replay-rec 0.16.0__py3-none-any.whl → 0.17.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (110) hide show
  1. replay/__init__.py +1 -1
  2. replay/data/__init__.py +1 -1
  3. replay/data/dataset.py +45 -42
  4. replay/data/dataset_utils/dataset_label_encoder.py +6 -7
  5. replay/data/nn/__init__.py +1 -1
  6. replay/data/nn/schema.py +20 -33
  7. replay/data/nn/sequence_tokenizer.py +217 -87
  8. replay/data/nn/sequential_dataset.py +6 -22
  9. replay/data/nn/torch_sequential_dataset.py +20 -11
  10. replay/data/nn/utils.py +7 -9
  11. replay/data/schema.py +17 -17
  12. replay/data/spark_schema.py +0 -1
  13. replay/metrics/base_metric.py +38 -79
  14. replay/metrics/categorical_diversity.py +24 -58
  15. replay/metrics/coverage.py +25 -49
  16. replay/metrics/descriptors.py +4 -13
  17. replay/metrics/experiment.py +3 -8
  18. replay/metrics/hitrate.py +3 -6
  19. replay/metrics/map.py +3 -6
  20. replay/metrics/mrr.py +1 -4
  21. replay/metrics/ndcg.py +4 -7
  22. replay/metrics/novelty.py +10 -29
  23. replay/metrics/offline_metrics.py +26 -61
  24. replay/metrics/precision.py +3 -6
  25. replay/metrics/recall.py +3 -6
  26. replay/metrics/rocauc.py +7 -10
  27. replay/metrics/surprisal.py +13 -30
  28. replay/metrics/torch_metrics_builder.py +0 -4
  29. replay/metrics/unexpectedness.py +15 -20
  30. replay/models/__init__.py +1 -2
  31. replay/models/als.py +7 -15
  32. replay/models/association_rules.py +12 -28
  33. replay/models/base_neighbour_rec.py +21 -36
  34. replay/models/base_rec.py +92 -215
  35. replay/models/cat_pop_rec.py +9 -22
  36. replay/models/cluster.py +17 -28
  37. replay/models/extensions/ann/ann_mixin.py +7 -12
  38. replay/models/extensions/ann/entities/base_hnsw_param.py +1 -1
  39. replay/models/extensions/ann/entities/hnswlib_param.py +0 -6
  40. replay/models/extensions/ann/entities/nmslib_hnsw_param.py +0 -6
  41. replay/models/extensions/ann/index_builders/driver_hnswlib_index_builder.py +4 -10
  42. replay/models/extensions/ann/index_builders/driver_nmslib_index_builder.py +7 -11
  43. replay/models/extensions/ann/index_builders/executor_hnswlib_index_builder.py +5 -12
  44. replay/models/extensions/ann/index_builders/executor_nmslib_index_builder.py +11 -18
  45. replay/models/extensions/ann/index_builders/nmslib_index_builder_mixin.py +1 -4
  46. replay/models/extensions/ann/index_inferers/base_inferer.py +3 -10
  47. replay/models/extensions/ann/index_inferers/hnswlib_filter_index_inferer.py +7 -17
  48. replay/models/extensions/ann/index_inferers/hnswlib_index_inferer.py +6 -14
  49. replay/models/extensions/ann/index_inferers/nmslib_filter_index_inferer.py +14 -28
  50. replay/models/extensions/ann/index_inferers/nmslib_index_inferer.py +15 -25
  51. replay/models/extensions/ann/index_inferers/utils.py +2 -9
  52. replay/models/extensions/ann/index_stores/hdfs_index_store.py +4 -9
  53. replay/models/extensions/ann/index_stores/shared_disk_index_store.py +2 -6
  54. replay/models/extensions/ann/index_stores/spark_files_index_store.py +8 -14
  55. replay/models/extensions/ann/index_stores/utils.py +5 -2
  56. replay/models/extensions/ann/utils.py +3 -5
  57. replay/models/kl_ucb.py +16 -22
  58. replay/models/knn.py +37 -59
  59. replay/models/nn/optimizer_utils/__init__.py +1 -6
  60. replay/models/nn/optimizer_utils/optimizer_factory.py +3 -6
  61. replay/models/nn/sequential/bert4rec/__init__.py +1 -1
  62. replay/models/nn/sequential/bert4rec/dataset.py +6 -7
  63. replay/models/nn/sequential/bert4rec/lightning.py +53 -56
  64. replay/models/nn/sequential/bert4rec/model.py +12 -25
  65. replay/models/nn/sequential/callbacks/__init__.py +1 -1
  66. replay/models/nn/sequential/callbacks/prediction_callbacks.py +23 -25
  67. replay/models/nn/sequential/callbacks/validation_callback.py +27 -30
  68. replay/models/nn/sequential/postprocessors/postprocessors.py +1 -1
  69. replay/models/nn/sequential/sasrec/dataset.py +8 -7
  70. replay/models/nn/sequential/sasrec/lightning.py +53 -48
  71. replay/models/nn/sequential/sasrec/model.py +4 -17
  72. replay/models/pop_rec.py +9 -10
  73. replay/models/query_pop_rec.py +7 -15
  74. replay/models/random_rec.py +10 -18
  75. replay/models/slim.py +8 -13
  76. replay/models/thompson_sampling.py +13 -14
  77. replay/models/ucb.py +11 -22
  78. replay/models/wilson.py +5 -14
  79. replay/models/word2vec.py +24 -69
