remdb 0.3.146__py3-none-any.whl → 0.3.181__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of remdb might be problematic. Click here for more details.
- rem/agentic/agents/__init__.py +16 -0
- rem/agentic/agents/agent_manager.py +311 -0
- rem/agentic/context.py +81 -3
- rem/agentic/context_builder.py +36 -9
- rem/agentic/mcp/tool_wrapper.py +43 -14
- rem/agentic/providers/pydantic_ai.py +76 -34
- rem/agentic/schema.py +4 -3
- rem/agentic/tools/rem_tools.py +11 -0
- rem/api/deps.py +3 -5
- rem/api/main.py +22 -3
- rem/api/mcp_router/resources.py +75 -14
- rem/api/mcp_router/server.py +28 -23
- rem/api/mcp_router/tools.py +177 -2
- rem/api/middleware/tracking.py +5 -5
- rem/api/routers/auth.py +352 -6
- rem/api/routers/chat/completions.py +5 -3
- rem/api/routers/chat/streaming.py +95 -22
- rem/api/routers/messages.py +24 -15
- rem/auth/__init__.py +13 -3
- rem/auth/jwt.py +352 -0
- rem/auth/middleware.py +70 -30
- rem/auth/providers/__init__.py +4 -1
- rem/auth/providers/email.py +215 -0
- rem/cli/commands/ask.py +1 -1
- rem/cli/commands/db.py +118 -54
- rem/models/entities/__init__.py +4 -0
- rem/models/entities/ontology.py +93 -101
- rem/models/entities/subscriber.py +175 -0
- rem/models/entities/user.py +1 -0
- rem/schemas/agents/core/agent-builder.yaml +235 -0
- rem/services/__init__.py +3 -1
- rem/services/content/service.py +4 -3
- rem/services/email/__init__.py +10 -0
- rem/services/email/service.py +522 -0
- rem/services/email/templates.py +360 -0
- rem/services/embeddings/worker.py +26 -12
- rem/services/postgres/README.md +38 -0
- rem/services/postgres/diff_service.py +19 -3
- rem/services/postgres/pydantic_to_sqlalchemy.py +37 -2
- rem/services/postgres/register_type.py +1 -1
- rem/services/postgres/repository.py +37 -25
- rem/services/postgres/schema_generator.py +5 -5
- rem/services/postgres/sql_builder.py +6 -5
- rem/services/session/compression.py +113 -50
- rem/services/session/reload.py +14 -7
- rem/services/user_service.py +41 -9
- rem/settings.py +182 -1
- rem/sql/background_indexes.sql +5 -0
- rem/sql/migrations/001_install.sql +33 -4
- rem/sql/migrations/002_install_models.sql +204 -186
- rem/sql/migrations/005_schema_update.sql +145 -0
- rem/utils/model_helpers.py +101 -0
- rem/utils/schema_loader.py +45 -7
- {remdb-0.3.146.dist-info → remdb-0.3.181.dist-info}/METADATA +1 -1
- {remdb-0.3.146.dist-info → remdb-0.3.181.dist-info}/RECORD +57 -48
- {remdb-0.3.146.dist-info → remdb-0.3.181.dist-info}/WHEEL +0 -0
- {remdb-0.3.146.dist-info → remdb-0.3.181.dist-info}/entry_points.txt +0 -0
rem/models/entities/ontology.py
CHANGED
|
@@ -1,63 +1,55 @@
|
|
|
1
|
-
"""Ontology entity for
|
|
1
|
+
"""Ontology entity for domain-specific knowledge.
