J_7rIm-M5l3jxkf8v9QT9kPhzX3i0fg1TxyH95is,16934
69
+ replay/models/lin_ucb.py,sha256=Je1FfW-bRFSBE45XIXxQvzJr8sZQuMzIkCs-pb_D8po,16922
125
70
  replay/models/nn/__init__.py,sha256=AT3o1qXaxUq4_QIGlcGuSs54ZpueOo-SbpZwuGI-6os,41
71
+ replay/models/nn/loss/__init__.py,sha256=s3iO9QTZvLz_ony2b5K0hEmDmitrXQnAe9j6BRxLpR4,53
72
+ replay/models/nn/loss/sce.py,sha256=p6LFtoYSY4j2pQh6Z7i6cEADCmRnvTgnb8EJXseRKKg,5637
126
73
  replay/models/nn/optimizer_utils/__init__.py,sha256=8MHln7CW54oACVUFKdZLjAf4bY83GcOMXpmL87gTnhI,178
127
74
  replay/models/nn/optimizer_utils/optimizer_factory.py,sha256=EXqS_2ZxT7K_kFzcjgFpNhmzUoSftf_CwZIIHNHZBgU,2842
128
75
  replay/models/nn/sequential/__init__.py,sha256=CI2n0cxs_amqJrwBMq6n0Z_uBOu7CGXfagqvE4Jlmjw,128
129
76
  replay/models/nn/sequential/bert4rec/__init__.py,sha256=JfZqHOGxcvOkICl5cWmZbZhaKXpkIvua-Wj57VWWEhw,399
130
77
  replay/models/nn/sequential/bert4rec/dataset.py,sha256=cJp1fol4FiGSRhyy7RaBh7plMVEFteJ1pCbbGBZyZHI,11014
131
- replay/models/nn/sequential/bert4rec/lightning.py,sha256=MXozQMLwlcKhwmqJMaU2G6WUNQ7Ljs2kts4sDid3Twk,25242
132
- replay/models/nn/sequential/bert4rec/model.py,sha256=w1mCUd1Rjn-J0BISdeykzn5RfPNCGZDhVk_9WyBaObc,18581
78
+ replay/models/nn/sequential/bert4rec/lightning.py,sha256=g3LSJiIzTnl9nfCEJKRdP2NhLP25b5AnivfSrOeqceU,26559
79
+ replay/models/nn/sequential/bert4rec/model.py,sha256=WSo0l2TVDqlB3_qOfrDWXS7KNOzHgJ6myPv5vazHTlU,17394
133
80
  replay/models/nn/sequential/callbacks/__init__.py,sha256=Q7mSZ_RB6iyD7QZaBL_NJ0uh8cRfgxq7gtPHbkSyhoo,282
134
81
  replay/models/nn/sequential/callbacks/prediction_callbacks.py,sha256=iCPO1G09X-22CTrMVx5HYVxrzT1xmtb-6qGczkbYQ58,9317
135
82
  replay/models/nn/sequential/callbacks/validation_callback.py,sha256=6TNl3NN9oahK1J7DT44461xqBuUCblCsLzUi2svlhF4,5825
@@ -142,8 +89,8 @@ replay/models/nn/sequential/postprocessors/_base.py,sha256=Z-HuXM4WBQtrq9IeCL00j
142
89
  replay/models/nn/sequential/postprocessors/postprocessors.py,sha256=t96EkNVaG560m5BA5FejJKudpUMcfZWc4KrOD12GME4,7820
143
90
  replay/models/nn/sequential/sasrec/__init__.py,sha256=c6130lRpPkcbuGgkM7slagBIgH7Uk5zUtSzFDEwAsik,250
144
91
  replay/models/nn/sequential/sasrec/dataset.py,sha256=dbuhoU5mCf2MS01QpTd7ud5dFEqQE24jurwgfC3t3aE,7782
145
- replay/models/nn/sequential/sasrec/lightning.py,sha256=i-R1PMr5MCr6Z7yJ4YAL2jE4JTzo7LvowhOx-KHtqhE,23869
146
- replay/models/nn/sequential/sasrec/model.py,sha256=MRZvymU8aBIH5Q_D9BP4PvkGIBpBhF1_mzSgwvdpYxI,27684
92
+ replay/models/nn/sequential/sasrec/lightning.py,sha256=1FeadX68S-61Zb4OHP4u8CfMdAKAL49P66gjsChJSTY,25073
93
+ replay/models/nn/sequential/sasrec/model.py,sha256=CWlJec2fbz42vnkUQ5AMux31F-JQRw7NiYXnftU35jA,27669
147
94
  replay/models/pop_rec.py,sha256=Ju9y2rU2vW_jFU9-W15fbbr5_ZzYGihSjSxsqKsAf0Q,4964
148
95
  replay/models/query_pop_rec.py,sha256=UNsHtf3eQpJom73ZmEO5us4guI4SnCLJYTfuUpRgqes,4086
149
96