  80. replay/optimization/optuna_objective.py +13 -27
  81. replay/preprocessing/__init__.py +1 -2
  82. replay/preprocessing/converter.py +2 -7
  83. replay/preprocessing/filters.py +67 -142
  84. replay/preprocessing/history_based_fp.py +44 -116
  85. replay/preprocessing/label_encoder.py +106 -68
  86. replay/preprocessing/sessionizer.py +1 -11
  87. replay/scenarios/fallback.py +3 -8
  88. replay/splitters/base_splitter.py +43 -15
  89. replay/splitters/cold_user_random_splitter.py +18 -31
  90. replay/splitters/k_folds.py +14 -24
  91. replay/splitters/last_n_splitter.py +33 -43
  92. replay/splitters/new_users_splitter.py +31 -55
  93. replay/splitters/random_splitter.py +16 -23
  94. replay/splitters/ratio_splitter.py +30 -54
  95. replay/splitters/time_splitter.py +13 -18
  96. replay/splitters/two_stage_splitter.py +44 -79
  97. replay/utils/__init__.py +1 -1
  98. replay/utils/common.py +65 -0
  99. replay/utils/dataframe_bucketizer.py +25 -31
  100. replay/utils/distributions.py +3 -15
  101. replay/utils/model_handler.py +36 -33
  102. replay/utils/session_handler.py +11 -15
  103. replay/utils/spark_utils.py +51 -85
  104. replay/utils/time.py +8 -22
  105. replay/utils/types.py +1 -3
  106. {replay_rec-0.16.0.dist-info → replay_rec-0.17.0.dist-info}/METADATA +2 -2
  107. replay_rec-0.17.0.dist-info/RECORD +127 -0
  108. replay_rec-0.16.0.dist-info/RECORD +0 -126
  109. {replay_rec-0.16.0.dist-info → replay_rec-0.17.0.dist-info}/LICENSE +0 -0
  110. {replay_rec-0.16.0.dist-info → replay_rec-0.17.0.dist-info}/WHEEL +0 -0
replay/utils/time.py CHANGED
@@ -1,7 +1,6 @@
1
1
  import numpy as np
2
2
 
3
3
  from .spark_utils import convert2spark
4
-
5
4
  from .types import PYSPARK_AVAILABLE, DataFrameLike
6
5
 
7
6
  if PYSPARK_AVAILABLE:
@@ -106,9 +105,7 @@ def get_item_recency(
106
105
  "item_idx",
107
106
  sf.unix_timestamp(sf.to_timestamp("timestamp")).alias("timestamp"),
108
107
  )
109
- items = items.groupBy("item_idx").agg(
110
- sf.mean("timestamp").alias("timestamp")
111
- )
108
+ items = items.groupBy("item_idx").agg(sf.mean("timestamp").alias("timestamp"))
112
109
  items = items.withColumn("relevance", sf.lit(1))
113
110
  items = smoothe_time(items, decay, limit, kind)
114
111
  return items
@@ -234,16 +231,10 @@ def smoothe_time(
234
231
  <BLANKLINE>
235
232
  """
236
233
  log = convert2spark(log)
237
- log = log.withColumn(
238
- "timestamp", sf.unix_timestamp(sf.to_timestamp("timestamp"))
239
- )
240
- last_date = (
241
- log.agg({"timestamp": "max"}).collect()[0].asDict()["max(timestamp)"]
242
- )
234
+ log = log.withColumn("timestamp", sf.unix_timestamp(sf.to_timestamp("timestamp")))
235
+ last_date = log.agg({"timestamp": "max"}).collect()[0].asDict()["max(timestamp)"]
243
236
  day_in_secs = 86400
244
- log = log.withColumn(
245
- "age", (last_date - sf.col("timestamp")) / day_in_secs
246
- )
237
+ log = log.withColumn("age", (last_date - sf.col("timestamp")) / day_in_secs)
247
238
  if kind == "power":
248
239
  power = np.log(0.5) / np.log(decay)
249
240
  log = log.withColumn("age", sf.pow(sf.col("age") + 1, power))
@@ -254,15 +245,10 @@ def smoothe_time(
254
245
  k = 0.5 / decay
255
246
  log = log.withColumn("age", 1 - k * sf.col("age"))
256
247
  else:
257
- raise ValueError(
258
- f"parameter kind must be one of [power, exp, linear], got {kind}"
259
- )
248
+ msg = f"parameter kind must be one of [power, exp, linear], got {kind}"
249
+ raise ValueError(msg)
260
250
 
261
- log = log.withColumn(
262
- "age", sf.when(sf.col("age") < limit, limit).otherwise(sf.col("age"))
263
- )
264
- log = log.withColumn(
265
- "relevance", sf.col("relevance") * sf.col("age")
266
- ).drop("age")
251
+ log = log.withColumn("age", sf.when(sf.col("age") < limit, limit).otherwise(sf.col("age")))
252
+ log = log.withColumn("relevance", sf.col("relevance") * sf.col("age")).drop("age")
267
253
  log = log.withColumn("timestamp", sf.to_timestamp("timestamp"))
268
254
  return log
replay/utils/types.py CHANGED
@@ -4,7 +4,6 @@ from pandas import DataFrame as PandasDataFrame
4
4
  from polars import DataFrame as PolarsDataFrame
5
5
 
6
6
 
7
- # pylint: disable=too-few-public-methods
8
7
  class MissingImportType:
9
8
  """
10
9
  Replacement class with missing import
@@ -17,10 +16,9 @@ try:
17
16
  PYSPARK_AVAILABLE = True
18
17
  except ImportError:
19
18
  PYSPARK_AVAILABLE = False