|
|
2
2
|
|
|
3
|
-
**What
|
|
3
|
+
**What are Ontologies?**
|
|
4
4
|
|
|
5
|
-
Ontologies are **domain-specific structured knowledge**
|
|
6
|
-
|
|
7
|
-
|
|
5
|
+
Ontologies are **domain-specific structured knowledge** that can be:
|
|
6
|
+
1. **Extracted** from files using custom agent schemas (agent-extracted)
|
|
7
|
+
2. **Loaded directly** from external sources like git repos or S3 (direct-loaded)
|
|
8
8
|
|
|
9
|
-
**
|
|
10
|
-
File → extract text → chunk → embed → resources (semantic search ready)
|
|
9
|
+
**Use Case 1: Agent-Extracted Ontologies**
|
|
11
10
|
|
|
12
|
-
**Ontology Processing (Tenant Knowledge Extensions):**
|
|
13
11
|
File → custom agent → structured JSON → ontology (domain knowledge)
|
|
14
12
|
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
13
|
+
Example: A contract PDF becomes a structured record with parties, dates, payment terms.
|
|
14
|
+
|
|
15
|
+
**Use Case 2: Direct-Loaded Ontologies (Knowledge Bases)**
|
|
16
|
+
|
|
17
|
+
External source (git/S3) → load → ontology (reference knowledge)
|
|
18
|
+
|
|
19
|
+
Example: A psychiatric ontology of disorders, symptoms, and drugs loaded from markdown
|
|
20
|
+
files in a git repository. Each markdown file becomes an ontology node with:
|
|
21
|
+
- `uri`: git path (e.g., `git://org/repo/ontology/disorders/anxiety/panic-disorder.md`)
|
|
22
|
+
- `content`: markdown content for embedding/search
|
|
23
|
+
- `extracted_data`: parsed frontmatter or structure
|
|
20
24
|
|
|
21
25
|
**Architecture:**
|
|
22
|
-
- Runs as part of dreaming worker (background knowledge extraction)
|
|
23
|
-
-
|
|
26
|
+
- Runs as part of dreaming worker (background knowledge extraction) OR
|
|
27
|
+
- Loaded directly via `rem db load` for external knowledge bases
|
|
28
|
+
- OntologyConfig defines which files trigger which extractors
|
|
24
29
|
- Multiple ontologies per file (apply different domain lenses)
|
|
25
|
-
- Tenant-scoped: Each tenant can define their own extractors
|
|
30
|
+
- Tenant-scoped: Each tenant can define their own extractors and knowledge bases
|
|
26
31
|
|
|
27
32
|
**Use Cases:**
|
|
28
33
|
|
|
29
|
-
1. **Recruitment (CV Parsing)**
|
|
30
|
-
-
|
|
31
|
-
- Ontology: Structured fields for filtering/sorting (years_experience, seniority_level, skills[])
|
|
32
|
-
|
|
33
|
-
2. **Legal (Contract Analysis)**
|
|
34
|
-
- Standard pipeline: Semantic search over contract text
|
|
35
|
-
- Ontology: Queryable fields (parties, effective_date, payment_amount, key_obligations[])
|
|
34
|
+
1. **Recruitment (CV Parsing)** - Agent-extracted
|
|
35
|
+
- Ontology: Structured fields for filtering/sorting (years_experience, skills[])
|
|
36
36
|
|
|
37
|
-
|
|
38
|
-
-
|
|
39
|
-
- Ontology: Structured diagnoses, medications, dosages, treatment plans
|
|
37
|
+
2. **Legal (Contract Analysis)** - Agent-extracted
|
|
38
|
+
- Ontology: Queryable fields (parties, effective_date, payment_amount)
|
|
40
39
|
|
|
41
|
-
|
|
42
|
-
-
|
|
43
|
-
-
|
|
40
|
+
3. **Medical Knowledge Base** - Direct-loaded
|
|
41
|
+