  replay/models/random_rec.py,sha256=9SC012_X3sNzrAjDG1CPGhjisZb6gnv4VCW7yIMSNpk,8066
@@ -157,9 +104,9 @@ replay/optimization/optuna_objective.py,sha256=OUYlC3wQj4GmrSbE_z5IPPS6OEEPUoeRC
157
104
  replay/preprocessing/__init__.py,sha256=c6wFPAc6lATyp0lE-ZDjHMsXyEMPKX7Usuqylv6H5XQ,597
158
105
  replay/preprocessing/converter.py,sha256=JQ-4u5x0eXtswl1iH-bZITBXQov1nebnZ6XcvpD8Twk,4417
159
106
  replay/preprocessing/discretizer.py,sha256=Z3xnJpAQeXOU49PVpRSVXXbDemlAHEWWwFSNX_VirHA,27047
160
- replay/preprocessing/filters.py,sha256=4Lk3gnNwksPscdW6a47qJ_r8QEpbYRuNqTPJ9-bvSRo,41743
107
+ replay/preprocessing/filters.py,sha256=o-XWUTv4NsciGLwOoYKjVrGrBuOgxTk0c0aY1_tuzcw,45852
161
108
  replay/preprocessing/history_based_fp.py,sha256=Wb2DXHawE2dYghm1ARr05_5opd_TLfthZ7h5e0zbDjY,18726
162
- replay/preprocessing/label_encoder.py,sha256=9gENffKdaoLBlgz5NXmxNDck-ofvhSUgi70f0Np6ls4,41207
109
+ replay/preprocessing/label_encoder.py,sha256=uOt7i3tNc3SMjr65tZpvFAJOFD_xiy5rHhd4llwBw2g,41392
163
110
  replay/preprocessing/sessionizer.py,sha256=G6i0K3FwqtweRxvcSYraJ-tBWAT2HnV-bWHHlIZJF-s,12217
164
111
  replay/scenarios/__init__.py,sha256=XXAKEQPTLlve-0O6NPwFgahFrb4oGcIq3HaYaaGxG2E,94
165
112
  replay/scenarios/fallback.py,sha256=EeBmIR-5igzKR2m55bQRFyhxTkpJez6ZkCW449n8hWs,7130
@@ -182,8 +129,7 @@ replay/utils/session_handler.py,sha256=BACedTDu-K1ANCB88M8JEBgJ318Hxv-yxaPUNNJKZ
182
129
  replay/utils/spark_utils.py,sha256=lxzaQGxp3PZdcW-mrj1402x0U8AUQkKimZpWlwhKcJQ,27405
183
130
  replay/utils/time.py,sha256=J8asoQBytPcNw-BLGADYIsKeWhIoN1H5hKiX9t2AMqo,9376
184
131
  replay/utils/types.py,sha256=RHGkY71JkGUAMCWbHNgB11Z1F64Lqj0xxRr4Z07qxsY,814
185
- replay_rec-0.18.1rc0.dist-info/LICENSE,sha256=rPmcA7UrHxBChEAAlJyE24qUWKKl9yLQXxFsKeg_LX4,11344
186
- replay_rec-0.18.1rc0.dist-info/METADATA,sha256=YZfm4EN4XmDTWNNryWPYFnm3b4FpU8FB1WSY8qTeERM,13251
187
- replay_rec-0.18.1rc0.dist-info/NOTICE,sha256=k0bo4KHiHLRax5K3XKTTrf2Fi8V91mJ-R3FMdh6Reg0,2002
188
- replay_rec-0.18.1rc0.dist-info/WHEEL,sha256=sP946D7jFCHeNz5Iq4fL4Lu-PrWrFsgfLXbbkciIZwg,88
189
- replay_rec-0.18.1rc0.dist-info/RECORD,,
132
+ replay_rec-0.19.0.dist-info/LICENSE,sha256=rPmcA7UrHxBChEAAlJyE24qUWKKl9yLQXxFsKeg_LX4,11344
133
+ replay_rec-0.19.0.dist-info/METADATA,sha256=1Q9KiLN_W0a14DT9ODSL_l8oE632mDRkMnVDVEOMPjY,13143
134
+ replay_rec-0.19.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
135
+ replay_rec-0.19.0.dist-info/RECORD,,
@@ -1,4 +1,4 @@
1
1
  Wheel-Version: 1.0
2
- Generator: poetry-core 1.9.0
2
+ Generator: poetry-core 1.6.1
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
File without changes
@@ -1,62 +0,0 @@
1
- """
2
- Most metrics require dataframe with recommendations
3
- and dataframe with ground truth values —
4
- which objects each user interacted with.
5
-
6
- - recommendations (Union[pandas.DataFrame, spark.DataFrame]):
7
- predictions of a recommender system,