20
- SparkDataFrame = MissingImportType # type: ignore
19
+ SparkDataFrame = MissingImportType
21
20
 
22
21
  try:
23
- # pylint: disable=unused-import
24
22
  import torch # noqa: F401
25
23
 
26
24
  TORCH_AVAILABLE = True
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: replay-rec
3
- Version: 0.16.0
3
+ Version: 0.17.0
4
4
  Summary: RecSys Library
5
5
  Home-page: https://sb-ai-lab.github.io/RePlay/
6
6
  License: Apache-2.0
@@ -28,7 +28,7 @@ Requires-Dist: optuna (>=3.2.0,<3.3.0)
28
28
  Requires-Dist: pandas (>=1.3.5,<2.0.0)
29
29
  Requires-Dist: polars (>=0.20.7,<0.21.0)
30
30
  Requires-Dist: psutil (>=5.9.5,<5.10.0)
31
- Requires-Dist: pyarrow (>=12.0.1,<=14.0.1)
31
+ Requires-Dist: pyarrow (>=12.0.1)
32
32
  Requires-Dist: pyspark (>=3.0,<3.3) ; extra == "spark" or extra == "all"
33
33
  Requires-Dist: pytorch-ranger (>=0.1.1,<0.2.0) ; extra == "torch" or extra == "all"
34
34
  Requires-Dist: scikit-learn (>=1.0.2,<2.0.0)
@@ -0,0 +1,127 @@
1
+ replay/__init__.py,sha256=knHFGIzZuD7qKkGHgDbbA_GnYg1omuXxLDS4JVvYEdk,46
2
+ replay/data/__init__.py,sha256=g5bKRyF76QL_BqlED-31RnS8pBdcyj9loMsx5vAG_0E,301
3
+ replay/data/dataset.py,sha256=ysMTNfx8I2hI9fSugtt3IPhenmutgzQMw-8VcM3oUJk,21299
4
+ replay/data/dataset_utils/__init__.py,sha256=9wUvG8ZwGUvuzLU4zQI5FDcH0WVVo5YLN2ey3DterP0,55
5
+ replay/data/dataset_utils/dataset_label_encoder.py,sha256=TEx2zLw5rJdIz1SRBEznyVv5x_Cs7o6QQbzMk-M1LU0,9598
6
+ replay/data/nn/__init__.py,sha256=WxLsi4rgOuuvGYHN49xBPxP2Srhqf3NYgfBDVH-ZvBo,1122
7
+ replay/data/nn/schema.py,sha256=BYU65vLqPDl69OE-rReh59fiQK0ERfs1xbBLWCiIJnw,14258
8
+ replay/data/nn/sequence_tokenizer.py,sha256=dXD8l7IfK1dod8p--I6BhvE9af3iUOfpaoW2QBU9hTs,34133
9
+ replay/data/nn/sequential_dataset.py,sha256=fqlyBAzDmpH332S-LoMP9PoRYMtgZpxG6Qdahmk5GtE,7840
10
+ replay/data/nn/torch_sequential_dataset.py,sha256=BqrK_PtkhpsaY1zRIWGk4EgwPL31a7IWCc0hLDuwDQc,10984
11
+ replay/data/nn/utils.py,sha256=YKE9gkIHZDDiwv4THqOWL4PzsdOujnPuM97v79Mwq0E,2769
12
+ replay/data/schema.py,sha256=F_cv6sYb6l23yuX5xWnbqoJ9oSeUT2NpIM19u8Lf2jA,15606
13
+ replay/data/spark_schema.py,sha256=4o0Kn_fjwz2-9dBY3q46F9PL0F3E7jdVpIlX7SG3OZI,1111
14
+ replay/metrics/__init__.py,sha256=KDkxVnKa4ks9K9GmlrdTx1pkIl-MAmm78ZASsp2ZndE,2812
15
+ replay/metrics/base_metric.py,sha256=uleW5vLrdA3iRx72tFyW0cxe6ne_ugQ1XaY_ZTcnAOo,15960
16
+ replay/metrics/categorical_diversity.py,sha256=OYsF-Ng-WrF9CC-sKgQKngrA779NO8MtgRvvAyC8MXM,10781
17
+ replay/metrics/coverage.py,sha256=wE1Y_TgKOzf_9ixeas-vsxANAHeHSGPuGrzKk8DklaY,8843
18
+ replay/metrics/descriptors.py,sha256=BHORyGKfJgPeUjgLO0u2urSTe16UQbb-HHh8soqnwDE,3893
19
+ replay/metrics/experiment.py,sha256=Ab43e-eyoy8RM_OgAcm0toqFNDaWkh5Gbq_XVxbmqB0,8142
20
+ replay/metrics/hitrate.py,sha256=G0_GufGc1RIQ_RntCIvDn0piJIVyT3W35bTN-Un9-Ug,2339
21
+ replay/metrics/map.py,sha256=qUPFkyrvRf7gEyxosBApHOxpAVZJ3Yksqe4vsbzTukE,2597
22
+ replay/metrics/mrr.py,sha256=AkfRdvL21Ri1zE4Cmib2twJaEaeBO5wze87eZ4lkYlc,2188
23
+ replay/metrics/ndcg.py,sha256=wzdFFf9rmG6yH7klK5V9ab1wNdI6CHXezvYasxO9_ZU,3134
24
+ replay/metrics/novelty.py,sha256=4S6PsdOl8lqweBlemWJh2fVqMiN8jfj3cIU-9TxZXLY,5500
25
+ replay/metrics/offline_metrics.py,sha256=bVI47C-oTxyi-ksTEdTckX3fT_Dz7koi0ICTgUmsnRM,20468
26
+ replay/metrics/precision.py,sha256=8hfz9bLZt7wUfyJtJPiIoDEOP_bweZSpCS6Z1Cm9IGE,2281
27
+ replay/metrics/recall.py,sha256=ATN5OIeFKMG7-nqpPCBPLItrUhGRucLCELWnzRyCRoo,2472
28
+ replay/metrics/rocauc.py,sha256=gybFcyIyVDpwoR9K38nOSxlAjIYbFqXUzABuckxqHps,3307
29
+ replay/metrics/surprisal.py,sha256=wj9Q5mAdECpl0LfykJWt8jgN3_CUSlai2fhiFgJr_Vw,7474
30
+ replay/metrics/torch_metrics_builder.py,sha256=2gcCcb0A-TVpYcBIYGhXrggyFX-M_T7Q1pQUiMpxEZE,13845
31
+ replay/metrics/unexpectedness.py,sha256=cfDnkpK6nPeawwHDVNQAkUtsW0SvAttI84k4M5ttkyo,6888
32
+ replay/models/__init__.py,sha256=_4gNsauyrVMYEoFDihPYY9kGuBGGFyy1krvxF7oEYjk,808
33
+ replay/models/als.py,sha256=dpBwyg1ZBqtdgrFluHaq5nuPQT---fmA-N2TspJAM0U,6232
34
+ replay/models/association_rules.py,sha256=cp4myXvMqro6zLMjJzJMb0DZ5DQFQEZvhqf5OBgBw8Y,14659
35
+ replay/models/base_neighbour_rec.py,sha256=zMORSm4uMQSNj12v0n_6w8fVHgSYjeiqyYE9rrWgSfU,7887
36
+ replay/models/base_rec.py,sha256=iF0eMlNQVcd-nb3aCRG3ObpmEi7P4-jP_5mKjwc6anc,66407
37
+ replay/models/cat_pop_rec.py,sha256=tzI1UMlC3kEOrtDZ1UPpCP13tX8CeDJP7PHwQKl9Mmo,11922
38
+ replay/models/cluster.py,sha256=9JcpGnbfgFa4UsyxPAa4WMuJFa3rsuAxiKoy-s_UfyE,4970