- Ontology: Disorders, symptoms, medications from curated markdown files
|
|
42
|
+
- Enables semantic search over psychiatric/medical domain knowledge
|
|
44
43
|
|
|
45
|
-
**
|
|
46
|
-
|
|
47
|
-
|
|
48
|
-
3. Normal processing: File → chunks → resources
|
|
49
|
-
4. Dreaming worker detects matching OntologyConfig
|
|
50
|
-
5. Loads cv-parser-v1 agent schema from database
|
|
51
|
-
6. Runs agent on file content → extracts structured data
|
|
52
|
-
7. Stores Ontology with extracted_data = {candidate_name, skills, experience, education, ...}
|
|
53
|
-
8. Ontology is now queryable via LOOKUP, SEARCH, or direct SQL
|
|
44
|
+
4. **Documentation/Procedures** - Direct-loaded
|
|
45
|
+
- Ontology: Clinical procedures (e.g., SCID-5 assessment steps)
|
|
46
|
+
- Reference material accessible via RAG
|
|
54
47
|
|
|
55
48
|
**Design:**
|
|
56
|
-
-
|
|
57
|
-
-
|
|
58
|
-
- Structured data in `extracted_data` (arbitrary JSON
|
|
59
|
-
- Embeddings generated for semantic search
|
|
60
|
-
- Multiple ontologies per file using different schemas
|
|
49
|
+
- `file_id` and `agent_schema_id` are optional (only needed for agent-extracted)
|
|
50
|
+
- `uri` field for external source references (git://, s3://, https://)
|
|
51
|
+
- Structured data in `extracted_data` (arbitrary JSON)
|
|
52
|
+
- Embeddings generated for semantic search via `content` field
|
|
61
53
|
- Tenant-isolated: OntologyConfigs are tenant-scoped
|
|
62
54
|
"""
|
|
63
55
|
|
|
@@ -70,18 +62,19 @@ from ..core.core_model import CoreModel
|
|
|
70
62
|
|
|
71
63
|
|
|
72
64
|
class Ontology(CoreModel):
|
|
73
|
-
"""Domain-specific knowledge
|
|
65
|
+
"""Domain-specific knowledge - either agent-extracted or direct-loaded.
|
|
74
66
|
|
|
75
67
|
Attributes:
|
|
76
68
|
name: Human-readable label for this ontology instance
|
|
77
|
-
|
|
78
|
-
|
|
79
|
-
|
|
80
|
-
|
|
81
|
-
|
|
69
|
+
uri: External source reference (git://, s3://, https://) for direct-loaded ontologies
|
|
70
|
+
file_id: Foreign key to File entity (optional - only for agent-extracted)
|
|
71
|
+
agent_schema_id: Schema that performed extraction (optional - only for agent-extracted)
|
|
72
|
+
provider_name: LLM provider used for extraction (optional)
|
|
73
|
+
model_name: Specific model used (optional)
|
|
74
|
+
extracted_data: Structured data - either extracted by agent or parsed from source
|
|
82
75
|
confidence_score: Optional confidence score from extraction (0.0-1.0)
|
|
83
76
|
extraction_timestamp: When extraction was performed
|
|
84
|
-
|
|
77
|
+
content: Text used for generating embedding
|
|
85
78
|
|
|
86
79
|
Inherited from CoreModel:
|
|
87
80
|
id: UUID or string identifier
|
|
@@ -93,10 +86,9 @@ class Ontology(CoreModel):
|
|
|
93
86
|
graph_edges: Relationships to other entities
|
|
94
87
|
metadata: Flexible metadata storage
|
|
95
88
|
tags: Classification tags
|
|
96
|
-
column: Database schema metadata
|
|
97
89
|
|
|
98
90
|
Example Usage:
|
|
99
|
-
# CV
|
|
91
|
+
# Agent-extracted: CV parsing
|
|
100
92
|
cv_ontology = Ontology(
|
|
101
93
|