8
- DataFrame with columns ``[user_id, item_id, relevance]``
9
- - ground_truth (Union[pandas.DataFrame, spark.DataFrame]):
10
- test data, DataFrame with columns
11
- ``[user_id, item_id, timestamp, relevance]``
12
-
13
- Metric is calculated for all users, presented in ``ground_truth``
14
- for accurate metric calculation in case when the recommender system generated
15
- recommendation not for all users. It is assumed, that all users,
16
- we want to calculate metric for, have positive interactions.
17
-
18
- But if we have users, who observed the recommendations, but have not responded,
19
- those users will be ignored and metric will be overestimated.
20
- For such case we propose additional optional parameter ``ground_truth_users``,
21
- the dataframe with all users, which should be considered during the metric calculation.
22
-
23
- - ground_truth_users (Optional[Union[pandas.DataFrame, spark.DataFrame]]):
24
- full list of users to calculate metric for, DataFrame with ``user_id`` column
25
-
26
- Every metric is calculated using top ``K`` items for each user.
27
- It is also possible to calculate metrics
28
- using multiple values for ``K`` simultaneously.
29
- In this case the result will be a dictionary and not a number.
30
-
31
- Make sure your recommendations do not contain user-item duplicates
32
- as duplicates could lead to the wrong calculation results.
33
-
34
- - k (Union[Iterable[int], int]):
35
- a single number or a list, specifying the
36
- truncation length for recommendation list for each user
37
-
38
- By default, metrics are averaged by users,
39
- but you can alternatively use method ``metric.median``.
40
- Also, you can get the lower bound
41
- of ``conf_interval`` for a given ``alpha``.
42
-
43
- Diversity metrics require extra parameters on initialization stage,
44
- but do not use ``ground_truth`` parameter.
45
-
46
- For each metric, a formula for its calculation is given, because this is
47
- important for the correct comparison of algorithms, as mentioned in our
48
- `article <https://arxiv.org/abs/2206.12858>`_.
49
- """
50
-
51
- from replay.experimental.metrics.base_metric import Metric, NCISMetric
52
- from replay.experimental.metrics.coverage import Coverage
53
- from replay.experimental.metrics.hitrate import HitRate
54
- from replay.experimental.metrics.map import MAP
55
- from replay.experimental.metrics.mrr import MRR
56
- from replay.experimental.metrics.ncis_precision import NCISPrecision
57
- from replay.experimental.metrics.ndcg import NDCG
58
- from replay.experimental.metrics.precision import Precision
59
- from replay.experimental.metrics.recall import Recall
60
- from replay.experimental.metrics.rocauc import RocAuc
61
- from replay.experimental.metrics.surprisal import Surprisal
62
- from replay.experimental.metrics.unexpectedness import Unexpectedness