39
+ replay/models/extensions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
+ replay/models/extensions/ann/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
+ replay/models/extensions/ann/ann_mixin.py,sha256=30YTIGnRhGJYOnxo2bM6dQFgDq9i5UH4t8Ln8zCW8TM,7288
42
+ replay/models/extensions/ann/entities/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
+ replay/models/extensions/ann/entities/base_hnsw_param.py,sha256=5GRdcQj4-zhNXfJ7ko2WHGHgRuXCzSHCRcRxljl1V4c,776
44
+ replay/models/extensions/ann/entities/hnswlib_param.py,sha256=j3V4JXM_yfR6s2TjYakIXMg-zS1-MrP6an930DEIWGM,2104
45
+ replay/models/extensions/ann/entities/nmslib_hnsw_param.py,sha256=WeEhRR4jKqgvWK_zDK8fx6kEqc2e_bc0kubvqK3iV8c,2162
46
+ replay/models/extensions/ann/index_builders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
+ replay/models/extensions/ann/index_builders/base_index_builder.py,sha256=Ul25G0FaNLOXUjrDXxZDTg7tLXlv1N6wR8kWjWICtZ0,2110
48
+ replay/models/extensions/ann/index_builders/driver_hnswlib_index_builder.py,sha256=bUoDwelKL9OK4z0IABzDm16t8wQ4QzH3wQ5NP32S_IE,1588
49
+ replay/models/extensions/ann/index_builders/driver_nmslib_index_builder.py,sha256=1NLWyAJGYgp46uUBhUYQyd0stmG6DhLh7U4JEne5TFw,1308
50
+ replay/models/extensions/ann/index_builders/executor_hnswlib_index_builder.py,sha256=_JZfewcLsU3sRR95_FPlgLfn9vez0JXMxer_024UHK4,2449
51
+ replay/models/extensions/ann/index_builders/executor_nmslib_index_builder.py,sha256=_TClG_czFb50dXyUjjXL4HE5j_i4BH011wjzDGba2U8,2591
52
+ replay/models/extensions/ann/index_builders/nmslib_index_builder_mixin.py,sha256=AIkVnobesnTM5lrBSWf9gd0CySwFQ0vH_DjemfLS4Cs,1925
53
+ replay/models/extensions/ann/index_inferers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
+ replay/models/extensions/ann/index_inferers/base_inferer.py,sha256=I39aqEc2somfndrCd-KC3XYZnYSrJ2hGpR9y6wO93NA,2524
55
+ replay/models/extensions/ann/index_inferers/hnswlib_filter_index_inferer.py,sha256=JjT4l_XAjzUOsTAE7OS88zAgPd_h_O44oUnn2kVr8E0,2477
56
+ replay/models/extensions/ann/index_inferers/hnswlib_index_inferer.py,sha256=CoY_oMfdcwnh87ceuSpHXu4Czle9xxeMisO8XJUuJLE,1717
57
+ replay/models/extensions/ann/index_inferers/nmslib_filter_index_inferer.py,sha256=1bpBjRhj4J_ecaORRhkhEke7ImJcxVTFRmmGK2wISB4,3120
58
+ replay/models/extensions/ann/index_inferers/nmslib_index_inferer.py,sha256=TqyunbjMQp1bWltbouvqK2kr2cnER6_d75NuCTVB3O0,2195
59
+ replay/models/extensions/ann/index_inferers/utils.py,sha256=6IST2FPSY3nuYu5KqzRpd4FgdaV3GnQRQlxp9LN_yyA,641
60
+ replay/models/extensions/ann/index_stores/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
+ replay/models/extensions/ann/index_stores/base_index_store.py,sha256=u4l2ybAXX92ZMGK7NqqosbKF75QgFqhAMVadd5ePj6Y,910
62
+ replay/models/extensions/ann/index_stores/hdfs_index_store.py,sha256=0zDq9PdDOiD6HvtZlfjTbuJHfeTOWBTQ_HiuqZmoxtA,3090
63
+ replay/models/extensions/ann/index_stores/shared_disk_index_store.py,sha256=thl4T1uYU4Gtk4nBao_qK8CbFBdX1xmXNishxgfCd-I,2030
64
+ replay/models/extensions/ann/index_stores/spark_files_index_store.py,sha256=QP_8mE7EIBbePIe0AB-IWuJLRA5MR3wswCEt8oHzn-0,3617
65
+ replay/models/extensions/ann/index_stores/utils.py,sha256=6r2GP_EFCaCguolW857pb4lRS8rh6_Nv_Edso9_j5no,3756
66
+ replay/models/extensions/ann/utils.py,sha256=qLeT0wHzbzBU5J6SE3xbbT3vYrLrFcEEQNJCtElvP_U,1213
67
+ replay/models/kl_ucb.py,sha256=L6vC2KsTBTTx4ckmGhWybOiLa5Wt54N7cgl7jS2FQRg,6731
68
+ replay/models/knn.py,sha256=ujJRiRJ9Nfs_m7eTvk0fDTYiR95aKnDO4e2Tf2q2AQI,9109
69
+ replay/models/nn/__init__.py,sha256=AT3o1qXaxUq4_QIGlcGuSs54ZpueOo-SbpZwuGI-6os,41
70
+ replay/models/nn/optimizer_utils/__init__.py,sha256=8MHln7CW54oACVUFKdZLjAf4bY83GcOMXpmL87gTnhI,178
71
+ replay/models/nn/optimizer_utils/optimizer_factory.py,sha256=EXqS_2ZxT7K_kFzcjgFpNhmzUoSftf_CwZIIHNHZBgU,2842
72
+ replay/models/nn/sequential/__init__.py,sha256=CI2n0cxs_amqJrwBMq6n0Z_uBOu7CGXfagqvE4Jlmjw,128
73
+ replay/models/nn/sequential/bert4rec/__init__.py,sha256=JfZqHOGxcvOkICl5cWmZbZhaKXpkIvua-Wj57VWWEhw,399
74
+ replay/models/nn/sequential/bert4rec/dataset.py,sha256=sCnYGF-sQ1YlLq7vofQo2GIIlc59YlbUgmW7bHI6MPg,10324
75
+ replay/models/nn/sequential/bert4rec/lightning.py,sha256=TqO0V-g0JA0D-L2t08AgAIQgBkDtLUgl4xqekSiDWJ4,22605
76
+ replay/models/nn/sequential/bert4rec/model.py,sha256=tiAiKOUwk3iPPYWyWkfOF23IzfL1NbeaF-8kNt9uZlU,21303
77