name="john-doe-cv-2024",
|
|
102
94
|
file_id="file-uuid-123",
|
|
@@ -105,73 +97,74 @@ class Ontology(CoreModel):
|
|
|
105
97
|
model_name="claude-sonnet-4-5-20250929",
|
|
106
98
|
extracted_data={
|
|
107
99
|
"candidate_name": "John Doe",
|
|
108
|
-
"email": "john@example.com",
|
|
109
100
|
"skills": ["Python", "PostgreSQL", "Kubernetes"],
|
|
110
|
-
"experience": [
|
|
111
|
-
{
|
|
112
|
-
"company": "TechCorp",
|
|
113
|
-
"role": "Senior Engineer",
|
|
114
|
-
"years": 3,
|
|
115
|
-
"achievements": ["Led migration to k8s", "Reduced costs 40%"]
|
|
116
|
-
}
|
|
117
|
-
],
|
|
118
|
-
"education": [
|
|
119
|
-
{"degree": "BS Computer Science", "institution": "MIT", "year": 2018}
|
|
120
|
-
]
|
|
121
101
|
},
|
|
122
102
|
confidence_score=0.95,
|
|
123
|
-
tags=["cv", "engineering"
|
|
103
|
+
tags=["cv", "engineering"]
|
|
124
104
|
)
|
|
125
105
|
|
|
126
|
-
#
|
|
127
|
-
|
|
128
|
-
name="
|
|
129
|
-
|
|
130
|
-
|
|
131
|
-
provider_name="openai",
|
|
132
|
-
model_name="gpt-4.1",
|
|
106
|
+
# Direct-loaded: Medical knowledge base from git
|
|
107
|
+
disorder_ontology = Ontology(
|
|
108
|
+
name="panic-disorder",
|
|
109
|
+
uri="git://bwolfson-siggie/Siggy-MVP/ontology/disorders/anxiety/panic-disorder.md",
|
|
110
|
+
content="# Panic Disorder\\n\\nPanic disorder is characterized by...",
|
|
133
111
|
extracted_data={
|
|
134
|
-
"
|
|
135
|
-
"
|
|
136
|
-
|
|
137
|
-
|
|
138
|
-
|
|
139
|
-
|
|
140
|
-
|
|
141
|
-
|
|
142
|
-
|
|
143
|
-
|
|
144
|
-
|
|
145
|
-
|
|
146
|
-
|
|
147
|
-
|
|
148
|
-
|
|
149
|
-
|
|
112
|
+
"type": "disorder",
|
|
113
|
+
"category": "anxiety",
|
|
114
|
+
"icd10": "F41.0",
|
|
115
|
+
"dsm5_criteria": ["A", "B", "C", "D"],
|
|
116
|
+
},
|
|
117
|
+
tags=["disorder", "anxiety", "dsm5"]
|
|
118
|
+
)
|
|
119
|
+
|
|
120
|
+
# Direct-loaded: Clinical procedure from git
|
|
121
|
+
scid_node = Ontology(
|
|
122
|
+
name="scid-5-f1",
|
|
123
|
+
uri="git://bwolfson-siggie/Siggy-MVP/ontology/procedures/scid-5/module-f/scid-5-f1.md",
|
|
124
|
+
content="# scid-5-f1: Panic Attack Screening\\n\\n...",
|
|
125
|
+
extracted_data={
|
|
126
|
+
"type": "procedure",
|
|
127
|
+
"module": "F",
|
|
128
|
+
"section": "Panic Disorder",
|
|
129
|
+
"dsm5_criterion": "Panic Attack Specifier",
|
|
150
130
|
},
|
|
151
|
-
|
|
152
|
-
tags=["contract", "supplier", "procurement"]
|
|
131
|
+
tags=["scid-5", "procedure", "anxiety"]
|
|
153
132
|
)
|
|
154
133
|
"""
|
|
155
134
|
|
|
156
135
|
# Core fields
|
|
157
136
|
name: str
|
|
158
|
-
|
|
159
|
-
agent_schema_id: str # Natural language label of Schema entity
|
|
137
|
+
uri: Optional[str] = None # External source: git://, s3://, https://
|
|
160
138
|
|
|
161
|
-
#
|
|
162
|
-
|
|
163
|
-
|
|
164
|
-
|
|
139
|
+
# Agent extraction fields (optional - only for agent-extracted ontologies)
|
|
140
|
+
file_id: Optional[UUID | str] = None # FK to File entity
|
|
141
|
+
agent_schema_id: Optional[str] = None # Schema that performed extraction
|
|
142
|
+
provider_name: Optional[str] = None # LLM provider (anthropic, openai, etc.)