+ replay/models/nn/sequential/callbacks/__init__.py,sha256=Q7mSZ_RB6iyD7QZaBL_NJ0uh8cRfgxq7gtPHbkSyhoo,282
78
+ replay/models/nn/sequential/callbacks/prediction_callbacks.py,sha256=H4MZ87_N0hCKtHbsTuN-Cq_SJ-n9TSkvv2okuGnwo3M,9045
79
+ replay/models/nn/sequential/callbacks/validation_callback.py,sha256=6TNl3NN9oahK1J7DT44461xqBuUCblCsLzUi2svlhF4,5825
80
+ replay/models/nn/sequential/postprocessors/__init__.py,sha256=89LGzkNHukcuC2-rfpiz7vmv1zyk6MNY-8zaXrvtn0M,164
81
+ replay/models/nn/sequential/postprocessors/_base.py,sha256=Z-HuXM4WBQtrq9IeCL00jtdb_UopksInxVVK8lxD_hA,1136
82
+ replay/models/nn/sequential/postprocessors/postprocessors.py,sha256=V32xMyNPztJ5kapUxYSAz9i_vsqJ6_cjpGblmQGPO6A,6781
83
+ replay/models/nn/sequential/sasrec/__init__.py,sha256=c6130lRpPkcbuGgkM7slagBIgH7Uk5zUtSzFDEwAsik,250
84
+ replay/models/nn/sequential/sasrec/dataset.py,sha256=ReGNc6t9jjXxMZJp0WqFj1jatJFHnWOrkK3W8lwBNIs,7036
85
+ replay/models/nn/sequential/sasrec/lightning.py,sha256=DtLnNikTNvqroCzaVFw7u-QZpZdvwiYbCwJLE7FkHms,21397
86
+ replay/models/nn/sequential/sasrec/model.py,sha256=DE9kaqlcL22v07kpi2IzIwZ4-3AXNBVTZCnfuTS5usg,27775
87
+ replay/models/pop_rec.py,sha256=Ju9y2rU2vW_jFU9-W15fbbr5_ZzYGihSjSxsqKsAf0Q,4964
88
+ replay/models/query_pop_rec.py,sha256=UNsHtf3eQpJom73ZmEO5us4guI4SnCLJYTfuUpRgqes,4086
89
+ replay/models/random_rec.py,sha256=9SC012_X3sNzrAjDG1CPGhjisZb6gnv4VCW7yIMSNpk,8066
90
+ replay/models/slim.py,sha256=LHQl91PAsiCA8wLYzyapW1DVmqzGaCwtydBvZKC5yo0,4723
91
+ replay/models/thompson_sampling.py,sha256=gcjlVl1mPiEVt70y8frA762O-eCZzd3SVg1lnDRCEHk,1939
92
+ replay/models/ucb.py,sha256=X98ulD8L3gWR3VA7rbQkXFqQyzWc-Nt12lp_gbLTfLQ,6964
93
+ replay/models/wilson.py,sha256=o7aUWjq3648dAfgGBoWD5Gu-HzdyobPMaH2lzCLijiA,4558
94
+ replay/models/word2vec.py,sha256=MgoRIS5vqW9cH1HKAGa2xsLLnTH6XC1EXk4Dzvn5lXA,9171
95
+ replay/optimization/__init__.py,sha256=az6U10rF7X6rPRUUPwLyiM1WFNJ_6kl0imA5xLVWFLs,120
96
+ replay/optimization/optuna_objective.py,sha256=Z-8X0_FT3BicVWj0UhxoLrvZAck3Dhn7jHDGo0i0hxA,7653
97
+ replay/preprocessing/__init__.py,sha256=TtBysFqYeDy4kZAEnWEaNSwPvbffYdfMkEs71YG51fM,411
98
+ replay/preprocessing/converter.py,sha256=DczqsVLrwFi6EFhK2HR8rGiIxGCwXeY7QNgWorjA41g,4390
99
+ replay/preprocessing/filters.py,sha256=6MaO4IIyKNFP2AR94YA5iQUhQvuCRhAFfj0opI6o4-Q,33744
100
+ replay/preprocessing/history_based_fp.py,sha256=tfgKJPKm53LSNqM6VmMXYsVrRDc-rP1Tbzn8s3mbziQ,18751
101
+ replay/preprocessing/label_encoder.py,sha256=MLBavPD-dB644as0E9ZJSE9-8QxGCB_IHek1w3xtqDI,27040
102
+ replay/preprocessing/sessionizer.py,sha256=G6i0K3FwqtweRxvcSYraJ-tBWAT2HnV-bWHHlIZJF-s,12217
103
+ replay/scenarios/__init__.py,sha256=kw2wRkPPinw0IBA20D83XQ3xeSudk3KuYAAA1Wdr8xY,93
104
+ replay/scenarios/fallback.py,sha256=EeBmIR-5igzKR2m55bQRFyhxTkpJez6ZkCW449n8hWs,7130
105
+ replay/splitters/__init__.py,sha256=DnqVMelrzLwR8fGQgcWN_8FipGs8T4XGSPOMW-L_x2g,454
106
+ replay/splitters/base_splitter.py,sha256=qWW8Sueu0BrYt0WIxMbzooAC4-jhEmyd6pMND_H_qB0,7751
107
+ replay/splitters/cold_user_random_splitter.py,sha256=gVwBVdn_0IOaLGT_UzJoS9AMaPhelZy-FpC5JQS1PhA,4136
108
+ replay/splitters/k_folds.py,sha256=WH02_DP18A2ae893ysonmfLPB56_i1ETllTAwaCYekg,6218
109
+ replay/splitters/last_n_splitter.py,sha256=r9kdq2JPi508C9ywjwc68an-iq27KsigMfHWLz0YohE,15346
110
+ replay/splitters/new_users_splitter.py,sha256=bv_QCPkL7KFxJIovAXQbP3Rlty3My48YNTqrj-2ucFQ,9167
111
+ replay/splitters/random_splitter.py,sha256=mbOcxeF0B9WQ9OSxK8CHkPtO8UzKCZJt3rRyFhn-hyQ,2996
112
+ replay/splitters/ratio_splitter.py,sha256=8zvuCn16Icc4ntQPKXJ5ArAWuJzCZ9NHZtgWctKyBVY,17519
113
+ replay/splitters/time_splitter.py,sha256=iXhuafjBx7dWyJSy-TEVy1IUQBwMpA1gAiF4-GtRe2g,9031
114
+ replay/splitters/two_stage_splitter.py,sha256=PWozxjjgjrVzdz6Sm9dcDTeH0bOA24reFzkk_N_TgbQ,17734
115
+ replay/utils/__init__.py,sha256=vDJgOWq81fbBs-QO4ZDpdqR4KDyO1kMOOxBRi-5Gp7E,253
116
+ replay/utils/common.py,sha256=6JxR5bFuTFTFWad36J5Zu8dFgpFXoof6VsVpF2sD7h8,1471
117
+ replay/utils/dataframe_bucketizer.py,sha256=LipmBBQkdkLGroZpbP9i7qvTombLdMxo2dUUys1m5OY,3748
118
+ replay/utils/distributions.py,sha256=kGGq2KzQZ-yhTuw_vtOsKFXVpXUOQ2l4aIFBcaDufZ8,1202
119
+ replay/utils/model_handler.py,sha256=V-mHDh8_UexjVSsMBBRA9yrjS_5MPHwYOwv_UrI-Zfs,6466
120
+ replay/utils/session_handler.py,sha256=ijTvDSNAe1D9R1e-dhtd-r80tFNiIBsFdWZLgw-gLEo,5153
121
+ replay/utils/spark_utils.py,sha256=PhNi9fW28ek0ZB90AUg3tsT5BULbQjDhLalxxww9eLE,26700
122
+ replay/utils/time.py,sha256=J8asoQBytPcNw-BLGADYIsKeWhIoN1H5hKiX9t2AMqo,9376
123
+ replay/utils/types.py,sha256=5sw0A7NG4ZgQKdWORnBy0wBZ5F98sP_Ju8SKQ6zbDS4,651
124
+ replay_rec-0.17.0.dist-info/LICENSE,sha256=rPmcA7UrHxBChEAAlJyE24qUWKKl9yLQXxFsKeg_LX4,11344
125
+ replay_rec-0.17.0.dist-info/METADATA,sha256=5wmgvIeFw22ST7-kZrWT9ggEAmne8I7_yHkwN1Bfus8,10588
126
+ replay_rec-0.17.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
127
+ replay_rec-0.17.0.dist-info/RECORD,,
@@ -1,126 +0,0 @@
1
- replay/__init__.py,sha256=5QiEYYR9P626qiWyk47L6vQBjKSVroEKMYKGcH2HGt4,46
2
- replay/data/__init__.py,sha256=o8IzviPmnGQAoXGMgVoJRWJ-5WJ7ZjxeC9oc0cmttdU,301
3
- replay/data/dataset.py,sha256=ViDt66upex_kKKJ9a7F-WS5f6s4mbAa6bCIC3OHqCsY,21569
4
- replay/data/dataset_utils/__init__.py,sha256=9wUvG8ZwGUvuzLU4zQI5FDcH0WVVo5YLN2ey3DterP0,55
5
- replay/data/dataset_utils/dataset_label_encoder.py,sha256=8UZFWtia343vANf4VmQqoI8ZwLuqwYEY5ESWxFsB1Lw,9580
6
- replay/data/nn/__init__.py,sha256=GrUxoZucL5sGY_mZzxy6Vr_WIwSXeiD1k-HaBWQDnx4,1122
7
- replay/data/nn/schema.py,sha256=YzOM4hQ6c4mIHL-C50Nnh02GzhakMSG7NrClqURJYGo,14799
8
- replay/data/nn/sequence_tokenizer.py,sha256=ZXM0P5BJDomPX4lN4vqEjNOUhEaJkcXfHRAQwJcS2Ds,27309
9
- replay/data/nn/sequential_dataset.py,sha256=DqV7inCeDH_RHsx8ZyO1NC9p1V-Q_j0MNJMp_NnV0tM,8641
10
- replay/data/nn/torch_sequential_dataset.py,sha256=5APjkLVdX-e0--ymu_BSkBvfMPVyuQ_F3F6MdRmLFOI,10859
11
- replay/data/nn/utils.py,sha256=bE9He2LH_dP5LpRLuWxqMQdGAQCHFynAj-lfJT1NXP4,2801
12
- replay/data/schema.py,sha256=LiDlcofVtkqXvmtVxoXdoOyNLiv_QOSdRaK1IYJ3FGs,15769
13
- replay/data/spark_schema.py,sha256=jb1E7D4qupurxuhOhEhfGrSr-pGd3y8zSelvSeyl1g8,1148
14
- replay/metrics/__init__.py,sha256=KDkxVnKa4ks9K9GmlrdTx1pkIl-MAmm78ZASsp2ZndE,2812
15
- replay/metrics/base_metric.py,sha256=7nWXeyp7-qD2QYqwF7oEsDiiyH95JtRWxylEsAfWGL4,16615
16
- replay/metrics/categorical_diversity.py,sha256=pj3l3E_COhbxwJzsz1wxoSbk3tVcDRLEf3B5jDOSmW4,11591
17
- replay/metrics/coverage.py,sha256=EF0cWUvgCG8h2EbIlUly8iVfOtMJ8gMLB-FcVl86dsM,9349
18
- replay/metrics/descriptors.py,sha256=UX7GlWLE8SERg-Rf_rURzzWYAUu394OmJrfigbR-sew,4006
19
- replay/metrics/experiment.py,sha256=YNsa48UVPmXE6nePwSjxwVJMmd5U8cFJo-vJsxlaymw,8309
20
- replay/metrics/hitrate.py,sha256=9ZExNCcTWcBPKdDDLm35cxTGCHUk-BW1cLkFuyK01a8,2426
21
- replay/metrics/map.py,sha256=M-vKyifDnSA4HtbxYm6oxZ_ug9mOYdLH-mQahaq0gxU,2684
22
- replay/metrics/mrr.py,sha256=cC0YIgkmiV5RYF3dv1sd1sc-jVbTC0gswkGFU6egaf8,2279
23
- replay/metrics/ndcg.py,sha256=Ez01dPjLfyrbLcYdI5lT8R8Ig6haRCzxF_30OOBeu5M,3217
24
- replay/metrics/novelty.py,sha256=PbjvQkSNs_QfZXs24mDEcpRFrOoN_CDGKr3A-U3w9wU,5815
25
- replay/metrics/offline_metrics.py,sha256=4K_TZodkVbvKCCU1DGdmskA1L-Q3ECovcwlzXVW_nLc,21295
26
- replay/metrics/precision.py,sha256=DlK8qy_JdTFEkDFg01yAq9vgCIyCXs3B8ja3KjRH1PI,2369
27
- replay/metrics/recall.py,sha256=p62JBUNm9SiRi4yUJPkfSqMw2wg9697CUZpb9MifeFc,2560
28
- replay/metrics/rocauc.py,sha256=2p3wwrrHb7AnXPblebYujjRMVrz5QOS8eRnl5JDn_40,3389
29
- replay/metrics/surprisal.py,sha256=JAYngAgNPm8OTcjnk05GtGU1VTWc24s-ablktZ6NGJY,7852
30
- replay/metrics/torch_metrics_builder.py,sha256=FNflawLrFpuTrTqOOz6GJpobH3D0h03riTignTBbqw8,14038
31
- replay/metrics/unexpectedness.py,sha256=RveOm09Vmo585ELRHX3Sr3b9ZeGgLYFBQxfCuxJ2S7U,7122
32
- replay/models/__init__.py,sha256=gImNVFNUAZS7NYycDYF9I3H58DO6N7XxAuTye8aI6DQ,840
33
- replay/models/als.py,sha256=2AqSRvoXJhp_87jKj5zO7KyXsq9neH9Fa4WpFmwaBLg,6401
34
- replay/models/association_rules.py,sha256=6CE69RyvRLZTFaAS9mqKQxu2v9Fyhlhtw42azxAgmUY,14989
35
- replay/models/base_neighbour_rec.py,sha256=YPj9eHOXL4KTbp5UBbMXXT8bon-N0wUy02gZNk-V-Is,8077
36
- replay/models/base_rec.py,sha256=YgQI_vK7K1NMGC7Opca8wSXU65MGwPcIrh5XE5QHjE4,68541
37
- replay/models/cat_pop_rec.py,sha256=2WvmTnUmPJ-gx8oVZFT3BDtHjOR-B6YyTer2ptbvWV0,12162
38
- replay/models/cluster.py,sha256=CV847iIFyUDqPSmVrawx7yRwudQoriaA9bvrYS69xmQ,5202
39
- replay/models/extensions/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
40
- replay/models/extensions/ann/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
41
- replay/models/extensions/ann/ann_mixin.py,sha256=y4VahoBipUwZKYCXBXnOOZdCCNTRoXaGWZhge9ZD_uM,7410
42
- replay/models/extensions/ann/entities/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
43