|
|
143
|
+
model_name: Optional[str] = None # Specific model used
|
|
144
|
+
|
|
145
|
+
# Data fields
|
|
146
|
+
extracted_data: Optional[dict[str, Any]] = None # Structured data
|
|
165
147
|
confidence_score: Optional[float] = None # 0.0-1.0 if provided by agent
|
|
166
148
|
extraction_timestamp: Optional[str] = None # ISO8601 timestamp
|
|
167
149
|
|
|
168
|
-
# Semantic search support
|
|
169
|
-
|
|
150
|
+
# Semantic search support - 'content' is a default embeddable field name
|
|
151
|
+
content: Optional[str] = None # Text for embedding generation
|
|
170
152
|
|
|
171
153
|
model_config = ConfigDict(
|
|
172
154
|
json_schema_extra={
|
|
173
|
-
"description": "Domain-specific knowledge extracted
|
|
155
|
+
"description": "Domain-specific knowledge - agent-extracted or direct-loaded from external sources",
|
|
174
156
|
"examples": [
|
|
157
|
+
{
|
|
158
|
+
"name": "panic-disorder",
|
|
159
|
+
"uri": "git://org/repo/ontology/disorders/anxiety/panic-disorder.md",
|
|
160
|
+
"content": "# Panic Disorder\n\nPanic disorder is characterized by...",
|
|
161
|
+
"extracted_data": {
|
|
162
|
+
"type": "disorder",
|
|
163
|
+
"category": "anxiety",
|
|
164
|
+
"icd10": "F41.0"
|
|
165
|
+
},
|
|
166
|
+
"tags": ["disorder", "anxiety"]
|
|
167
|
+
},
|
|
175
168
|
{
|
|
176
169
|
"name": "john-doe-cv-2024",
|
|
177
170
|
"file_id": "550e8400-e29b-41d4-a716-446655440000",
|
|
@@ -180,8 +173,7 @@ class Ontology(CoreModel):
|
|
|
180
173
|
"model_name": "claude-sonnet-4-5-20250929",
|
|
181
174
|
"extracted_data": {
|
|
182
175
|
"candidate_name": "John Doe",
|
|
183
|
-
"skills": ["Python", "PostgreSQL"]
|
|
184
|
-
"experience": []
|
|
176
|
+
"skills": ["Python", "PostgreSQL"]
|
|
185
177
|
},
|
|
186
178
|
"confidence_score": 0.95,
|
|
187
179
|
"tags": ["cv", "engineering"]
|
|
@@ -0,0 +1,175 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Subscriber - Email subscription management.
|
|
3
|
+
|
|
4
|
+
This model stores subscribers who sign up via websites/apps.
|
|
5
|
+
Subscribers can be collected before user registration for newsletters,
|
|
6
|
+
updates, and approval-based access control.
|
|
7
|
+
|
|
8
|
+
Key features:
|
|
9
|
+
- Deterministic UUID from email (same email = same ID)
|
|
10
|
+
- Approval workflow for access control
|
|
11
|
+
- Tags for segmentation
|
|
12
|
+
- Origin tracking for analytics
|
|
13
|
+
"""
|
|
14
|
+
|
|
15
|
+
import uuid
|
|
16
|
+
from datetime import datetime, timezone
|
|
17
|
+
from enum import Enum
|
|
18
|
+
from typing import Optional
|
|
19
|
+
|
|
20
|
+
from pydantic import Field, EmailStr, model_validator
|
|
21
|
+
|
|
22
|
+
from ..core import CoreModel
|
|
23
|
+
|
|
24
|
+
|
|
25
|
+
class SubscriberStatus(str, Enum):
|
|
26
|
+
"""Subscription status."""
|
|
27
|
+
|
|
28
|
+
ACTIVE = "active" # Actively subscribed
|
|
29
|
+
UNSUBSCRIBED = "unsubscribed" # User unsubscribed
|
|
30
|
+
BOUNCED = "bounced" # Email bounced
|
|
31
|
+
PENDING = "pending" # Pending confirmation (if double opt-in)
|
|
32
|
+
|
|
33
|
+
|
|
34
|
+
class SubscriberOrigin(str, Enum):
|
|
35
|
+
"""Where the subscription originated from."""
|
|
36
|
+
|
|
37
|
+
WEBSITE = "website" # Main website subscribe form
|
|
38
|
+
LANDING_PAGE = "landing_page" # Campaign landing page
|
|
39
|
+
APP = "app" # In-app subscription
|
|
40
|
+
IMPORT = "import" # Bulk import
|
|
41
|
+
REFERRAL = "referral" # Referred by another user
|
|
42
|
+
OTHER = "other"
|
|
43
|
+
|
|
44
|
+
|
|
45
|
+
class Subscriber(CoreModel):
|
|
46
|
+
"""
|
|
47
|
+
Email subscriber for newsletters and access control.
|
|
48
|
+
|
|
49
|
+
This model captures subscribers who sign up via the website, landing pages,
|
|
50
|
+
or in-app prompts. Uses deterministic UUID from email for natural upserts.
|
|
51
|
+
|
|
52
|
+
Access control via `approved` field:
|
|
53
|
+
- When email auth checks subscriber status, only approved subscribers
|
|
54
|
+
can complete login (if approval is enabled in settings).
|
|
55
|
+
- Subscribers can be pre-approved, or approved manually/automatically.
|
|
56
|
+
|
|
57
|
+
Usage:
|
|
58
|
+
from rem.services.postgres import Repository
|
|
59
|
+
from rem.models.entities import Subscriber, SubscriberStatus
|
|
60
|
+
|
|
61
|
+
repo = Repository(Subscriber, db=db)
|
|
62
|
+
|
|
63
|
+
# Create subscriber (ID auto-generated from email)
|
|
64
|
+
subscriber = Subscriber(
|
|
65
|
+
email="user@example.com",
|
|
66
|
+
name="John Doe",
|
|
67
|
+
origin=SubscriberOrigin.WEBSITE,
|
|
68
|
+
)
|
|
69
|
+
await repo.upsert(subscriber)
|
|
70
|
+
|
|
71
|
+
# Check if approved for login
|
|
72
|
+
subscriber = await repo.get_by_id(subscriber.id, tenant_id="default")
|
|
73
|
+
if subscriber and subscriber.approved:
|
|
74
|
+
# Allow login
|
|
75
|
+
pass
|
|
76
|
+
"""
|
|
77
|
+
|
|
78
|
+
# Required field
|
|
79
|
+
email: EmailStr = Field(
|
|
80
|
+
description="Subscriber's email address (unique identifier)"
|
|
81
|
+
)
|
|
82
|
+
|
|
83
|
+
# Optional fields
|
|
84
|
+
name: Optional[str] = Field(
|
|
85
|
+
default=None,
|
|
86
|
+
description="Subscriber's name (optional)"
|
|
87
|
+
)
|
|
88
|
+
|
|
89
|
+
comment: Optional[str] = Field(
|
|
90
|
+
default=None,
|
|
91
|
+
max_length=500,
|
|
92
|
+
description="Optional comment or message from subscriber"
|
|
93
|
+
)
|
|
94
|
+
|
|
95
|
+
status: SubscriberStatus = Field(
|
|
96
|
+
default=SubscriberStatus.ACTIVE,
|
|
97
|
+
description="Current subscription status"
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