- replay/models/extensions/ann/entities/base_hnsw_param.py,sha256=AJwM7yEksjP4GWsIDPFtE7JNULp3Uo5J1pGgbifPIrY,808
44
- replay/models/extensions/ann/entities/hnswlib_param.py,sha256=H80f-BznejRRi-pYtBD7-z1-IsP6GEGX6WAITEdS6uo,2279
45
- replay/models/extensions/ann/entities/nmslib_hnsw_param.py,sha256=baO8XuUxTNuDJ1JSfoVnaCJW3DSOB7zJFhDaa-IUdLM,2337
46
- replay/models/extensions/ann/index_builders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
47
- replay/models/extensions/ann/index_builders/base_index_builder.py,sha256=Ul25G0FaNLOXUjrDXxZDTg7tLXlv1N6wR8kWjWICtZ0,2110
48
- replay/models/extensions/ann/index_builders/driver_hnswlib_index_builder.py,sha256=Ydzi0Wx9GqiBb065lnSHrsyogqQoLqWeD031k485pMI,1740
49
- replay/models/extensions/ann/index_builders/driver_nmslib_index_builder.py,sha256=VE_b8elPTBignc6x_jETOzvijXsDT-UjpERQbWf_ays,1359
50
- replay/models/extensions/ann/index_builders/executor_hnswlib_index_builder.py,sha256=2HP9EQQXA0YrgssRnEqFDfkCn5MgpPbKO8TCJehymlI,2607
51
- replay/models/extensions/ann/index_builders/executor_nmslib_index_builder.py,sha256=ku-CbdWvGjP_cyF_o2C5G7ZGwcbZtw0fOFn8IckKtB0,2697
52
- replay/models/extensions/ann/index_builders/nmslib_index_builder_mixin.py,sha256=mWsvnyFoNu1m_oBR-lBFBnBikw76VWOzThOfwCmzVj4,2027
53
- replay/models/extensions/ann/index_inferers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
54
- replay/models/extensions/ann/index_inferers/base_inferer.py,sha256=GmcEfVBRvhEFgZftms3SszwZ5pSDF-oa6Xv42DZcRc4,2639
55
- replay/models/extensions/ann/index_inferers/hnswlib_filter_index_inferer.py,sha256=hj-d4bCtQn9S1C4UoSjHSy_BiDDeck9iJJRp724x3Ug,2661
56
- replay/models/extensions/ann/index_inferers/hnswlib_index_inferer.py,sha256=tGJ3b26j15tWtLtuPsBhcm-cr43r6lzbgR8gWaInVsc,1855
57
- replay/models/extensions/ann/index_inferers/nmslib_filter_index_inferer.py,sha256=a4F6bBmMpD1A-r-UK3_eq4qFBz1euMhDq2yrWS1YIN8,3422
58
- replay/models/extensions/ann/index_inferers/nmslib_index_inferer.py,sha256=JTBj5eAX5OP3FM1HRa-wUAasvAKwfD9rC_JH_ZPbUlU,2367
59
- replay/models/extensions/ann/index_inferers/utils.py,sha256=taAnxnSpvkpFqSUjneZJLRC58Af6Bd0dEnfUZUEwYNU,843
60
- replay/models/extensions/ann/index_stores/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
61
- replay/models/extensions/ann/index_stores/base_index_store.py,sha256=u4l2ybAXX92ZMGK7NqqosbKF75QgFqhAMVadd5ePj6Y,910
62
- replay/models/extensions/ann/index_stores/hdfs_index_store.py,sha256=SGXmyy5hl4XgEJJBSpMLyoZBfIlPtZVnsRy07Z5lSM8,3150
63
- replay/models/extensions/ann/index_stores/shared_disk_index_store.py,sha256=qhwLCJJGoJAH8KoGDU12dW759Qr6Azf0jXCi-b731x8,2066
64
- replay/models/extensions/ann/index_stores/spark_files_index_store.py,sha256=i4Yz68Vryhalp2z5Jfq8rBRRsSnk8rq6a5w0P5rRO5E,3753
65
- replay/models/extensions/ann/index_stores/utils.py,sha256=tnVLQEKVcx2xhY6nHACXQF4-xupDO2bVMjHrWAsVywU,3725
66
- replay/models/extensions/ann/utils.py,sha256=NVekVdx0nHuNP9ehuCFg6ZCj39Gh9Rwy2Nw7tl2eMS0,1350
67
- replay/models/kl_ucb.py,sha256=lSQUaFLVQS42kR7nhrahGTYPh_xunvgyt0ejDeO4iWM,6849
68
- replay/models/knn.py,sha256=X9lUlwDzWT5DMt8qI3fheUMEdQLjmt5MgBnJ5ipA_Xo,9576
69
- replay/models/nn/__init__.py,sha256=AT3o1qXaxUq4_QIGlcGuSs54ZpueOo-SbpZwuGI-6os,41
70
- replay/models/nn/optimizer_utils/__init__.py,sha256=zafOGP_F7FvwtDbuu8P7fWtM0zMHLwdsQpanw-1tafM,218
71
- replay/models/nn/optimizer_utils/optimizer_factory.py,sha256=olvfhbQ4bj97reMq6cDC5arKxVgr7lz2vZ6vkj-Gc5o,3028
72
- replay/models/nn/sequential/__init__.py,sha256=CI2n0cxs_amqJrwBMq6n0Z_uBOu7CGXfagqvE4Jlmjw,128
73
- replay/models/nn/sequential/bert4rec/__init__.py,sha256=1gFtAOqubZXIaqo4MFv1OVDJtuDzu2L1zS5BAz9O-gM,399
74
- replay/models/nn/sequential/bert4rec/dataset.py,sha256=jeO-Xndh-Q7tXX_BfLKWphHAdC_ubc7SEe0-RjqKlDA,10410
75
- replay/models/nn/sequential/bert4rec/lightning.py,sha256=Z0i5GYyjRr9SpHS3LBPBx0isRRdzy0jjBQDcsSspros,22611
76
- replay/models/nn/sequential/bert4rec/model.py,sha256=K0mmCYR-va7gcXvWwTUKged0Spa9obJXNleDMoEDEkg,21645
77
- replay/models/nn/sequential/callbacks/__init__.py,sha256=ElQw3etd9iTlnD9YB_Tgh3heAKut_UBC3hXWATkWD20,281
78
- replay/models/nn/sequential/callbacks/prediction_callbacks.py,sha256=aAfjOqHxn1iqOmeVcpgY8NC8WCmcnrtV0r2xU8F5NKU,9139
79
- replay/models/nn/sequential/callbacks/validation_callback.py,sha256=YiPalwD1ZE9bWadSC5SqOVjxHBXNTQEmj3dw2oLrEBc,5980
80
- replay/models/nn/sequential/postprocessors/__init__.py,sha256=89LGzkNHukcuC2-rfpiz7vmv1zyk6MNY-8zaXrvtn0M,164