# Access control
|
|
101
|
+
approved: bool = Field(
|
|
102
|
+
default=False,
|
|
103
|
+
description="Whether subscriber is approved for login (for approval workflows)"
|
|
104
|
+
)
|
|
105
|
+
|
|
106
|
+
approved_at: Optional[datetime] = Field(
|
|
107
|
+
default=None,
|
|
108
|
+
description="When the subscriber was approved"
|
|
109
|
+
)
|
|
110
|
+
|
|
111
|
+
approved_by: Optional[str] = Field(
|
|
112
|
+
default=None,
|
|
113
|
+
description="Who approved the subscriber (user ID or 'system')"
|
|
114
|
+
)
|
|
115
|
+
|
|
116
|
+
# Origin tracking
|
|
117
|
+
origin: SubscriberOrigin = Field(
|
|
118
|
+
default=SubscriberOrigin.WEBSITE,
|
|
119
|
+
description="Where the subscription originated"
|
|
120
|
+
)
|
|
121
|
+
|
|
122
|
+
origin_detail: Optional[str] = Field(
|
|
123
|
+
default=None,
|
|
124
|
+
description="Additional origin context (e.g., campaign name, page URL)"
|
|
125
|
+
)
|
|
126
|
+
|
|
127
|
+
# Timestamps
|
|
128
|
+
subscribed_at: datetime = Field(
|
|
129
|
+
default_factory=lambda: datetime.now(timezone.utc),
|
|
130
|
+
description="When the subscription was created"
|
|
131
|
+
)
|
|
132
|
+
|
|
133
|
+
unsubscribed_at: Optional[datetime] = Field(
|
|
134
|
+
default=None,
|
|
135
|
+
description="When the user unsubscribed (if applicable)"
|
|
136
|
+
)
|
|
137
|
+
|
|
138
|
+
# Compliance
|
|
139
|
+
ip_address: Optional[str] = Field(
|
|
140
|
+
default=None,
|
|
141
|
+
description="IP address at subscription time (for compliance)"
|
|
142
|
+
)
|
|
143
|
+
|
|
144
|
+
user_agent: Optional[str] = Field(
|
|
145
|
+
default=None,
|
|
146
|
+
description="Browser user agent at subscription time"
|
|
147
|
+
)
|
|
148
|
+
|
|
149
|
+
# Segmentation
|
|
150
|
+
tags: list[str] = Field(
|
|
151
|
+
default_factory=list,
|
|
152
|
+
description="Tags for segmentation (e.g., ['early-access', 'beta'])"
|
|
153
|
+
)
|
|
154
|
+
|
|
155
|
+
@staticmethod
|
|
156
|
+
def email_to_uuid(email: str) -> uuid.UUID:
|
|
157
|
+
"""Generate a deterministic UUID from an email address.
|
|
158
|
+
|
|
159
|
+
Uses UUID v5 with DNS namespace for consistency with
|
|
160
|
+
EmailService.generate_user_id_from_email().
|
|
161
|
+
|
|
162
|
+
Args:
|
|
163
|
+
email: Email address
|
|
164
|
+
|
|
165
|
+
Returns:
|
|
166
|
+
Deterministic UUID
|
|
167
|
+
"""
|
|
168
|
+
return uuid.uuid5(uuid.NAMESPACE_DNS, email.lower().strip())
|
|
169
|
+
|
|
170
|
+
@model_validator(mode="after")
|
|
171
|
+
def set_id_from_email(self) -> "Subscriber":
|
|
172
|
+
"""Auto-generate deterministic ID from email for natural upsert."""
|
|
173
|
+
if self.email:
|
|
174
|
+
self.id = self.email_to_uuid(self.email)
|
|
175
|
+
return self
|
rem/models/entities/user.py
CHANGED