81
- replay/models/nn/sequential/postprocessors/_base.py,sha256=Z-HuXM4WBQtrq9IeCL00jtdb_UopksInxVVK8lxD_hA,1136
82
- replay/models/nn/sequential/postprocessors/postprocessors.py,sha256=GUO5MicViJqbGNCe5nLZafeu5VyrH8Bbp2Ns-ZjSysI,6821
83
- replay/models/nn/sequential/sasrec/__init__.py,sha256=c6130lRpPkcbuGgkM7slagBIgH7Uk5zUtSzFDEwAsik,250
84
- replay/models/nn/sequential/sasrec/dataset.py,sha256=VpmoxYPpsj_q97x-Whuebw2ntkGBLTRWWIgfBAYO7Bg,7068
85
- replay/models/nn/sequential/sasrec/lightning.py,sha256=KGFSoWVJJnCVfvpduafyUn2RqIFhwETGoaYEiZrI0HI,21287
86
- replay/models/nn/sequential/sasrec/model.py,sha256=rR_gzSeSw27C17T6vY7zkIHfdqk7jBpA1gJVwmp7Lxs,28183
87
- replay/models/pop_rec.py,sha256=jmxmpz1HjSOEbRTGQYm3ypDUFJCoaAHYLz70KGWkjRM,4972
88
- replay/models/query_pop_rec.py,sha256=SMdd0ll8JlZMz5waxg0RWEHz2jvyRvV60R7ur3apCCw,4186
89
- replay/models/random_rec.py,sha256=T48XNRlB3HYbdtYe0DkjWPUN7BA2WOrKzA7RvZbFDWg,8230
90
- replay/models/slim.py,sha256=WHhSMx5hWHcbU5moCTjZ-MSOUvTR4fzLjUoeIYY7jXE,4863
91
- replay/models/thompson_sampling.py,sha256=Dq919ydM7Rexq9sTlUTtcFdIUBwHveoKQEyANUg_IdQ,1959
92
- replay/models/ucb.py,sha256=CYUnrhEyJnukAW94ymBE7_Ylw9uL0y9HvXTHTxASkrw,7081
93
- replay/models/wilson.py,sha256=vKEuK3M4zPKwPt-nt6PBNtlpC2vjieSR-hgMLySllu4,4711
94
- replay/models/word2vec.py,sha256=Jnq_yQ1CucebMCZXybOexccl5BnRa4_8fR_QtS08Drg,10170
95
- replay/optimization/__init__.py,sha256=az6U10rF7X6rPRUUPwLyiM1WFNJ_6kl0imA5xLVWFLs,120
96
- replay/optimization/optuna_objective.py,sha256=p-ja-FBFxTD81KdgCbWvEw-F3WXNqIJZAdd4re906iM,7990
97
- replay/preprocessing/__init__.py,sha256=NNceamEWs9J7No08_-7Gj6AaThgDHhlBbw3SRhXYKJU,412
98
- replay/preprocessing/converter.py,sha256=feCKZ1xk-DPAQfxmuDO0m47Eq0168TRxcaeCf4kgaf4,4513
99
- replay/preprocessing/filters.py,sha256=yYptV7CCOtZsbplkH_g3rp1yMIMVMyf9RKWE1kWS0Ng,35195
100
- replay/preprocessing/history_based_fp.py,sha256=ROUxmEmWDGIRJYo_8RSW5zCq45Aaco2retPZtlzowh0,19910
101
- replay/preprocessing/label_encoder.py,sha256=-A_hSxNuz-ssOB3pcl6dV61OyPQileYorcKKUS31xFQ,25513
102
- replay/preprocessing/sessionizer.py,sha256=_rTF8Tv9qJ_8_RdOb3kqb6S05klQxqnqKl5BlMoK0mw,12530
103
- replay/scenarios/__init__.py,sha256=kw2wRkPPinw0IBA20D83XQ3xeSudk3KuYAAA1Wdr8xY,93
104
- replay/scenarios/fallback.py,sha256=8T3zGQXUsqwAxTE3ed5lKJA1-mZw6OPWD4Me8XsYFMc,7357
105
- replay/splitters/__init__.py,sha256=DnqVMelrzLwR8fGQgcWN_8FipGs8T4XGSPOMW-L_x2g,454
106
- replay/splitters/base_splitter.py,sha256=hFFibL7wxTMDyFhwoIAwm7qmtdQM5mxIyc81qP7bL8w,6958
107
- replay/splitters/cold_user_random_splitter.py,sha256=vHoq3o1fZM0ECqeNG5GPhlShjxYSQj_4DjMduaKdX0I,4406
108
- replay/splitters/k_folds.py,sha256=PlsMlM7l5Wl_71PJamIb0Si_tG8s13StZ1-1GTuOZg4,6541
109
- replay/splitters/last_n_splitter.py,sha256=PRWgUo39OCYXSPpMxiXsfBVJXWr4LcUIuYsvUaNDQ2o,15664
110
- replay/splitters/new_users_splitter.py,sha256=V2IX886N1FFTqnzhGuQHi3g2UELtFdal2Zj68GXpR2A,9620
111
- replay/splitters/random_splitter.py,sha256=hLOvhBUzrfS5mdKb5-0I3v2XroFO5wHuds24d0WLhQ4,3121
112
- replay/splitters/ratio_splitter.py,sha256=BsEbha9uPFXKcEQP6qAr_hv6hU3otCpnuUgKoReYDFg,18158
113
- replay/splitters/time_splitter.py,sha256=ON_kVLcIRVcrQVMhzT0snNRTmHRPvwik7NysLc_mPMg,9251
114
- replay/splitters/two_stage_splitter.py,sha256=7tde_UsccuwmUAquMt5Ci3cM0sV09JObI3jRPa4Y5WI,18419
115
- replay/utils/__init__.py,sha256=tubXIraBtiw9AeONaOxv6KMbaQCrDr3ukv4RCdfTIkk,253
116
- replay/utils/dataframe_bucketizer.py,sha256=am1AtlZApUXU5xp4kZeQNWxQmpfkONDSxTrP-Coz8xo,3834
117
- replay/utils/distributions.py,sha256=i3DQ4fQlhNs-J5C3neQk2zmPWfLwrSu4ys3InRr1gNk,1304
118
- replay/utils/model_handler.py,sha256=jF8FTzHAKyjY4j-5sRHDk47fYuTzLNWE6mGnNR6zgFk,5859
119
- replay/utils/session_handler.py,sha256=IUhm7Da3cgF0qg0rlEo9NiDnpGBB267cWzEGqwzRmmY,5359
120
- replay/utils/spark_utils.py,sha256=4db-XMvKnnPGOzVngIdTqOBX0-1zPDLwL0MrC1lUaVY,27061
121
- replay/utils/time.py,sha256=pEOqOXzAlj2F8nqK4yCG9OakwMzQqQl6FuUTkdp6svk,9467
122
- replay/utils/types.py,sha256=vdQWLwY9X1lxSor9kaw8U1jIDcBkUAGbwfIzEBoVkrU,744
123
- replay_rec-0.16.0.dist-info/LICENSE,sha256=rPmcA7UrHxBChEAAlJyE24qUWKKl9yLQXxFsKeg_LX4,11344
124
- replay_rec-0.16.0.dist-info/METADATA,sha256=kqBuaPryc61S_1BllumtPygYrGjkS4BvEmS0A_HAFts,10597
125
- replay_rec-0.16.0.dist-info/WHEEL,sha256=Zb28QaM1gQi8f4VCBhsUklF61CTlNYfs9YAZn-TOGFk,88
126
- replay_rec-0.16.0.dist-info/RECORD,,